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ABSTRACT 
 
A multidimensional dissipation technique is implemented on the Roe’s flux 
difference splitting scheme to avoid the numerical shock instability that may 
occur in compressible flow solutions.  The damping characteristic of the 
proposed technique is presented through a linear perturbation analysis on the 
problem of a moving shock along an odd-even grid perturbation.  The 
performance of the proposed technique is studied using well-known problems 
that exhibit the numerical shock instability.  The technique is further extended 
to achieve higher-order solution accuracy and evaluated by several 
benchmark test cases. 
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I .  Introduction  
 
Numerical flux formulation is an essential part of flux formulation schemes in order to obtain 
accurate and robustness numerical solutions of the Euler equations. The Roe’s Flux-
Difference Splitting (FDS) scheme [1] is widely used by the CFD community; however, it may 
provide unrealistic flow solutions or lead to numerical instability in certain problems.  These 
problems include the carbuncle phenomenon [2] that refers to a spurious bump on the bow 
shock near the flow center line ahead the blunt body; an unrealistic perturbation [3] that 
occurs from a moving shock along odd-even grid perturbation in a straight duct; and a kinked 
Mach stem observed when a normal shock wave reflects on a ramp to form a double-Mach 
reflection. To improve the solution accuracy of these problems, Quirk [3] pointed out that the 
original Roe's FDS should be modified in the vicinity of strong shock. 
 
The objectives of this paper are to propose a multidimensional dissipation technique for the 
Roe’s FDS scheme on triangular meshes and to evaluate the technique by using several 
benchmark test cases. The entropy fix method by Van Leer et al. [4], and the H-correction 
entropy fix method by Pandolfi et al. [5] are modified for unstructured triangular meshes and 
implemented into the Roe's FDS scheme. The performance of these methods [4]-[6] is 
evaluated by well-known problems that exhibit the numerical shock instability. The proposed 
multidimensional dissipation technique for the Roe’s FDS scheme is described.  The 
problem of a moving shock along an odd-even grid perturbation in a straight duct is used to 
demonstrate the dissipation mechanism that relates to the numerical instability. Finally, the 
higher-order extension of the Roe’s FDS scheme is implemented to the flow solution 
accuracy. 
 

Il.  Numerical Shock Instability 
 
In this section, the Roe’s FDS and the Roe’s FDS with the three entropy fix methods [4]-[6] 
are presented and examined on four examples to demonstrate their numerical instability or 
unrealistic solution behaviors.  All solutions in this section are obtained using the first-order 
accuracy on structured triangular meshes. 
 

2.1   Roe's FDS with dissipation 
 

The governing differential equations of the Euler equations for the two-dimensional 
inviscid flow are given by, 
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where U is the vector of conservation variables, E and G are the vectors of the 
convection fluxes in x and y directions, respectively. For perfect gas, the equation of 

state is in the form )1(  ep  where p is the pressure,  is the density, e is the 

internal energy, and  is the specific heat ratio. 
 
The numerical flux vector at the cell interface between the left cell L and the right cell R 
according to the Roe's FDS (Roe) [1] is, 
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where k  is the wave strength of the k
th
 wave, kλ is the eigenvalue, and kr  is the 

corresponding right eigenvector. 
 
The Van Leer's entropy fix method (RoeVL) is designed to correct the unphysical 
expansion shock originated by Roe. The one-dimensional entropy fix was developed 
by replacing the characteristic speeds of the acoustic waves (for k = 1 and 4) with, 
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where  0 ,max LR

VL
  . 

Sanders et al. [6] introduced an idea of a multidimensional dissipation, the so called H-
correction entropy fix method (RoeSA). For the two triangular cells as shown in Figure. 
1, the H-correction entropy fix has been modified to [7], 
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where )(max5.0 ,, kLikRi
k
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Pandolfi et al. [5] proposed another version of the H-correction entropy fix by excluding 

the 
1  from Eq. (4) to avoid an erroneous injection of artificial viscosity, and is 

applicable only to the entropy and shear waves (for k = 2 and 3). The H-correction 
entropy fix modified by Pandolfi et al. (RoePA) is, 
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2.2 The expansion shock 
 
To illustrate an unphysical expansion shock, a Mach 3 flow over a forward facing step 
[8] is investigated. The density contours computed from the Roe, RoePA, RoeSA, and 
RoeVL are shown in Figures. 2(a)-(d), respectively. The figures show that Roe and 
RoePA produces an unphysical expansion shock on top of the facing step corner, 
whereas both the RoeSA and RoeVL provide reasonable solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 1 
Cell interfaces of 
unstructured triangular 
grid. 

