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Abstract. This paper presents a worst-case  performance analysis for Lur'e systems with time-invariant 
delays. The sufficient condition to guarantee an upper bound of the worst-case performance is developed 
based on a delay-partitioning Lyapunov-Krasovskii functional containing an integral of sector-bounded 
nonlinearities. Using Jensen inequality and -procedure, the delay-dependent criterion is given in terms of 
linear matrix inequalities. In addition, we extend the method to compute an upper bound of the worst-case 
performance of Lur'e systems subject to norm-bounded uncertainties by using a matrix eliminating lemma. 
Numerical results show that our criterion provide the least upper bound on the worst-case  
performance comparing to the criteria derived based on existing techniques. 
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1. Introduction 
 
Lur'e systems [1] are nonlinear systems described by linear dynamic systems with feedback through sector-
bounded nonlinearities. Such nonlinearities can be used to capture many common characteristics such as 
saturation, dead zone and spring stiffness. In addition to nonlinearities, time delays are frequently 
encountered in dynamic systems. The detrimental effects of time delays on system stability and 
performance are well known. Therefore, the studies on Lur'e systems with time delays (LSTD) are of 
theoretical and practical importance. 

In the recent years, many studies have applied Lyapunov-Krasovskii Theorem [2] to develop absolute 
stability analysis for LSTD. In particular, various types of Lyapunov-Krasovskii functional (LKF) are used 
to formulate sufficient conditions. We can classify the stability conditions into two categories. The first is 
delay-independent criteria [3, 4], which provide the sufficient condition regardless of time delays. The 
second is delay-dependent criteria [5–12], which use the information on the delay length to prove the 
stability. Delay-independent criteria are quite limited in providing conclusion for the systems whose stability 
depends on the time delay. Therefore, subsequent studies concentrate on developing delay-dependent 
criteria. In [5], a model transformation and a bounding technique [13] are used to formulate the delay-
dependent stability criterion. The drawback is that the upper bound of the cross product terms may not be 
tight and can lead to a conservative criterion. Later, a free weighting matrices (FWM) approach proposed 
by [6] applies relationship between each term in the Leibniz-Newton formula to the stability criterion. 
Although a bounding technique is not required for this approach, it introduces some slack variables apart 
from the matrix variables in the LKF. Motivated by [14], Jensen inequality is employed to derive absolute 
stability criteria for LSTD [7, 8]. It is shown in [15] that the FWM approach and Jensen inequality produce 
the identical results and conservatism, but the latter technique requires less number of decision variables. 

Recently, several researchers proposed novel methods to analyze the absolute stability of LSTD based 
on the discretization scheme [14, 16]. They include delay-decomposition approach [17], -segmentation 
method [9, 12], and delay-dividing approach [10]. The principle of these methods is to divide an interval     

 into  equidistant partitions, and the LKF is separated corresponding to each subinterval of delay. 
Then, the Jensen inequality or the FWM approach is utilized to formulate the stability criterion in terms of 
linear matrix inequalities (LMIs). These methods successfully reduce conservatism of the stability criteria 
comparing to previous techniques. Moreover, it is proved that the conservatism of the criteria can be 
further reduced by increasing the number of partitions [18]. Among these criteria, [9], [11] and [12] 
proposed the absolute stability analysis for LSTD with a time-invariant delay. In [9], the delay interval is 
partitioned into  equidistant fragments, and the stability criterion is formulated by using Jensen inequality. 
However, the LKF used in [9] does not contain an integral of nonlinearities, which is essential for stability 
analysis of LSTD. In [11], the delay interval is divided into two specific subintervals, namely,  
and , and the criterion is developed by using integral-equality technique, which is, in fact, another 
form of FWM approach. Although the LKF based on [11] utilize the integral of nonlinearities, their delay 
interval is only divided into two fixed subintervals, which is too specific. Recently, [12] fulfilled this gap by 
developing an improved absolute stability by combining the delay partitioning approach with utilizing 
integral terms involving sector-bounded nonlinearities in the LKF. The numerical results confirm that the 
criterion in [12] provides substantial improvement comparing to those in [9] and [11] especially when the 
sector bound is comparatively large. 

The worst-case  performance is defined by -gain of the nonlinear systems. A Lyapunov-
Krasovskii functional can be incorporated with an upper bound of the -gain to calculate an upper bound 
of such worst-case  performance; see [19] for sector-bounded nonlinearities, and [20] for another type 
of uncertainties. To the best of our knowledge, there is a few works on how to compute an upper bound of 
the worst-case  performance for LSTD [21]. It is worth developing the worst-case  performance 
criterion based on the combination of delay partitioning approach and employing the Lyapunov functional 
terms involving integral of nonlinearities. With the new performance analysis criterion, we can approach the 
actual value of the worst-case  performance. 

