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ABSTRACT  
 
This paper presents a heuristic method for solving transmission system 
expansion problems (TSEP) with consideration of N-1 security constraints. 
The method is divided into two phases. An initial plan is established in the first 
phase by a search process which is based on a modified simplex method and 
sensitivity indices. The second phase starts from the initial plan and performs 
the local search in the defined neighborhood. Additionally, reconstruction of 
the new lines on the existing right of ways, which is one of the interesting 
issues of TSEP in the urban area, is taken into account. The proposed method 
provides very satisfactory results compared with others.  
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I .  Introduction  
 
TRANSMISSION SYSTEM EXPANSION PLANNING (TSEP) is one of the major tasks of an 
electric utility. With the forecast of electricity demand and the generation expansion plan in 
the planning horizon, the TSEP concerns with the questions of how to obtain the minimum 
cost plan which ensures operational security of the power system for delivering energy from 
generating stations to electricity customers throughout planning horizon [1]. 
 
The methods for solving TSEP can be divided into three categories [2], mathematical 
optimization, heuristic and metaheuristic. From the mathematical point of view, the TSEP is a 
mixed integer programming and its algorithm complexity is nondeterministic polynomial. In 
general, the mathematics based methods have to encounter the problem of computation 
time when it is applied to medium or large scale power systems. In case of taking into 
account additional constraints, e.g. N-1 security, the computation burden will be more severe. 
On the other hand, the heuristic based methods, which normally apply a search process 
guided by specified indices, can provide solution with less computation effort but deem to fall 
into local optimum. However, with elaborated modification of the search procedure according 
to the nature of the problem, it is possible to obtain results with acceptable quality. The 
metaheuristic methods, e.g. genetic algorithm, simulate annealing etc., are similar to the 
heuristic methods. A key objective of the metaheuristic based method concerns the search 
process with embedded mechanism to escape from the local optima. Therefore, the methods 
normally encounter higher computation burden than the heuristic based methods. 
 
In this paper, a heuristic based method for solving the TSEP in single stage planning with N-
1 security constraint consideration is proposed. In addition, the option of the reconstruction 
of new lines on the existing right of ways is taken into account. The applied search process 
employs a simplex method and sensitivity indices which reflect the alleviation of system 
overloaded resulting from construction of new lines. 
 
This paper is composed of 6 sections. Section II reviews the heuristic method for the TSEP. 
Section III presents a general simplex method. Section IV presents the proposed method. 
Section V shows the test results of the proposed method. Finally, conclusions are drawn in 
section VI. 
 

II.  Heuristic Method for TSEP 
 
Most of the heuristic methods are based on the selection of candidate transmission lines in 
association with their sensitivity indices which reflect the ability to alleviate overloading 
problems [3], [4]. In general, it continuously selects a number of new candidate lines so that 
the system is brought into a safe state. From this point, the set of candidates are established 
as an initial plan. Then an elimination task is performed by removing a less potential 
candidate from the initial plan. If the system still resides in a safe state, i.e. no overloaded 
line, then it can be permanently removed from the plan, otherwise it will be kept in the plan. 
The elimination task is continuously performed by removing other candidates in such manner 
until satisfied results are obtained. 
 
In the optimization point of view, the establishment of the initial plan can be compared to the 
change of system states, i.e. from infeasible into a feasible states, whereas the elimination 
task can be compared with the local search, which tries to change system states from 
current to the other having lower cost. 
 

IlI.  General Simplex Method 
 
The simplex method is one of the familiar methods for solving a linear programming (LP) 
problem. Its search process is based on iterative operation. In case of a minimization 
problem, it tries to change the current feasible solution to the other which has lower value of 
the objective function. There are various versions of the simplex method which are suitable 
for implementation in the computer program. However, in this section, the method based on 
the full tableau, which is useful for describing the proposed method for solving TSEP, is 
presented. The more details of other methods can be founded in [5]. 
 
We begin to describe the simplex method with the LP problem in standard form as follows. 
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Minimize    = Tc xz        (1) 
 
Subject to    =Ax b        (2) 
 

       ≥x 0        (3) 
 
where b ≥ 0, n∈c R , m∈b R , m n×∈A R , m < n, and rank A = m. A set of feasible points, 
defined by linear constraints (2) and (3), is sometimes called a polyhedron. 
 
