Asymmetric Lanthanum Doped Ceria Membrane with Proton Conductive and Hydrogen Separation Capability for Solid Oxide Fuel Cell
DOI:
https://doi.org/10.4186/ej.2015.19.3.49Keywords:
Lanthanum doped ceria, hydrogen separation, proton conducting, asymmetric membrane, solid oxide fuel cells.Abstract
An asymmetric lanthanum doped ceria (LDC) membrane was prepared by sintering process. The membrane consisted of two layers, dense LDC and porous Ni-LDC layers with a total thickness of approximately 850 μm. According to the XRD pattern, sintering process did not cause any chemical changes to the membrane. The membrane had a crystalline dense LDC layer with a highest hydrogen permeation flux of 1.3 × 10-3 mol∙m-2∙s-1, observed at a hydrogen partial pressure of 65.9 kPa and operating temperature of 800oC. The hydrogen permeation increased as the partial pressure of the hydrogen gas increased. The proton conducting permeation became more dominant as the hydrogen partial pressure decreased. The highest value was observed at 20.3 kPa of hydrogen partial pressure, where 50.6% of the total permeation came from proton conducting ability of the membrane. While, the decreased in the operating temperature decreased the proton conductive permeation flux. With the decrease in the sintering temperature, the amount of pores in the dense LDC layer increased. The LDC membrane with both proton conductivity and hydrogen separation capability shows a promising potential as a hydrogen separation membrane and as a solid electrolyte for the solid oxide fuel cell.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.