A Multi-Objective Variable Neighborhood Search Algorithm for Precast Production Scheduling
DOI:
https://doi.org/10.4186/ej.2020.24.6.139Keywords:
precast production scheduling, multi-objective, metaheuristic, variable neighborhood search, spread and distanceAbstract
In real life, precast production schedulers face the challenges of creating a reasonable schedule to satisfy multiple conflicting objectives. Practical constraints and objectives encountered in the precast production scheduling problem (PPSP) were addressed, with the goal to minimize makespan and total earliness and tardiness penalties. A multi-objective variable neighborhood search (MOVNS) algorithm was proposed and the performance was tested on 11 problem instances. Ten of these were generated using precast concrete production information taken from the literature. One real industrial problem from a precast concrete company was considered as a case study. Extensive experiments were conducted, and the spread and distance metrics were used to evaluate the quality of the non-dominated solutions set. Statistical analysis demonstrated that the result was statistically convincing. Computational results showed that the proposed MOVNS algorithm was significantly better when compared to the other nine algorithms. Therefore, the proposed MOVNS algorithm was a very competitive method for the considered PPSP.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.