The objective of this paper is to develop an effective method to compute an upper bound of the worst-
case  performance of LSTD. The contribution of the paper is twofold. First, we give a method to 
analyze the worst-case  performance of nominal LSTD. The LKF incorporates with the integral of 
nonlinearities and the performance analysis employs the delay partitioning technique. Afterwards, Jensen 
inequality is applied to determine the performance criterion. Second, we extend the method to compute an 
upper bound of the worst-case  performance of LSTD with norm-bounded uncertainties. The criterion 
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is formulated in terms of LMI by eliminating an uncertain matrix. In addition, we also develop two 
performance analysis criteria along with the concept presented in [9] and [11], and use them as the 
comparative criteria.  

The paper is organized as follows. Section 2 introduces the notations and reviews the relevant lemmas. 

The definition of the worst-case  performance and analysis are first stated in section 3. In section 4, the 

worst-case performance criteria for both nominal and uncertain LSTD are presented. Section 5 shows the 
numerical results and compares the upper bounds of the worst-case  performance between the 
proposed criterion and the comparative criteria. Finally, Section 6 provides the summary of the main results 
and gives conclusions. 
 

2. Preliminaries 
 

 is the set of nonnegative numbers, and  is the set of real -vectors.  and  denote a vector with all 

entries one and a vector with all entries zero of appropriate order, respectively.  is the vector space of 

 real matrices. For any matrix ,  denotes its transpose.  and  are an identity matrix and 
a null matrix of appropriate dimensions, respectively. The notation  is used for diagonal matrices. 
For symmetric matrices  and , the notation  means that matrix  is positive 
definite (positive semi-definite). Furthermore, for an arbitrary matrix , and two symmetric matrices  and 

, the symmetric term in a symmetric block matrix is denoted by *, i.e., 
 

 

 

 is the Hilbert space of square-integrable signals defined over  with -components;  is often 

abbreviated as . The symbol  stands for the  norm.  
The notation  represents a vector of nonlinearities, which belong to the set  characterized by 

memoryless, time-invariant nonlinearities satisfying certain sector conditions. In particular, given an input 

vector , a lower bound vector  and an upper bound vector 

, with  for all , the set  can be described as follows. 

 

 

 
Finally, the following lemmas are useful for establishing the worst-case  performance criteria. 

 

Lemma 1 (Jensen Inequality) [14] For any constant matrix , , scalar , 
vector function  such that the integrations concerned are well defined, then 
 

 

 
Lemma 2 [22] Given matrices , ,  and  of appropriate dimensions and with  and  symmetrical 
and , then 
 

 
 
for all  satisfying 
 

 
 
 if and only if there exists some  such that 
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3. Problem Statement 
 
We consider Lur'e systems with unknown time-invariant state delay described as follows. 
 

   (1) 

 
with  and zero initial condition , ,  is a time-invariant time delay in 

the state. The notation  is the state variable,  is the disturbance input which belongs to 

,  is the performance output, , and  are the input/output of a vector 
mapping of sector-bounded nonlinearities denoted by . In addition, the pairs  and  are 

assumed to be controllable and observable, respectively. Next, the definitions of -stability and the worst-case 
 performance for the system (1) are introduced. 

 
Definition 1 ( -stable) A causal operator  is said to be -stable if there exist  and  
such that 
 

 
 
Definition 2 (Worst-case  Performance) Assume that the system (1) is -stable with finite gain and 
zero bias. The worst-case  performance of the system (1) is defined by its -gain described as follows. 
 

     (2) 

 
where the supremum is taken over all nonzero output trajectories of the system (1) under zero initial 
condition. 
 

While the actual value of  is difficult to compute, its upper bound,  such that , can 

be calculated from the following minimization problem [19]. 
 

   minimize   

   subject to   

 

where  denotes the Lyapunov functional candidate. Therefore, the worst-case  performance 
analysis problem is to determine an upper bound of  of the system (1) for any time-invariant time delay 

, i.e., for a given , determine  such that . 

 
In addition, we consider the LSTD with norm-bounded uncertainties described as follows. 

 

 (3) 

 
with . The uncertain variables , , and  are time-varying, but norm-bounded. 