In theory of LP, an optimum solution is one of basic feasible solutions of the problem. 
Therefore, the simplex method tries to change the current solution, which is one of basic 
feasible solutions, to the other having lower value of the objective function. From geometric 
viewpoint, a basic feasible solution and a vertex of polyhedron are one and the same. 
Additionally, the change of current solution can be compared to the search along edge 
direction of polyhedron together with the preservation of descent property. The process is 
performed continuously until there is no descent direction to change the current solution. 
 
Algebraically, if a vector x is a basic feasible solution, its element can be separated into two 
subvectors. The first consists of m basic variables, xB, of which the values are greater than 
or equal to zeros. Whereas, the second consists of n−m nonbasic variable, xN, which are all 
zeros. At this point, we can rearrange the elements of x as follows. 
 

T T T =  B Nx x x      (4) 

 
In addition, the element of c in objective function (1) and A in constraints (2) have to be 
rearrange according to the order of variables in x. Therefore, the LP problem (1)-(3) can be 
expressed as the following forms. 
 

Minimize    T T= +B B N Nc x c xz       (5) 
 

Subject to    + =B NBx Nx b       (6) 
  

TT T  ≥ B Nx x 0       (7) 

 
It can be assumed without loss of generality that at the beginning of process, the initial 
solution, x is a basic feasible solution, i.e. xB ≥ 0 and xN = 0. Therefore, the initial state of the 
tableau, which represents (5), (6), can be represented as. 
 

basic xB xN right hand side 
(rhs) 

-z T
Bc  T

Nc  0 

xB B N b 

 
We can derive the relationship between xB and xN as well as the relationship between z and 
xN from (5), (6) as follows. 
 
      1 1− −+ =B Nx B Nx B b       (8) 
 
     ( )T T 1 T 1− −− + − = −N B N Bc c B N x c B bz      (9) 

 
Instead of calculating B−1, we can apply the row operation to transform the elements in 
tableau which correspond to the basic variables, xB to   [ 0   Im ]T where Im is a m×m identity 
matrix. Then we can obtain the modified tableau according to (8), (9) as below. 
 

basic xB xN rhs 

-z 0 T T 1−−N Bc c B N  T 1−− Bc B b  

xB Im B−1N B−1b 
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Since xN = 0, from (9), it can be seen that z = T 1−
Bc B b . In addition, the value of z can be 

lowered by increasing the value of nonbasic variables to which the negative elements in 
vector T T 1−−N Bc c B N correspond. Consequently, the jth element in vector T T 1−−N Bc c B N , ˆ jc  is 
called the reduced cost of nonbasic variable xj. In general, the reduced costs are used in the 
optimality test to specify whether the current solution is the optimal solution. 
 
 The optimality test is performed by examining the value of reduced costs of nonbasic 
variables. If some of them are less than zeros, the simplex algorithm continues to change the 
current solution to the other having the lower value of z. To achieve this process, it select 
one of nonbasic variables of which the reduce cost is the most negative value and increase 
the value of selected variable from zero. The selected variable is called the entering variable, 
i.e. it will enter to basic variable group. On the other hand, if the reduced costs of all 
nonbasic variables are greater than or equal to zeros, it means there is no descent direction 
for changing the current solution. Therefore, the current solution is the optimal solution, then 
the simplex algorithm is terminated. 
 
The next procedure is concern with the maximum value allowed to increase the entering 
variable. From (8), it can be seen that the values of basic variables have to be changed 
when the value of entering variable increase. In addition, the value of entering variable can 
continuously increase until the value of any basic variable becomes zero. At this point, such 
basic variable will be changed to nonbasic type, hence it is called the leaving variable, i.e. it 
will leave from basic variable group. For that reason, the maximum value allowed to increase 
the entering variable is determined by the value of the leaving variable which becomes zero 
first. 
 
To obtain the leaving variable, the simplex algorithm performs the ratio test as (10). 
 

      
1

ˆ
ˆargmin : 0

ˆ
i

ij
i m ij

b
i a

a≤ ≤

⎧ ⎫⎪ ⎪= >⎨ ⎬
⎪ ⎪⎩ ⎭

     (10) 

 
where j is an index of entering variable, îb is an  ith element of vector B−1b in the tableau, i.e. 
rhs column, and ˆija  is an element in ith row and jth column of matrix [ Im    B-1N ] in the tableau. 
 
