Sol–Gel Spin Coating Growth of Magnesium-Doped Indium Nitride Thin Films on Different Substrates
DOI:
https://doi.org/10.4186/ej.2020.24.4.285Keywords:
indium nitride, Kubelka-Munk function, magnesium dopant, nitridation process, sol-gel spin coatingAbstract
We report on the growth of p-type indium nitride (InN) thin films on different substrates using a relatively simple and cost-effective sol-gel spin coating method. The precursors for the indium source and p-type dopant were indium nitrate hydrate and magnesium chloride 6-hydrate powders, respectively. The structural, morphology, and optical properties of p-type InN thin films grown on different substrates were investigated. X-ray diffraction patterns revealed that the deposited Mg-doped InN thin film on GaN/AlN/Si(111) template show polycrystalline wurtzite structure with a strong InN(002) orientation and have a good crystallinity. Field emission scanning electron microscopy images and energy dispersive X-ray results showed that all the films exhibit densely packed surface morphology with hexagonal-like grains shape and low oxygen percentage with almost 1:1 ratio of indium to nitrogen. Moreover, two Raman-active modes of E2(High) and A1(LO) of the wurtzite InN were clearly observed for all samples. The ultraviolet-visible-near infrared spectroscopy results showed that the energy bandgap of the Mg-doped InN thin films was in the range of 1.62-1.66 eV. From all the results, it can be concluded that the Mg doped InN film on GaN/AlN/Si(111) substrate has better crystalline quality as compared to that of other substrates.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.