 

 

 

 

 

 

 
Figure 2   
Mach 3 flow over a 
forward facing step. 
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2.3   The kinked mach stem 
 
The problem is described by a normal shock that reflects from a ramp to form a 
double-Mach reflection.  Unrealistic numerical solution may consist of a kinked Mach 
stem and the flaw triple point. Figures 3(a)-(d) show that Roe and RoeVL yield 
severely kinked Mach stem [9] whereas RoeSA and RoePA provide reasonable 
accurate solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

III.  Multidimensional Dissipation Technique for Roe's 
FDS Scheme 

 
The flow behaviors obtained from the test cases in Section 2 using the RoeVL, RoeSA and 
RoePA schemes, which were modified to avoid the numerical shock instability, are 
examined. The detailed study suggests that a mixed entropy fix method (RoeVLPA) that 
combines the entropy fix method of Van Leer and the modified H-correction of Pandolfi 
should be used by replacing the original eigenvalues as, 

 

 



















PA

VLVL

VL

VL

k












5.0,max

2  ,           
4

2 ,                       

2,3

4,1

2

4,1

4,14,1

*
 (6) 

where 
VL

  and  
PA

  are defined in Eqs. (3) and (5), respectively. The constant value  is 

usually less than or equal to one for the first-order accuracy scheme and more than one for 
higher-order solution accuracy (for simplicity the value of one is used throughout this paper, 
otherwise an explicit value is specified). The performance of the mixed entropy fix method is 
re-evaluated by solving the previous two test cases presented in Figures. (2)-(3) again. 
Figures (4)-(5) show that the proposed RoeVLPA can capture the shock accurately without 
any numerical instability.  These figures show that the RoeVLPA is good enough for 
stabilizing the original Roes FDS scheme. 
 
 
 
 
 
 

 

 

 

 

 

 
Figure 3 
Mach 5 shock moving 
over a 46

o
 ramp. 
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IV.  Second-Order Extension 
  
Solution accuracy from the first-order formulation described in the preceding sections can be 
improved by implementing a high-order extension for both the space and time.  High-order 
spatial discretization is achieved by applying the Taylor' series expansion to the cell-centered 
solution for each cell face [10] and Vekatakrishnan's limiter function [11] for preventing 
spurious oscillation that may occur in the region of high gradients. Second-order temporal 
accuracy is achieved by implementing the second-order accurate Runge-Kutta time stepping 
method [12]. The time step determination proposed by Linde and Roe [13] is used for all the 
analyses in this paper. 

 
4.1 Symmetric rarefaction wave problem 

 

The initial conditions of the symmetric rarefaction wave problem [13] are given by (, u, 

p)
L
 = (7.0, -1.0, 0.2) and (, u, p)

R
 = (7.0, 1.0, 0.2), such that they produce a vacuum at 

the center of domain. Figure 6 shows the higher-order solutions from the RoeVLPA 
that compare well with the exact solutions. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 
Figure 4 
Mach 3 flow over a 
forward facing step. 

 

 
 

 

 

 

 

 

 

 
Figure 5 
Mach 5 shock moving 
over a 46

o
 ramp. 
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4.2 Mach 2 shock reflection over a wedge 
 

A Mach 2 shock reflection over a wedge at 46 degrees [14] is used to evaluate the 
performance of the proposed RoeVLPA as compared to the other schemes for a more 
complex flow problem. All numerical experiments were performed using a structured 

triangular mesh with 256  256 nodes.  Figure 7 compares the density contours 
obtained from the four schemes at the time the shock wave is at distance of 0.1 from 

the right boundary. Using the constant  = 1 in the RoeVLPA scheme, the incident 
shock is slightly broken-down with severely kinked Mach stem due to an inappropriate 
numerical dissipation added to the vorticity and entropy waves as shown in Figure. 
7(a). The solution from the RoeVLPA is improved with good shock and Mach stem 

resolution after using  = 6 as shown in Figure. 7(b). Figures 7(c) and (d) show the 
more dissipative solutions from the AUSM-PW+ [15] and Zha & Bilgen FVS [16] 
schemes that yield good flow resolution with little spurious triple point and slight kinked 
Mach stem near the wall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Figure 6 
Comparative exact and 
numerical solutions at 
time t = 0.3 for the  
symmetric rarefaction 
wave problem. 
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V. Conclusions 
 
A multidimensional dissipation technique is presented to improve numerical stability of the 
Roe's FDS scheme. The performance of the method was evaluated by several well-known 
test cases and found to eliminate unphysical solutions that may arise from the use of the 
original Roe's FDS scheme. The high-order spatial and second-order Runge-Kutta temporal 
discretization was implemented to further improve the solution accuracy.  Such 
implementation was found that the RoeVLPA scheme provides accurate solutions while 
avoiding the numerical shock instability. 
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Figure 7 
Comparison of density 
contours of a  Mach 2 
shock reflection over a 
wedge. 
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