After finishing the optimality and ratio test, we will obtain the index of entering variable and 
leaving variable. In the next step, the pivoting is performed by updating the basic variable 
group by taking out the leaving variable and bringing in the entering variable, and updating 
the nonbasic variable group by taking out the entering variable and bringing in the leaving 
variable. Then the tableau will be updated by applying the row operation to transform the 
elements which correspond to basic variables to [ 0   Im ]T. Therefore, the reduced costs of 
nonbasic variables are modified, and all of processes, i.e. optimality test, ratio test and 
pivoting, are repeated until all the reduced costs are greater than or equal to zeros. 
 

IV. Proposed Heuristic Method 
 
The proposed method applies an optimization concept. It can be divided into two phases. 
The first phase deals with the search process based on the best action selection to alleviate 
overloading problem, which provides an initial plan to be used as a starting point for the local 
search in the second phase. In general, the search processes in the both phases are similar. 
However, the process of the second phase will be more elaborated. 
 
4.1 Overview of  Search Process 
 

In describing the search process, we define the state of the system as 
 

( ),S T= g        (11) 

where T is a set plans which are subsets of a set of candidate lines (F), and k∈g R  is 
the generation schedule for k generators in the system. Moreover, a function, zT (g) 
which indicates system security is defined as 
 
     ( ) ( ),T T v

v V
z z

∈

= ∑g g ; { }bV E e= ∪     (12) 
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     ( )
( ),

,
,max

1
∈

 
 = −
 
 

∑
g

g �
v

l v

T v
l D l

p
z

p
; ⊂vD L    (13) 

 
where E is a set of all single outage events, eb is a base case event, i.e. no line 
outage.  
 
If E = ∅ the N-1 security constraints are not considered. Dv is a set of the overloaded 
lines for an outage event v. L is a set of existing lines in the system. pl,max is thermal 
limit of line l, and pl,v (g) is the power flow of line l which is an element of vector pv, 
expressed as a linear function of g. With a DC model, pv can be defined as (14). 
 
       = b,p A gv v       (14) 

  
         =b, pr, bus,A Y CZ Kv v v      (15) 

 
where Ypr,v is a primitive admittance matrix, C is a branch to bus incidence matrix, 
Zbus,v is a bus impedance matrix and K is a bus to generator incidence matrix. It 
should be noted that matrix Ypr,v and Zbus,v are dependent on the outage event v. 
 
The search process tries to move from system state S to the other, resulting in the 
reduction of zT (g). From (11) it shows that the system state can be changed by two 
actions. The first one is the construction of new lines, i.e. changing T, whereas the 
second one is the reschedule of the generation, i.e. modifying g.     
 
After adding a few candidate lines to the system, zT (g) may be reduced with 
modification of g, i.e. generation rescheduling, which can be done by solving the 
following LP problem.  
 

Minimize    ( )gTz       (16) 

Subject to  
( ),

,max

1 1− ≤ ≤
gl v

l

p

p
; \ ,∀ ∈ ∀ ∈vl L D v V    (17) 

  
T =u gm d       (18) 

 
       min max≤ ≤g g g      (19) 
 
       T

0≤f g y       (20) 
 
where um is a k×1 matrix of which all elements are ones, d is the total demand, gmin 
and gmax is the operation limits of the generators, k∈f R  is the vector of the operation 
cost, and y0 is the operation cost of the current state. 
 
In solving the above LP problem, a new developed search algorithm instead of a 
general simplex method will be applied. We begin to describe that search algorithm 
with the mathematical formulations which eventually lead to the establishment of the 
tableau used in the LP solving. 
 
The loading of lines in the system for the event v, derived from (14), (15), can be 
expressed by vector qv as shown below. 
 

      ( )= = b,q Mp MA gv v v ; ∀ ∈v V     (21) 

where M is a diagonal matrix of which the diagonal elements represent the reciprocal 
of line thermal limits. Additionally, we can formulate the operation constraints of all 
lines in the system, i.e. 
 
     − ≤ ≤u q unl v nl ; ∀ ∈v V      (22) 
 
where unl is nl×1 matrix of which all elements are ones and nl is the number of line in 
the system. 
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From (22) we can obtain the following equations for the lines in the system. 
 
