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Abstract. Precision irrigation systems (PIS) are essential for optimizing water use, crop yield, 
and fruit quality. Estimating crop water requirements has become increasingly complex due 
to growing variability in weather patterns, which increases the risk of irrigation 
mismanagement. Conventional PIS often rely on fixed schedules or pre-determined water 
quantities. While some offer decision-support capabilities, they typically require human 
intervention and lack the ability to control irrigation. To address these issues, an intelligent 
precision irrigation system (IPIS) was developed. The IPIS utilizes real-time meteorological 
data collected from local sensors and implements advanced control algorithms based on the 
Penman-Monteith evapotranspiration method to optimize water delivery. A four-month 
field experiment with 166 irrigation events conducted in a durian orchard in Rayong, 
Thailand, demonstrated the system's ability to dynamically adjust irrigation schedules and 
water volumes in response to fluctuating weather conditions while maintaining optimal soil 
moisture levels. This resulted in significantly improved irrigation accuracy and crop water 
use efficiency. The findings suggest that incorporating machine learning and artificial 
intelligence in future iterations could further enhance the system’s adaptability, autonomous 
operation, and predictive capacity, advancing its application in precision agriculture. 
 
Keywords: Precision irrigation system, intelligent irrigation, fruit orchard irrigation, crop 
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1. Introduction 
 
Fruit production plays a vital role in economic growth 

across many developing countries, with tropical and 
subtropical crops like papaya, guava, avocado, and durian 
significantly contributing to export revenue. In 2023, 
Mexico exported 1.5 million tons of avocado, generating 
USD 3.28 billion, while Thailand's durian exported 1.2 
million tons reaching a higher export value of USD 4.10 
billion  [1], [2].  

Durian, a distinctive Southeast Asian fruit with over 
200 known species, is primarily cultivated for its high 
economic value and increasing global demand, particularly 
from China. Each durian fruit weighs approximately 2-4 
kilograms and is produced annually. Typically, the root 
zone is concentrated 72-87% from the soil surface at a 
depth of about 45 cm [3]. Durian thrives in temperatures 
ranging from 27-30°C and a relative humidity of 75-80%  
[4].  

Maximizing crop yield and fruit quality requires 
effective management of nutrients, pests, diseases, and 
especially water in the root zone. In open-field orchards, 
irrigation is highly influenced by fluctuating weather 
patterns, making water requirements difficult to estimate. 
Moreover, climate change has exacerbated local variations 
in temperature, humidity, and solar radiation [4], further 
complicating irrigation planning.  

Growers often rely on experience-based irrigation 
methods, which are prone to inaccuracies [5]. Delivering 
water precisely—applying the right amount at the right 
time—is crucial, particularly during key growth stages 
such as flowering and early fruit set. Durian trees are 
highly sensitive to water stress during these phases, and 
inadequate irrigation can drastically impact yield and 
quality [3]. During the flower induction period of durian 
buds, if rainfall or irrigation—whether excessive or 
insufficient—disrupts the plant’s transition from 
vegetative to reproductive growth, it may result in the 
absence of flowering and potentially lead to yield losses 
ranging from 10% to 70% [6].   

Precision irrigation (PI) offers an advanced solution, 
allowing growers to apply water and nutrients with high 
accuracy, tailored to the specific needs of each tree. This 
approach optimizes resource utilization, reduces water 
waste and operational costs, minimizes disease risks, and 
enhances crop productivity [7]. 

Over the past decade, various precision irrigation 
systems (PIS) have emerged, often in the form of mobile 
or web-based applications that provide weather forecasts, 
evapotranspiration data, and vapor pressure deficit 
insights to assist farmers in irrigation planning [8]. 
However, many of these systems lack water control 
capabilities, relying on fixed schedules that do not adjust 
to real-time weather fluctuations. As a result, uniform 
irrigation is often applied irrespective of actual crop needs, 
increasing the likelihood of over- or under-watering. Since 
most systems lack automated control mechanisms, manual 
adjustments are required, leading to discrepancies between 
recommended and actual water application. 

