Hierarchical Decentralized LQR Control for Formation-Keeping of Cooperative Mobile Robots in Material Transport Tasks
DOI:
https://doi.org/10.4186/ej.2021.25.12.37Keywords:
formation-keeping, cooperative mobile robots, hierarchical decentralized LQR control, material transport, multi-agent system, formation consensusAbstract
This study provides a formation-keeping method based on consensus for mobile robots used in cooperative transport applications that prevents accidental damage to the objects being carried. The algorithm can be used to move both rigid and elastic materials, where the desired formation geometry is predefined. The cooperative mobile robots must maintain formation even when encountering unknown obstacles, which are detected using each robot's on-board sensors. Local actions would then be taken by the robot to avoid collision. However, the obstacles may not be detected by other robots in the formation due to line-of-sight or range limitations. Without sufficient communication or coordination between robots, local collision avoidance protocols may lead to the loss of formation geometry. This problem is most notable when the object being transported is deformable, which reduces the physical force interaction between robots when compared to rigid materials. Thus, a decentralized, hierarchical LQR control scheme is proposed that guarantees formation-keeping despite local collision avoidance actions, for both rigid and elastic objects. Representing the cooperative robot formation using multi-agent system framework, graph Laplacian potential and Lyapunov stability analysis are used to guarantee tracking performance and consensus. The effectiveness and scalability of the proposed method are illustrated by computer simulations of line (2 robots) and quadrilateral (4 robots) formations. Different communication topologies are evaluated and provide insights into the minimum bandwidth required to maintain formation consensus.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.