Fe and Co-doped (Ba, Ca)TiO<sub>3</sub> Perovskite as Potential Electrocatalysts for Glutamate Sensing
DOI:
https://doi.org/10.4186/ej.2019.23.6.265Keywords:
barium titanate, calcium titanate, doping, electrocatalysis, glutamate, electrochemical sensorAbstract
Barium titanate (BaTiO3) and calcium titanate (CaTiO3) are renown perovskite-structured dielectric materials. Nevertheless, utilization of BaTiO3 and CaTiO3 in sensing applications has not been extensive. This study, therefore, aims at examining potential usage of BaTiO3 and CaTiO3 as enzyme-less sensors. BaTiO3, CaTiO3, Fe-doped BaTiO3, Co-doped BaTiO3, Fe-doped BaTiO3, and Co-doped CaTiO3 (with Fe and Co 5 at%) were synthesized by solution combustion technique, compositionally and microstructurally examined, and tested for their electrocatalytic activities. All powders consisted of submicrometer-sized particles. Measurements of electrocatalytic activities in 0.01 M glutamate solution by cyclic voltammetry were performed. It was found that oxidation peaks occurred at applied voltage close to 0.6 V. Peak currents, which denoted electrocatalytic performance, were prominent in doped powders. Electrocatalytic activities of the powders were discussed with respect to chemical composition, microstructure, and electronic characteristic of the materials.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.