     + =+

b,q s uv v nl ;  ∀ ∈v V      (23) 

 
     −− + =b,q s uv v nl ;  ∀ ∈v V      (24) 

 
where +

b,vs and −
b,vs are vectors of slack variables. From (21), (23), (24) we can express 

the set of equations corresponding to the operation constraints of all line in the system 
for all event v as below. 
 
     ( )2 ×=gb gbA x u nl nv        (25) 

 
where Agb and xgb are defined as 
 

      ( )2 ×
 =  

g
gb gbA A I nl nv       (26) 

      

1

1

 
 − 
 =
 
 
 − 

b,

b,
g
gb

b,

b,

MA

MA

A
MA

MA

⋮

nv

nv

       (27) 

  
  T T T T T T T T

1 1; − −   = =   
+ +

gb b b b, b, b, b,x g s s s s s s… nv nv     (28) 

 
where nv is number of events in V. 
 
In addition, constraints (19), (20) can be transformed to a standard form, according to 
the simplex algorithm, as shown in (29)-(31). 
 
      max+ =gg s g ;     ≥gs 0     (29) 

 
      min− =gg e g ;     ≥ge 0     (30) 

 
      T

0+ =f g cs y ;     0≥cs     (31) 
 
where gs , ge  are the vector of slack and excess variables of constraint (19) and sc is 
a slack variable of constraint (20). 
 
From definition of zT (g) in (12), (13), it should be noted that the objective function (16) 
and the constraints (17) are dynamic. Since the generation schedules have to be 
modified in during each iteration. Consequently, the lines which are members of Dv in 
the current iteration may not be members of Dv in the next iteration. At this point, it can 
be seen that the lines in the system are divided into two groups. The first group 
comprises the lines which are members of Dv and used in the calculation of zT (g). The 
second group is composed of the lines which are not the member of Dv and will be 
treated according to (17). 
Since we can not permanently specify which lines are involved in the calculation of 
objective function (16), and also which lines are involved in the calculation of 
constraint (17). For this reason the tableau of new developed algorithm have to be 
composed of the operation constraints of all lines in the system. 
 
By combining (25), (29), (30), (31), we can reformulate the set of equations as 
 
      =Ax b            (32) 
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2

T

T

1

0

×
 
 
 
 = − 
 
 
  

g
gbA I 0 0 0

I 0 I 0 0
A I 0 0 I 0

f 0 0 0

u 0 0 0

nl nv

k k

k k

k

         (33) 

  

( )
T T T T

max min 02 ×
 =  b u g gnl nv y d         (34) 

  
T T T T T =  b g bx g s s e cs          (35) 

 
Now we can establish the tableau according to (32), (33), (34), (35) as follows. 
 

Variable g bs  gs  ge  sc rhs 

Line loading g
gbA  I(2nl××××nv) 0 0 0 u(2nl×nv) 

Max. of g Ik 0 Ik 0 0 gmax 

Min. of g Ik 0 0 −−−−Ik 0 gmin 

Cost fT 0 0 0 1 y0 

Demand T
ku  0 0 0 0 d 

 
From above tableau, it can be seen that there are 3k+2nl×nv+1 variables and 
2k+2nl×nv+2 equations. Therefore, the number of basic variable is 2k+2nl×nv+2, while 
that of nonbasic variable is k−1. 
 
It should be noted that we can use the value of sb’s elements to indicate the 
overloaded lines in the system, e.g. a negative elements indicate the corresponding 
lines are overloaded. In the new developed algorithm, the elements of sb can be any 
value, while those of g, sg, eg and sc have to be greater than or equal to zeros. 
 
It can be assumed without loss of generality that the initial solution, x is a basic 
feasible solution, i.e. xi = 0 if and only if i∈N, and xi ≥ 0 if i∈B \ Xsb where B is an index 
set of basic variables, N is an index set of nonbasic variables and Xsb is an index set 
of variables which are originally in sb. By rearranging the elements in matrix A 
according to the order of variables in xB and xN, the initial tableau can be described as 
follows. 
  

basic xB xN rhs 

xB B N b 
 
By applying the row operation to transform elements which correspond to the basic 
variables, xB in the tableau to I, we can obtain the modified tableau as follows. 
 

basic xB xN rhs 

xB I B−1N B−1b 
 
 
 
Now we can define a set of overloaded line for all the events in V as 
 

    { }ˆ: 0sb iD i i B X b= ∈ ∩ ∧ <       (36) 

 
where îb  is the ith element of B−1b, i.e. rhs column of the tableau. 
 