The uncertainties are assumed to be of the following form 
 

     (4) 
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where , , , and  are known constant real matrices of appropriate dimensions, and represent the 
structure of uncertainties, and  is an unknown matrix function with Lebesgue measurable elements satisfying 

the constraint  Similar to the nominal system (1), the worst-case  performance analysis 
problem for the uncertain system (3) is to determine an upper bound of  of the system (3) with any 

time-invariant time delay , and for given matrices corresponding to norm-bounded uncertainties, 
i.e., , , , and .  
 

4. Worst-case  Performance Analysis 
 
In this section, we present a sufficient condition for computing an upper bound of the worst-case  
performance, which is derived by means of a Lyapunov-Krasovskii functional. Accordingly, the choice of 
LKF candidate plays a crucial role in developing the computing criterion. We employ the delay partitioning 
technique to the LKF for the system (1). The idea of this method is to divide the interval  into  
number of partitions, i.e., , where , and separately 
define the LKF involving delay on each subinterval. Consider the LKF candidate of the form 
 

(5) 
 
with 
 

 

 
where , , and  are positive definite symmetric matrices of dimension , scalars 

 are non-negative, and  denotes a piece of trajectory  for . Next, we will 

show how to calculate the upper bound  for the nominal LSTD (1). 
 

Theorem 1 For a given , an upper bound of the worst-case  performance of LSTD (1) for any 

time-invariant time delay  can be computed by minimizing  subject to the constraint (6) over 
symmetric matrices , ,  for all , and diagonal matrices , . 
 

     (6) 

 
where 
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with . 

 
Proof: Assume that  is Hurwitz, and system matrices  are minimal realization. If there 

exists an LKF of the form (5) and  such that  

 

       (7) 
 
for all  satisfying the system equations (1), then . Therefore, we seek , , 

, and  such that the constraint (7) is satisfied for all nonzero  satisfying 

(1) with a set of sector-bounded conditions 
 

(8) 

 
To verify (7) under the set of constraints (8), we apply -procedure [23] to establish the sufficient condition as 
follows. 
 

(9) 

 
where . Note that for the case of single nonlinearity ( ), -procedure is lossless, 

and the condition (9) is not only sufficient but also necessary for (7). By defining                
 , the 

inequality (9) can be written in vector-matrix notation as follows. 
 

  (10) 

 
The derivative of each term in the LKF (5) with respect to time along the solution of (1) is given by 
 

 

 

Note that  cannot be formulated in terms of LMI. Then, we rewrite the first term of  by using the state 
equation in (1) as the following. 
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  (11) 

 

where , and employ Lemma 1 (Jensen inequality) to bound the 

integral terms appeared in  as follows. 
 

 

(12) 
 

where , and the entries left blank are zero. Substituting , ,  

and  into inequality (10), and applying (11) and the upper bound (12) for , the sufficient condition for 
(10) is given as follows. 
 

      (13) 
 

where , and  

 

   (14) 

 

Inequality (13) holds for all     if and only if the following matrix inequality is satisfied. 
 

      (15) 
 

Lastly, applying Schur complement [19, pp.7–8] and substituting  with , we obtain inequality (6). 
It is important to note that the sufficient condition (6) guarantees an upper bound  for the case of 

. Next, we show that (6) also guarantees the same  for the system (1) for any time-invariant time 

delay . Let , where . Clearly,  lies in the interval . By substituting  

with , and isolating all terms involving , the matrix inequality (14) becomes 
 

   (16) 

 

We observe that  and . Then, the isolated terms are always negative. Thus, if 

 holds,  also holds. In other words, the matrix inequality  implies (16), and 
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Theorem 1 guarantees an upper bound  for the systems (1) for any time-invariant time delay . 

This completes the proof.               █ 
 

It is appeared that the condition (6) is LMI over matrix variables , , , , and   

for a given . Hence, the problem of minimizing  subject to (6) can be cast as a minimization 
problem with LMI constraints which can be solved efficiently. 
 
Remark 1 In Theorem 1, it is straightforward to handle general sector condition . By using loop 

transformation [24], LSTD (1) with  can be transformed to an equivalent LSTD with . 
In particular, define 
 

 

 

It is easy to show that  for all , i.e., . Let , 

, and . We then substitute  into (1), 
and obtain the equivalent LSTD systems as follows. 
 

   (17) 

 

with , where  and . Note that the transformed LSTD (17) is 

equivalent to the original LSTD (1), and we can calculate an upper bound  for LSTD (1) by considering 
the system (17). 

Next, we will derive another sufficient condition for computing an upper bound of  for the 
uncertain LSTD (3). 
 

