Effect of Co-Solvents on Transesterification of Refined Palm Oil in Supercritical Methanol
DOI:
https://doi.org/10.4186/ej.2011.15.3.49Keywords:
Biodiesel, palm oil, supercritical, methanol, transesterification, co-solvents.Abstract
This study examined the non-catalytic transesterification of refined palm oil, using supercritical methanol as a solvent with and without the presence of co-solvent, i.e. toluene, benzene, or hexane. Without the presence of a co-solvent, methyl esters can be produced via the non-catalytic transesterification of palm oil at 300oC, using a methanol to oil molar ratio of 45:1, with 89.4% conversion achieved after 50 min. The reaction performance could be improved by adding either benzene or toluene (with 10% v/v solvent to oil) as co-solvent to 92.1 and 95.1%, respectively, while reducing the required amount of excess methanol from 45:1 to 25:1. Under most conditions, the conversion of palm oil decreased with the addition of hexane due to its antisolvent properties.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.