Spur and Helical Gear Sliding Loss Model with Load Distribution Pattern on Gear Tooth Surface
DOI:
https://doi.org/10.4186/ej.2018.22.2.101Abstract
The model for estimation of spur and helical gear sliding loss with load distribution pattern on gear tooth surface is presented in this paper. The load distribution for the spur gear is considered to distribute uniformly along the line of contact. During double teeth meshing, load sharing ratio between meshing teeth is considered to be 33 : 67 percent or 45 : 55 percent. For the helical gear the load distribution can be calculated by the method proposed by Niemann and Richter. The contour plots of load distribution on gear tooth surface conform to the tooth contact patterns obtained experimentally. The sliding losses estimated from the presented method are compared with the estimations done by the former model and also the experimental results. It is found that the sliding losses calculated from the presented method are closer to the experimental results than the estimations from the former model. The effects of the helix angle and pressure angle on the sliding loss can also be estimated correctly by the presented method.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.