Vibration Modelling and Control Experiments for a Thin-Walled Cylindrical Rotor with Piezo Patch Actuation and Sensing
DOI:
https://doi.org/10.4186/ej.2020.24.6.127Keywords:
thin-walled structure, smart structure, optimal control, active damping, rototrdynamicsAbstract
This paper describes a dynamic model formulation and control experiments concerning the vibration behaviour of a thin-walled cylindrical rotor with internal piezoelectric patch transducers. Model development, validation and controller design procedures were undertaken for an experimental rotordynamic system comprising a tubular steel rotor (length 0.8 m, diameter 0.166 m and wall-thickness 3.06 mm) supported by two radial active magnetic bearings. Analytical solutions for mode shapes and natural frequencies for free vibration were first derived using a shell theory model, and these used to construct a speed-dependent parametric model for the rotor structure, including piezo patch actuators and sensors. The results confirm that the developed shell theory model can accurately capture the rotating frame dynamics and accounts correctly for frequency splitting from Coriolis effects. The model is also shown to be suitable for active controller design and optimization. Model-based H2 feedback control using the rotor-mounted actuators and sensors is shown to achieve vibration suppression of targeted flexural modes, both with and without rotation.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.