Analysis of Fatigue Crack Propagation in Steel I-Beams with Welded Transverse Stiffeners Subjected to In-Plane Loadings

  • Wanchalerm Triamlumlerd Chulalongkorn University
  • Akhrawat Lenwari Chulalongkorn University

Downloads

Download data is not yet available.

Abstract

For bridge structures, the fatigue crack propagation represents the mechanical damage that shortens the service life of the structures. Most fatigue cracks initiate at the welded details due to geometric discontinuities, residual stresses, and initial weld defects. The welded transverse stiffeners have been widely used to increase shear strength of the steel girders. Under cyclic in-plane loadings, however, the fatigue crack initiates at the end of the stiffener, i.e., in the web gap, and propagates into the girder web. The objectives of this study are to (1) numerically simulate the fatigue crack propagation in steel I-girders with welded transverse stiffeners and (2) study the effects of initial crack size, fillet weld size, stiffener dimension, and web-gap length on the fatigue crack propagation. The FRANC3D software was used to perform the analysis of stress intensity factor, crack propagation, and fatigue life. The numerical results showed that the fatigue life increases as the web-gap length increases, while it decreases as initial crack size and thickness of the transverse stiffener increase. Also, the stress intensity factors of the steel I-beams that include the fillet weld in the finite element models are slightly lower than ones modelled without fillet weld.

View article in other formats
Author Biographies
Wanchalerm Triamlumlerd

Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University

Akhrawat Lenwari

Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University

Published
Vol 21 No 4, Jul 31, 2017
How to Cite
W. Triamlumlerd and A. Lenwari, “Analysis of Fatigue Crack Propagation in Steel I-Beams with Welded Transverse Stiffeners Subjected to In-Plane Loadings”, Engineering Journal (Eng. J.), vol. 21, no. 4, pp. 307-324, Jul. 2017.

Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.

Article Statistics
Total PDF downloads: 158