This study aims to develop an intelligent precision 
irrigation system (IPIS) for open-field fruit orchards. 
Unlike conventional PIS, the proposed IPIS integrates 
real-time weather data with automated controls, 
dynamically adjusting water supply based on actual crop 
requirements without human intervention. This innovation 
ensures efficient, adaptive irrigation, enhancing accuracy 
and conserving vital resources. 

 

2. Precision Irrigation System (PIS) for Open-
Field Orchards 
 
PIS, which leverage advanced sensors, data analytics, 

and intelligent control algorithms, have emerged as an 
effective solution for addressing the challenges of open-
field fruit production  [9], [10]. These systems support 
optimized water use by delivering irrigation and nutrients 
based on site-specific conditions, thereby enhancing 
resource efficiency and crop yield. PIS technologies have 
been widely adopted by fruit growers for irrigation 
monitoring, scheduling, and water conservation [11], [12]. 
A range of tools, platforms and technologies have been 
developed, including soil moisture sensors, Internet of 
Things (IoT), remote sensing, and machine learning (ML), 
with increasing attention to their integration.  

Sensor-based PIS are widely adopted due to their 
simplicity and cost-effectiveness in small to medium-size 
orchards. Soil moisture sensors, in particular, help 
monitor soil water status and inform irrigation decisions. 
For instance, Martínez-Gimeno et al. [13] proposed a soil 
moisture threshold-based method to regulate irrigation in 
mandarin orchards located in Mediterranean climates, 
achieving water savings of up to 33%. Similar results were 
found in vineyards in Northern Italy, using variable-rate 
drip irrigation based on soil moisture data, with an 18% 
reduction in water use and no loss in yield or quality [14]. 
While these studies were conducted in temperate and 
Mediterranean zones with orchard sizes typically ranging 
from 1 to 5 hectares, the principles of sensor-based 
irrigation are believed to be adaptable to tropical durian 
orchards, which in Southeast Asia often range from 5 to 
20 hectares. Gao et al. [15] emphasized the importance of 
combining meteorological and soil data in a litchi orchard 
while Vera et al. [16] determined irrigation factors using 
data from a nearby automatic meteorological station to 
adjust the soil water content for nectarine orchards. 
Increasing the number of soil moisture sensors installed in 
cultivated areas has been shown to improve the accuracy 
of water balance predictions, particularly in small fields. 
However, in large-scale applications, more soil moisture 
sensors demand greater power supply and a robust data 
communication network that supports high data volumes 
and long-distance transmission. In this regard, the Internet 
of Things (IoT) could mitigate these issues. 

The emergence of IoT technology has benefited 
precision irrigation developers by integrating cloud computing, 
wireless networks, and various types of sensors for 
irrigation management [17]. IoT communication technologies 
such as LoRaWAN, ZigBee and MTTQ have contributed 
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to the growing trend of IoT in agriculture [18] [19]. IoT 
systems developed by Goap et al. [20] and Kuma et al. [21] 
combined real-time weather data with predictive models 
and remote control features to improve irrigation accuracy. 
Typical architectures include sensors, cloud platforms, and 
user interfaces via mobile or web applications [22], [23], 
offering low-cost solutions suitable for small-scale 
orchards [24], [25]. However, in large fruit orchards, 
installing numerous soil sensors can be costly. Growers 
may opt for alternative techniques, such as remote sensing 
technologies including satellite and unmanned aerial 
vehicles (UAV) to provide spatially extensive data for 
irrigation planning. 

