A New Approach Correlating Binaural Hearing and the Brain’s Response
DOI:
https://doi.org/10.4186/ej.2017.21.7.403Abstract
Normal binaural hearing allows the auditory system to determine the direction and distance of sound sources and to detect certain sounds at much lower intensity levels. Different stimuli may have different impact on binaural processing and may generate different brain responses. The mechanism by which this occurs is poorly understood. Time averaged EEG responses of normal hearing subjects to repeated stimuli were analyzed. The stimuli, 500 Hz Blackman windowed pure tones, were presented as homo-phasic or anti-phasic and were also mixed with various noise conditions. Auditory evoked potentials (AEP) were obtained by averaging 500 trials of in-phase and 500 trials of out-phase of each EEG epoch. The results show that the amplitude of the dominant frequency component in the 20 - 50 Hz range of the middle latency response of the AEP was larger for the anti-phasic condition than for the homo-phasic condition. The normalised amplitude differences were larger when the stimuli were embedded in noise resulting in a higher mean value of the normalized amplitude difference than for noise free stimuli. These results are likely to relate to binaural masking level difference which finds that the detection of a signal in a background noise is easier when the signal has a different inter-aural phase difference than the noise.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.