A Comprehensive Review on Design and Development of Human Breast Phantoms for Ultra-Wide Band Breast Cancer Imaging Systems
DOI:
https://doi.org/10.4186/ej.2017.21.3.183Keywords:
Microwave, ultra-wideband, biomedical, breast cancer, phantoms, dielectric properties.Abstract
Microwave ultra-wide band UWB imaging system is a contemporary biomedical imaging technology for early detection of breast cancers. This imaging system requires the development of breast phantoms for experimental data analysis. In order to obtain realistic results, it is very important that these phantoms mimic the characteristics of real biological breast tissue as close as possible. For this purpose, scientists and engineers make use of the dielectric properties of human breast. This paper takes a survey of mathematical formulations used to determine biological dielectric properties and then takes a review of current breast phantoms being used in UWB imaging systems with reference to the analytical dielectric measurements. At present, breast phantoms are made, both, manually in laboratory utilizing different chemicals and also by using computational electromagnetic algorithms to introduce better heterogeneity in them. They can then easily be tested by doing computer simulations. In this review paper, emphasis is made on the phantoms which are made in laboratory for doing hardware experimentations.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.