Remote sensing-based models were found to have 
strong correlation to in-situ measurements. They were 
used for estimating evapotranspiration in walnut orchards 
during extreme weather condition in California [17]. 
Remote sensing with soil mapping was also used for 
regulated deficit irrigation in olive orchards [26]. Remote 
sensing technologies have been developed utilizing 
satellites and UAVs to collect crops data [27]. These 
technologies enable estimations to determine crop water 
stress index (CWSI), land surface temperature, vegetation 
health, and soil moisture [28]-[30]. Park et al. [31] used 
UAV-mounted sensors to assess CWSI and identify deficit 
areas in fruit orchards. Despite their advantages, remote 
sensing techniques often suffer from low spatial resolution, 
complex processing, and high image analysis costs, making 
them less practical for daily irrigation management.   

The integration of machine learning (ML) into PIS has 
enabled predictive irrigation scheduling and autonomous 
control. ML approaches rely on large datasets to estimate 
crop water demand, using input variables such as soil 
moisture, weather, and crop growth indicators. Abioye et 
al. [9] and Sun et al. [32] applied deep reinforcement 
learning and neural networks to optimize irrigation timing 
and improve water use efficiency. Partial least squares 
regression and adaptive fuzzy inference systems were 
applied by Navarro-Hellin et al. [11] for predicting 
irrigation run times in citrus orchards. Torres-Sanchez  
et al. [33] demonstrated the effectiveness of ML across 
diverse farms and crops, while Tace et al. [34] developed 
IoT–ML integrated systems for predictive irrigation 
scheduling. Although promising, ML-based systems face 
challenges related to data collection, processing, and 
generalization. Inconsistent or missing data, overfitting, 

and limited satellite coverage can compromise model 
accuracy and performance [35]. 

To overcome the limitations of individual technologies, 
recent studies have explored multi-technology integration 
for enhanced irrigation control. Combined use of weather 
data, soil moisture sensors, and remote sensing has led to 
more precise and site-specific irrigation scheduling [36], 
[37], . Lozoya et al. [38] implemented prediction models 
based on integrated datasets to improve irrigation timing. 
Such systems dynamically adapt to environmental changes, 
crop phenological stages, and localized field variability. 
Nonetheless, practical implementation requires careful 
consideration of cost, reliability, ease of use, and 
environmental conditions. For instance, IoT devices may 
lack durability in high-moisture tropical environments, 
and ML models demand high-quality data to achieve 
reliable results. Despite growing interest, field-tested 
applications of integrated PIS using ML and remote 
sensing in open-field orchards remain limited, highlighting 
the need for further validation and system development 
tailored to tropical fruit production. 

Given limitations on individual PIS technologies, this 
study opted for a combination of automated weather 
stations (AWS) and soil moisture sensors, which offer 
higher data resolution, reliable, lower operational 
complexity, and cost-effectiveness—making them more 
suitable for daily irrigation management in tropical durian 
orchards with medium-scale layouts and frequent rainfall 
variability. 

 

3. Crop Water Requirement (CWR) 
 
CWR is a critical parameter in PIS, representing the 

amount of water needed by crops. Accurate measurement 
of CWR is essential for optimizing irrigation schedules 
and improving water use efficiency in open-field fruit 
orchards. There are several methods used for measuring 
CWR, each method has its strengths and limitations, with 
some being more suitable for large-scale assessments. 
CWR can be measured directly using e.g. lysimeter, water 
fluxmeter and indirectly using e.g. water balance method, 
tensiometer and soil moisture content data [39].  

 Table 1 summarizes the advantages and disadvantages 
of each method, helping developers determine the most 
suitable option for their needs.  

 
 

Table 1. Comparison of Methods for Measuring Crop Water Requirements. 

No. Methods Advantages Disadvantages 

1. Evapotranspiration-based methods:  

Evapotranspiration-based methods or the FAO 
Penman-Monteith equation is widely used to 
calculate reference evapotranspiration (ETo), 
which is then adjusted using crop coefficients 
(Kc) to determine crop-specific evapotranspiration 
(ETc). This method requires meteorological 

• Widely accepted standard 

• Applicable to diverse 
climates 

• Provides reference 
evapotranspiration 

• Requires multiple 
meteorological inputs 

• May need local 
calibration 

•  Complexity of equation  
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No. Methods Advantages Disadvantages 

data such as temperature, humidity, wind speed, 
and solar radiation.[40] 

2. Soil moisture monitoring:  

Soil moisture sensors, including time-domain 
reflectometry (TDR) probes and capacitance 
sensors, provide real-time data on soil water 
content. These measurements help determine 
when irrigation is necessary and can be used to 
estimate crop water uptake. 