Theorem 2 For a given , an upper bound of the worst-case  performance of the systems (3) for 

any time-invariant time delay  can be computed by minimizing  subject to the constraint (18) 
over symmetric matrices , ,  for all , and diagonal matrices , , 
and a scalar variable . 
 

    (18) 

 
where 
 

 

 

 

 
, , , , , , , and  are the same as defined in Theorem 1. 
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Proof: By applying Theorem 1 to the uncertain systems (3), the worst-case  performance criterion 
consists of the following LMI. 

 (19) 

 
where  is defined as 
 

 

 
It follows from Lemma 2 that the matrix inequality (19) is true for all uncertain matrix  satisfying 

 if and only if there exists a scalar  such that 
 

   (20) 

 
Absorbing the last term into  and applying the Schur complement [19], the matrix inequality (18) holds. 

This completes the proof.                 █ 
 

Remark 2 It is observed that the terms involving  and  in the matrix inequality (20) are all positive. 
Then, the feasible set for (18) is smaller than that of (6), and the  obtained for the uncertain LSTD (3) 
should be greater than or at least equal to that for the nominal LSTD.  
 

In order to illustrate the effectiveness of the proposed criteria, we develop worst-case  performance 
analysis criteria for uncertain LSTD along with the -segmentation technique in [9] with  and the 
integral-equality approach in [11] as stated in Theorem 3 and Theorem 4, respectively. 
 

Theorem 3 (Extension of Wu et al. (2009)) For a given , an upper bound of the worst-case  

performance of the systems (3) for any time-invariant time delay  can be computed by 

minimizing  subject to the constraint (21) over symmetric matrices , , , , 
, , , and scalar variables  and . 

 

    (21) 

 
where 
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and  
 

Theorem 4 (Extension of Qiu & Zhang (2011)) For a given , an upper bound of the worst-case 

 performance of the systems (3) for any time-invariant time delay  can be computed by 

minimizing  subject to the constraint (22) over symmetric matrices , , , , 
, full matrices , , , , , , , , a diagonal matrix , and scalar 

variables  and . 
 

    (22) 

 
where 
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Remark 3 The comparative criteria can be considered as special cases of the proposed criterion in 
Theorem 2, i.e., 

 The criterion presented in Theorem 3 is a special case of Theorem 2 when , , and 
 for .  

 Since FWM approach and Jensen inequality approach produce the stability criteria at the same level 
of conservatism [15], the criterion presented in Theorem 4, which utilizes a form of FWM 
approach, namely integral-equality approach, is as conservative as a special case of Theorem 2 
when , , , and  for . 

 The criterion proposed in [21] is a special case of Theorem 2 when . 
 

Clearly, the conservatism of the proposed criterion is less than or at least equal to those of the 
comparative criteria. The additional free variables can be potentially the key to establish the less 
conservative criterion. 
 

4. Numerical Results 
 
The conservatism of the proposed criterion in Theorem 2 with , the extension of [9] in Theorem 3, 
and the extension of [11] in Theorem 4 are compared on three numerical examples. The LMI Lab [25] 
which employs the projective interior-point method [26], is used for solving the LMI minimization 
problems in the experiments. 
 
Example 1: Consider the system of the form (3) with the following parameters. 
 

 

 

 

 
 

 
where  characterizes the sector bound of nonlinearity, and  represents magnitude of the uncertainty. The 
system data is taken from [7] with slight modifications. The uncertainty model , , and  

can be described by (4) with , , , where , . Loop 
transformation is applied so that LSTD with  is transformed into an equivalent 

LSTD with . 

Taking , , and , the minimal  calculated using Theorem 2 is  with  
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, , and  satisfying LMI (18). With the same parameters, the minimal  

computed using Theorem 3 is  for the following matrices 
 

 

 

 

 

 

 
, and  satisfying LMI (21). Finally, the minimal  obtained from Theorem 4 is 

 with the matrices 
 

 

 

 

 

 

 

 

 

 

 
, , and  satisfying LMI (22). 

 

 

Fig. 1. Upper bounds of  for Ex. 1 when  and . 
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Fig. 2. Upper bounds of  for Ex. 1 when  and . 
 
 

 
 

Fig. 3. Upper bounds of  for Ex. 1 when  and . 
 