Consequently, we can calculate zT (g) by  
  

( ) ˆ
∈

= −∑gT i
i D

z b         (37) 
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As previously described, if j is a member of Xsb, xj can be a negative value. Therefore, 
if xj is of nonbasic type, it can be changed in either positive or negative direction from 
zero. At this point, we will divide the nonbasic variables into two groups depending on 
their changing direction. 
 
The first group comprises the nonbasic variables which are not the member of Xsb, i.e. 
originated from g, sg, eg and sc. Therefore, the changes of their values are allowed 
only in the positive direction. The second group consists of the nonbasic variables 
which are members of Xsb. The changes of their values are allowed in either positive 
or negative direction. 
 
At this time, we will define new parameters, i.e. dj+ and dj− , which are similar to the 
reduced cost of nonbasic variable in general simplex method. However in the new 
developed algorithm, dj+ signifies the reduction of zT (g) when nonbasic variable xj 
increase, while dj− signifies the reduction of zT (g) when nonbasic variable xj decrease. 
 
It can be noticed that the element in ith row and jth column of matrix [ I   B−1N ], where 
i∈D, has impact on the change of zT (g) when xj increases. Additionally, if there exist a 
zero element k in B−1b, for k∈Xsb , i.e. xk is zero, and in such row k of [ I   B−1N ] there 
exist a positive element j, then xk will be decreased to negative value when xj increase. 
The decrease of xk means the line corresponding to kth row is becoming overloaded. 
Therefore, in the calculation of of dj+ , that line should be taken into account. From the 
reason described above, we can define dj+ as follows. 
 
    ˆ ˆ

+
+

∈ ∈

= +∑ ∑
j

j ij kj
i D k M

d a a ; ∈j N      (38) 

  

{ }ˆ ˆ: 0 0+ = = ∧ >j
k kjM k b a       (39) 

 
where ˆija  is element in ith row and jth column of [ I   B−1N ] and ˆkb  is kth element in B−1b. 

In the calculation of dj−  , we can apply the same concept as that of dj+. However, with 
the decreased value of the nonbasic variable xj , the line which is corresponds to xj will 
become overloaded. Therefore, in the formulation of dj−, such overloaded line has to 
be taken into account, i.e. 
 
    ˆ ˆ 1

+
−

∈ ∈

= − − +∑ ∑
j

j ij kj
i D k M

d a a ; sb∈j X     (40) 

  

{ }ˆ ˆ: 0 0− = = ∧ <j
k kjM k b a       (41) 

 
After the calculation of zT (g) and reduced costs of nonbasic variables, i.e. dj+ , ∀j∈N 
and dj− , ∀j∈Xsb ,the optimality test of the new developed algorithm, which is similar to 
that of the general simplex method, are performed by selecting a nonbasic variable of 
which the reduced cost is the most negative value as (42). 
 

{ } { }sbargmin : 0, : 0,+ + − −
∈

= < ∀ ∈ ∪ < ∀ ∈j j j j
j N

j d d j N d d j X    (42) 

 
The selected nonbasic variable, xj is called entering variable, and its change direction 
is determined by whether dj+ or dj− is the minimum reduced cost. For the example, if dt+ 
is the minimum reduced cost, the nonbasic variable xt will be selected as the entering 
variable, and it will be changed in the positive direction, i.e. increase of the value. On 
the other hand, if dt− is the minimum reduced cost, the nonbasic variable xt will be 
selected as the entering variable, and it will be changed in the negative direction. 
 
After obtaining the index of entering variable and its changing direction, the ratio test 
will be performed to determine step size of the change, i.e. the maximum value 
allowed to change the entering variable. As in the general simplex method, we never 
obtain the step size explicitly, instead we will obtain index of the leaving variable, i.e. 
the basic variable of which the value is becoming zeros first when the entering 
variable is constantly changing.   
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From (8), it can be seen that when the value of a nonbasic variable, xj increases, the 
value of basic variable, xi may be changed depending on the value of ˆija . If ˆija  is a 

positive number, xi will be decreased. On the other hand, if ˆija  is a negative number, xi 

will be increased. In addition, if ˆija  is zero, xi will remain unchange. 
 
