Photocatalytic Degradation of Phenol over Highly Visible-Light Active BiOI/TiO<sub>2</sub> Nanocomposite Photocatalyst
DOI:
https://doi.org/10.4186/ej.2017.21.1.81Keywords:
Bismuth oxyiodide, titanium dioxide, nanocomposites, phenol.Abstract
BiOI/TiO2 nanocomposites were successfully prepared by the two-step method, co-precipitation/solvothermal method. The amount of BiOI in the composites were varied as 0, 5.0, 7.5, 10.0 and 12.5 mol%. XRD results exhibited sharp and narrow diffraction peaks of both BiOI and TiO2 in all composite samples. Morphologies of as-prepared samples consisted of spherical shapes of TiO2 and nanosheets of BiOI. Difuse Reflectance UV-visible (DR-UV-vis) spectra of composites drastically shifted into the visible range and the reduced band gap energies were observed. The composits obviously showed an enhanced phenol degradation of ca. 6 times higher than that of pure BiOI, pure TiO2 and Degussa P25. The maximum photocatalytic activity of ca. 68% was found for 10.0 mol% BiOI/TiO2 nanocomposite because of its increased visible-light-harvesting ability and its efficient electron-hole separation efficiency as observed from DR-UV-vis and PL spectra results.
Downloads
Downloads
Authors who publish with Engineering Journal agree to transfer all copyright rights in and to the above work to the Engineering Journal (EJ)'s Editorial Board so that EJ's Editorial Board shall have the right to publish the work for nonprofit use in any media or form. In return, authors retain: (1) all proprietary rights other than copyright; (2) re-use of all or part of the above paper in their other work; (3) right to reproduce or authorize others to reproduce the above paper for authors' personal use or for company use if the source and EJ's copyright notice is indicated, and if the reproduction is not made for the purpose of sale.