• Direct measurement of 
water in soil 

• Real-time data 

• Helps with precise 
irrigation scheduling 

• Requires proper sensor 
placement [41] 

• May need multiple 
sensors for large fields 

• Initial cost of equipment 

3. Plant-based measurements:  

Techniques such as stem water potential, leaf 
water potential, and sap flow measurements 
directly assess plant water status. These 
methods provide insights into the crop's actual 
water needs and can be used to fine-tune 
irrigation schedules.[42], [43] 

• Directly assesses plant 
water status 

• Can detect early signs of 
water stress 

• Specific to crop type 

• Can be labor-intensive 

• May require specialized 
equipment 

• Measurements can vary 
with time of day 

4. Remote sensing:  

Satellite imagery and unmanned aerial vehicles 
(UAVs) equipped with multispectral cameras 
can be used to estimate crop water stress and 
evapotranspiration rates over large areas. 
Vegetation indices like the Normalized 
Difference Vegetation Index (NDVI) are often 
used in these assessment. [44], [45], [46] 

• Covers large areas quickly 

•  Non-invasive 

• Provides spatial 
variability data  

 

• Requires specialized 
interpretation 

• Cloud cover can interfere 
with data collection 

• May have lower 
resolution for small-scale 
assessments 

5. Lysimeter:  

Weighing lysimeters provide highly accurate 
measurements of crop water use by directly 
measuring changes in soil water content and 
plant biomass. While precise, this method is 
often limited to research settings due to its 
complexity and cost [42], [47]. 

• Highly accurate 
measurements 

• Useful for research and 
calibration 

• Provides detailed water 
balance data 

• Expensive to install and 
maintain 

• Limited to small areas 

• May not well represent 
field conditions 

6. Water balance:  

This method involves tracking all water inputs 
(precipitation, irrigation) and outputs (runoff, 
deep percolation, evapotranspiration) to determine 
crop water use [26]. 

• Comprehensive view of 
water inputs/outputs 

• Can be applied at various 
scales 

• Useful for long-term 
planning  

• Requires accurate 
measurement of multiple 
variables 

• May not capture short-
term variations well 

• Prone to cumulative 
errors 

7. Eddy covariance:  

This micrometeorological method measures 
water vapor fluxes above the crop canopy, 
providing direct measurements of actual 
evapotranspiration. It is highly accurate but 
requires specialized equipment and expertise 
[48]. 

• Direct measurement of 
water vapor fluxes 

• Provides continuous data 

• Applicable over larger 
areas 

• Requires complex and 
expensive equipment 

• Needs expert 
interpretation 

• May have limitations in 
certain terrains 

Fruit trees grown in open fields are directly exposed 
to weather and environmental conditions. Given the 
current fluctuations in weather, it is essential to consider 
both weather factors and soil water content when 

measuring crop water demand. Therefore, combining 
evapotranspiration-based [40] (Penman-Monteith equation) 
methods and soil moisture sensors presents an 
appropriate method for this study. These methods are 
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believed to provide sufficiently accurate crop water 
requirements and irrigation needs.  The components of 
the Penman–Monteith equation shown in Table 1 are 
explained in the following sections. 

 
3.1. Reference Crop Evapotranspiration Estimation 

(ETo) 
 

While various methods can be employed to calculate 
ETC, depending on the instruments used and the desired 
accuracy [49], the Penman-Monteith equation is widely 
adopted as a standardized method. 

