A PDE-Based Data Reconciliation Approach for Systems with Variations of Parameters
DOI:
https://doi.org/10.4186/ej.2019.23.4.157Abstract
Data reconciliation is a mathematical approach that improves the quality of measurements by calculating the reconciled data that satisfies the process constraints. The conventional data reconciliation approach relies on the process model that contains the constant parameters. In the industrial applications, however, there are always possible variations of parameters within the system. In this paper, a new data reconciliation approach based on the partial differential equation (PDE) is developed. The proposed data reconciliation approach is experimentally applied to a case study of temperature measurements for a refinery process. The PDE-based model is employed in the formulation of the optimization problem. Unlike the conventional data reconciliation approach in which the system is assumed to be lumped, the PDE-based data reconciliation approach includes in the problem formulation the variations of parameters within the system in order to describe the real system’s behaviour. The reconciled values can be computed within the computational domain so they can be used as the data for troubleshooting, equipment analysis and maintenance.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.