Therefore, in the new developed algorithm, when the value of entering variable xj 
increase, the leaving variable is determined by 
 

    
ˆ

ˆargmin : 0; 0
ˆ∈

  
= = > ≠ 

  

i
i i ij

i B ij

b
i t t a

a
     (43) 

 
It should be noted that, in the general simplex method, only basic variables 
corresponding to the positive ˆija  are examined in the ratio test. However, in this new 

developed algorithm, the basic variables of which the ratios of îb  to ˆija  are greater 
than zeros are examined. The reason is that in the new developed algorithm, the 
values of îb  can be less than zeros. Therefore, they have to be tested also in case 
that their values are increased and reach zeros. 
 
On the contrary, if the nonbasic variable, xj decrease. The leaving variable can be 
determined by the ratio test which is derived from the same concept as the ratio test in 
case that xj increases, i.e. 
 

    
ˆ

ˆargmin : 0; 0
ˆ∈

  
= = < ≠ 

  

i
i i ij

i B ij

b
i t t a

a
     (44) 

 
Once the leaving variable is obtained, the pivoting, similar to the general simplex 
method, is performed by updating the index set of basic variables, B, and the index set 
of nonbasic variables, N. Moreover, the tableau will be updated by applying the row 
operation to transform the elements corresponding to basic variables to [ 0   Im ]T. 
Therefore, all elements in the tableau will be modified. The whole processes, i.e. 
optimality test, ratio test and pivoting, are repeated until all reduced costs are greater 
than or equal to zero. Moreover, the information obtained from the last iteration in the 
tableau after the termination of LP solving can be used for the decision in the following 
step of the search process. 
 
After solving the above LP problem with the developed algorithm, we will obtain the 
modified generation schedule, g*. If the overloading problems still exist, i.e. D ≠ ∅, it 
can be concluded that there is no reduction of zT (g) together with the decrease in the 
operation cost in either direction. Therefore, the next calculation step is to calculate 
two types of indices, i.e. generation rescheduling with the increase of the cost (IG), and 
the construction of the candidate lines (IT,l+). 
 
The meaning of IG reflects the decremental cost of zT (g) when the generation cost is 
increase. In a viewpoint of the simplex method, it can be compared with the change of 
the system state in the direction which reduces zT (g) and decreases the value of slack 
variable of (20). Additionally, there are two condition of constraint (20) after solving the 
LP problem. 
Firstly, the constraint is active, i.e. its slack variable, sc is nonbasic type. Since the 
reduced cost of all nonbasic variable is always greater than zero after terminating the 
LP solving process. Therefore, the decrease of sc will result in the reduction of zT(g)  
and the increase of the generation cost to be greater than y0. Consequently, IG can be 
defined to be equal to the reduced cost of the slack variable sc. 
 
Secondly, if the constraint (20) is not active, sc is not zero. Therefore, the current value 
of generation cost is less than y0. This condition mean that sc can not be changed in 
either positive or negative direction to reduce zT(g), i.e. the generator can not 
reschedule to alleviate the overloading problem. Therefore, in this condition IG will be 
undefined, and it will not be included in the process of index selection. 
 
The other index, IT,l+ represents the decremental cost of zT (g) due to construction of 
the candidate lines, which can be described as follows: 
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where zT,l+(g) is defined as zT (g) in (2) but with existency of line l in the system, cl  is 
the annualized construction cost of line l. It should be noted that if the line l is 
constructed on the existing right of way, the removing of the existing line should be 
taken into account in the calculation of zT,l+(g). 
 
The technique of current injection [6] can be applied to calculate the changed currents 
of all the lines in the system after adding line l. 
 

4.2   Establishment of Initial plan (The First Phase) 
 
The objective of this process is to find an initial plan which is in the feasible region. The 
procedure begins with the search process by solving the LP problem, resulting in     
S*= (T, g*), indices IG and IT,l+ of candidate lines. If some lines are still overloaded, the 
process will select actions, i.e. either rescheduling generation or construction of 
candidate lines, which corresponds to the maximum index. Therefore, if IG is selected, 
the next action is to reschedule the generation by applying the ratio test in (44) to 
obtain the leaving variable. In this case, the entering variable is sc and it will be 
changed in the negative direction. After finishing the ratio test, the pivoting will be 
performed. 
 
