Trajectory Tracking Control Design for Dual-Arm Robots Using Dynamic Surface Controller
DOI:
https://doi.org/10.4186/ej.2020.24.3.159Keywords:
backstepping, multi sliding surface control, dynamic surface control, dual arm robot, manipulatorsAbstract
This paper presents a dynamic surface controller (DSC) for dual-arm robots (DAR) tracking desired trajectories. The DSC algorithm is based on backstepping technique and multiple sliding surface control principle, but with an important addition. In the design of DSC, low-pass filters are included which prevent the complexity in computing due to the “explosion of terms”, i.e. the number of terms in the control law rapidly gets out of hand. Therefore, a controller constructed from this algorithm is simulated on a four degrees of freedom (DOF) dual-arm robot with a complex kinetic dynamic model. Moreover, the stability of the control system is proved by using Lyapunov theory. The simulation results show the effectiveness of the controller which provide precise tracking performance of the manipulator.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.