 

We compare  calculated from three different methods for the system with various parameters , , 

and . Figure 1 shows  versus  for Ex. 1 when  and  are fixed. It is observed that  is increased 
as the sector bound  is increased. Likewise,  grows up as the uncertainty , or the bound on time delay 

 is enlarged as shown in Fig. 2 and Fig. 3, respectively. Using the proposed criterion in Theorem 2 always 
gives the smaller  when compared with those obtained from other comparative criteria, especially for 

large ,  and . Moreover, the proposed criterion can guarantee  for a wider range of parameters. 
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Example 2: Consider the uncertain LSTD of the form (3) with the following parameters. 
 

 

 

 

 

 

 
This example is modified from the system given in [7]. Similar to the previous example, the norm-bounded 
uncertainty can be described by (4) with ,  and  are identity matrices of appropriate dimension, 

and  is a null matrix, where , . Loop transformation is applied so that LSTD 

with  defined above is transformed to an equivalent LSTD with . 

For this example, we let , , and . The minimal  provided by using Theorem 2 is 
 with 

 

 

 

 

 

 

 
and  satisfying LMI (18). Next, the minimal  calculated using Theorem 3 is  with 
 

 

 

 

 

 

 
, and  satisfying LMI (21). Lastly, the minimal  is computed using 

Theorem 4 when LMI (22) is satisfied by 
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, and . 

 

The computed  versus , , and  for Ex. 2 are shown in Figs. 4–6, respectively. It can be seen that 
Theorem 2 always give the less conservative result than those obtained from other criteria. In addition, 
Theorem 2 is capable of finding  for a wider range of parameters, which indicate that the proposed 
criterion has the advantage over the comparative criteria. 
 

 

Fig. 4. Upper bounds of  for Ex. 2 when  and . 
 
 

 

Fig. 5. Upper bounds of  for Ex. 2 when  and . 



DOI:10.4186/ej.2015.19.5.101 

116 ENGINEERING JOURNAL Volume 19 Issue 5, ISSN 0125-8281 (http://www.engj.org/) 

 
 
Fig. 6. Upper bounds of  for Ex. 2 when  and . 
 
 
Example 3: Consider the uncertain system of the form (3) with the following parameters. 
 

 

 

 

 

 

 
The uncertainty matrices ,  and  can be represented with Eq. (4) where 

 

 

 

and , . This example is modified from the LSTD given in [8]. Again, loop 
transformation is applied so that LSTD with  defined above is transformed to an equivalent LSTD with 

. Note that the new  and  are the zero and identity matrices of dimension , 
respectively.  

Choosing , , and , the minimal  calculated using Theorem 2 is  
with 
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, and  satisfying LMI (18). By Theorem 3, the minimal  is obtained 
with 
 

 

 

 

 

 

 

, , and  satisfying LMI (21). Finally, the minimal  is 
computed using Theorem 4 when LMI (22) is satisfied by 
 

 

 

 

 

 

 

 

 

 

 

, , and . 
 
The plots of calculated  for Ex. 3 are shown in Figs. 7–9. It is clearly seen that there is a large 
improvement between  provided by Theorem 2 and those obtained from comparative criteria.  
 
 

 

Fig. 7. Upper bounds of  for Ex. 3 when  and . 
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Fig. 8. Upper bounds of  for Ex. 3 when  and . 
 
 

 
 
Fig. 9. Upper bounds of  for Ex. 3 when  and . 
 
 

From the numerical results above, we observe that  is increased when the sector-bounds, the 
uncertainties, or the bound of time delay is increased. The extension of [9] in Theorem 3 and the extension 
of [11] in Theorem 4, which can be viewed as a special case of our proposed criterion, always give the 
greater  comparing to that obtained from our criterion. Therefore, we can conclude that the proposed 
criterion is less conservative than the comparative criteria.  
 
 
 



DOI:10.4186/ej.2015.19.5.101 

ENGINEERING JOURNAL Volume 19 Issue5, ISSN 0125-8281 (http://www.engj.org/) 119 

5. Conclusions 
 
In this paper, we present the worst-case  performance criteria for Lur'e systems with uncertain time-
invariant delays. The delay partitioning technique is applied and the information of sector-bounded 
nonlinearities is incorporated into the LKF in terms of integral of nonlinearities. The sufficient condition to 
ensure the worst-case performance is derived using Jensen inequality and -procedure. The performance 
criterion is formulated as a linear objective minimization problem over LMIs, which can be solved 
efficiently. In addition, the criterion for LSTD subject to norm-bounded uncertainties is developed by 
eliminating an uncertain matrix. Numerical examples show that the proposed criteria are less conservative 
than the comparative criteria, and can be served as an effective worst-case performance analysis for LSTD.  
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