Weiner Model Drop Test Identification of a Light Amphibious Airplane
DOI:
https://doi.org/10.4186/ej.2022.26.1.25Keywords:
Weiner model, kernel function, small signal input, landing gear, light amphibious airplaneAbstract
The new approach of the Weiner model for identifying drop test dynamics of a light amphibious airplane is presented in this paper. Unlike the traditional identification method of the Hammerstein model using LS-SVM with Gaussian radial basis serving as the kernel function, the small-signal excitation input is used to estimate the linear block of the Weiner model. Then, the static nonlinearity function of the model is identified through LS-SVM. The RMSE of the proposed Weiner model is 0.48805 and 0.38246 for the strut and wheel of the landing gear. The proposed Weiner model has better identification performance than the Hammerstein model and the traditional governing equation of the landing gear. The drop experiment of the light amphibious airplane is carried out not only to prove standard airworthiness compliance but also to verify the identifiability, accuracy, and performance of system identification.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.