On the other hand if an IT,l+ is selected, the change of T may occur, i.e. adding the 
corresponding line to the system, resulting in the change in matrix Ypr,v, C and Zbus,v 
and all of relevant equations in the LP have to be updated for the next action. The 
search process continuously proceeds until there is no overloaded line in the system. 
Finally, it returns an initial feasible plan. A flowchart of the search process is shown in 
Figure. 1. 

 
4.3    Local Search (The Second Phase) 
 

Due to nonconvex nature of the TSEP, it is rarely to find an initial plan as the global 
optimum solution. Therefore, in the second phase, the algorithm applies the local 
search in the neighborhood of the initial plan. The concept of the second phase is to 
disturb the current state of T to move to the other one which has relatively lower cost. 
If the changing state is infeasible, it will search for a new one which is feasible with 
lower cost. The main algorithm of the second phase is described below.  
 

1). For the current plan, S = (T, g), set ni = 0 and C0=Cost(S). 
2). Define R ⊂ T, which comprises nr lines ranked in the top highest values of 

the construction cost. 
3). Set S ′ = (T \ R, g). Call LocalSearch (S ′, C0) to obtain  result (Snew , 

success). 
4). If success is TRUE then set S = Snew and go to 1), otherwise go to 5). 
5). Set ni =ni + 1. If ni > maxtries, terminate with S, otherwise define R ⊂ T in 

the same manner as 2) but the combination of the element in R is not same 
as the previous ones, and go to 3). 

 
The flowchart of the main algorithm of the second phase is shown in Fig. 2. 
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Figure 1 
Flowchart of the first 
phase. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
Main algorithm of the 
second phase. 
 

Select the 
maximum of IG 

and I  

End 

Start 

Input:  
S�Initial 

State 

Output: S* 

Yes 

No 
Do the 

overloading 
problems exist? 

Solve LP Problem; return 
S*=(T,g*), IG and IT,l+ 

 

Does IG 
selected? 

Reschedule generation by 
performing the ratio test 

and pivoting 

Construction new line, 
corresponding to 

selected index, IT,l+. 

S = (T, g*) S = (T *, g) 

No 

Yes 

ni = 0; 
C0 = Cost(S) 

Define removing 
set, R ⊂ T; 

success = 
TRUE ? 

S = Snew 

ni = ni +1 

ni > 
maxties? 

Define another 
R 

S′ = (T \ R, g) 

End 

Start 

Input:  
Initial state, S = (T, g) 

Output: 
S 

Yes 

No 

Yes 

No 

(Snew , success) = 
LocalSearch (S′, C0) 



doi:10.4186/ej.2009.13.2.59 

70     ENGINEERING JOURNAL  : VOLUME 13 ISSUE 2 ISSN 0125-8281 : ACCEPTANCE DATE, APR. 2009                  www.ej.eng.chula.ac.th 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The function Cost(S) in 1) returns the summation of construction cost of plan T and 
generation cost due to g. In addition, the subroutine LocalSearch (S, C) in 3) will return 
the success variable with TRUE if it can find Snew with Cost(Snew)<C. The algorithm is 
developed based on a recursive procedure described below. 

 
1) From the input S = (T, g) and C. Apply the search process by solving LP 

problem. Obtain state S*= (T, g*), indices IG and IT,l+ of the candidate lines. If 
the system is feasible, i.e. D = ∅,  terminate with (S*, TRUE), otherwise 
construct the list of k top ranked candidate lines according to the values of IT,l+.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
Local search 
procedure. 
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2) There are one action for adjusting of g, and nc actions for adjusting of T. 
Begin with adjusting g by the row operation as in a general simplex method. 
The leaving variable is determined by (44). Obtain result S* = (T, g*). If 
Cost(S*) < C, perform the next test in 3), otherwise go to 4). 

3) If the state S* is feasible, terminate with (S*, TRUE), otherwise (Snew, 
success)=LocalSearch (S*, C). If success is TRUE, terminate with (Snew, 
TRUE), otherwise go to 4). 

4) Add a candidate line l from the list to T, result in S* = (T∪{l}, g). If Cost(S*) < C, 
perform the next test in 5), otherwise add the next line l from the list to T. If all 
candidate lines have been tested, terminate with (S, FALSE). 

5) If the state S* is feasible, terminate with (S*, TRUE), otherwise (Snew, 
success)=LocalSearch (S*, C). If success is TRUE, terminate with (Snew, 
TRUE), otherwise go to 4). 

 
The flowchart of the local search procedure is shown in Figure. 3. 

 

V. Test Results 
 
In this section, the proposed method has been tested on a common test system in TSEP 
research [6]. It is a six bus system with 760 MW of the total demand and the installed 
capacity is 1110 MW. Detailed information can be founded in [3] and [7]. 
 
The tests are conducted by two cases, 1) TSEP with N-1 security constraints and 2) TSEP 
with N-1 security constraints in the situation of the deficiency of the right of way. In both case, 
there are two options. The first one minimize the total of investment and operation cost, while 
the second one only minimize the investment cost. The value of nr and maxtries in the main 
algorithm are defined as 2 and 25 respectively, while the value of nc the local search 
procedure is 3.  
 
5.1  TSEP with N-1 Security Constraints. 

 
The obtained results are shown in Table I. The results show that although investment 
cost of the second plan (180,000 US$/yr) is less than that of the first plan (200,000 
U$/yr), but the operation cost of the first plan is lower. Therefore, in view of the total 
cost, the first plan provides the total minimum cost plan.  
 
By applying the mathematics optimization method as stated in [7] and [8], we can 
obtain the same result as the proposed method. However, the computation time on 
the same computer is about 264.2 and 91.4 seconds respectively. 
 
In [8], the genetic algorithm is applied and only investment cost is minimized. By 
comparison the results show the second plan provides the same results as [8]. 

 
5.2  TSEP with N-1 Security Constraints and Deficiency of ROW 

 
The proposed method has been tested in the case that there is only one right of way 
for each bus pair, which reflects actual situation. In addition, the system planner can 
decide to construct towers which have more than one circuit on each right of way. 
 
With the addition of the practical standard types, e.g. double circuit and four circuit 
towers of candidate lines, the construction cost is assumed to be 1.5 and 2.5 times of 
a single circuit tower respectively. The results are shown in Table II. It should be noted 
that the line on path 3-5 is reconstructed from the single circuit tower to the four circuit 
tower on the existing right of way.  
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VI.  Conclusion
 
A heuristic based method to solve the transmission system expansion planning with N-1 
security constraints has been developed. The search process is based on indices of the 
actions to remedy the transmission line overloaded problem. In addition the simplex method 
has been adopted by slight modification to accommodate for the TSEP. 
 
The process of the local search is a critical issue in the developed algorithm. The value of nr 
can be compared with the size of the neighborhood. The higher value of nr represents the 
further move from the current plan, which requires longer computation time. In addition, the 
value of nc and maxtries can be compared with fineness of the search process in the 
neighborhood. Certainly, the higher value of nr, nc and maxtries can provide a better final 

Path Number of 
circuit 

Investment cost  
(103 US$/yr) 

Operation cost  
(103 US$/yr) 

Total cost  
(103 US$/yr) 

 

The first plan: Minimize  the total cost 

2-3 2 40 

141,912 
 

142,112 
 

2-6 1 30 

3-5 2 40 

4-6 3 90 
 

The second plan: Minimize  the investment cost 

2-3 1 20 

144,467 144,647 
2-6 1 30 

3-5 2 40 

4-6 3 90 

Path Number of 
circuit 

Investment cost  
(103 US$/yr) 

Operation cost  
103 US$/yr) 

Total cost  
(103 US$/yr) 

 

The first plan: Minimize  the total cost 

2-6 2 45 

141,912 
 

142,111 
 

3-4 1 59 

3-5 4 50 

4-6 2 45 
 

The second plan: Minimize  the investment cost 

2-6 4 75 

145,225 145,395 3-5 4 50 

4-6 2 45 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1 
The Plans with N-1 
Security Constraints  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2 
The Plans with N-1 
Security in The 
Deficiency of ROW  
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plan, however it may cause higher computation burden. Therefore, the compromise between 
the quality of final plan and the computation time should be taken into account.      
     
The benefit of a heuristic method is less time computing. In case of a small size system, it 
may not be evident. However, in case of a large system or the addition of some security 
constraints, it can be obviously seen. Moreover in the multistage planning, the problem must 
be larger than in the case of a single stage planning. Therefore, the computation time should 
be the interesting issue.  
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