In 1998, the FAO published Irrigation and Drainage 
Paper No. 56, titled “Crop Evapotranspiration” [40]. This 
publication provides guidance on calculating crop 
evapotranspiration by using reference evapotranspiration 
(ETo) data from weather stations, which is then adjusted 
using a crop coefficient (Kc) specific to the crop type and 
its growth stage. The reference crop evapotranspiration 
can be computed using Eq. (1) below.  
 

𝐸𝑇𝑂 =
0.408∆(𝑅𝑛 − 𝐺) +  𝛾

𝐶𝑛

𝑇 + 273
𝑈2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 𝐶𝑑  𝑈2)
(1) 

Where ETo is the reference crop evapotranspiration or 
evapotranspiration reference (mm day-1) Rn is net radiation 
(MJ m-2 day-1), G is soil heat flux density (MJ m-2 day-1), T 
is mean daily ambient temperature at 2 meter above 

ground level (C),    is slope of the saturation vapor 

pressure against temperature curve (kPa C-1),  is 

psychrometric constant (0.66 kPa C-1), es is the prevailing 
actual vapor pressure (kPa), U2 is mean of wind speed at 2 
m high (m s-1) and Cn is numerator and Cd is denominator 
constants that varied on the type of reference surface and 
the calculation time step. It assumes that surface resistance 
under the fruit tree is equivalent to the cut grass thus Cn is 
equal to 37 in hourly during daytime and nighttime while 
Cd is equal to 0.24 in hourly during daytime and 0.96 in 
hourly during nighttime.  
 
3.2. Crop Coefficient (Kc) 

 
The Crop Coefficient (Kc) is the ratio of crop 

evapotranspiration (ETC) to reference evapotranspiration 
(ETo), adjusting water needs for specific crops. It varies 
by variety, growth stage, climate, and farming practices. 

 
 

 
 

Fig. 1. Crop Coefficient of Difference Fruits in Thailand. 

Figure 1 illustrates the crop coefficient (Kc) of various 
fruit varieties at different stages of production, based on 
information published by the Department of Agriculture, 
Thailand  [50]. It is to note that during the bud burst stage, 
certain fruit trees such as durian, mangosteen, and longan 
do not require, or very low quantities of water. This period 
is approximately 3-10 days for stimulating flowering.  

 
 

3.3. Crop Water Requirement (ETc) 
 

The crop water requirement (ETc) can be estimated 
using a standard procedure to multiply ETo by Kc as 
indicated in equation (2).  
 

𝐸𝑇𝐶 = 𝐸𝑇𝑂 ∗ 𝐾𝐶 (2) 
 

To improve the accuracy of Kc estimation, this study 
adopted the dual crop coefficient approach, which 
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distinguishes between soil evaporation and crop 
transpiration, as outlined in FAO Paper No. 56.[40]. This 
method defines Kc as the sum of the basal crop coefficient 
(Kcb) and soil water evaporation efficiency (Ke), with 
values ranging between 0 and 1.4 as indicated in Eq. (3).  

 
𝐸𝑇𝐶 = 𝐸𝑇𝑂 ∗ (𝐾𝐶𝑏 +  𝐾𝑒) (3) 

 
3.4. Total Water Requirement (TWR) 

 
Total water requirement (TWR) for a tree can be 

calculated by multiplying the daily ETC value by the tree’s 
canopy area as shown in Eq. (4).   

 

𝑇𝑊𝑅 = ∑ 𝐸𝑇𝑐

24

𝑖=0

 ∗ 𝐴𝑟𝑒𝑎 (4) 

 
where TWR is the Total Water Requirement litters per 
day- for a tree. Area is estimated based on the radius (r) of 

the crop canopy using r2. 
This study proposes determining crop water 

requirements using the Penman-Monteith evapotranspiration 
method, as it has been validated by the FAO and scientists 
for its accuracy and reliability. Soil moisture sensors are 
primarily used to monitor and cross-check the water 
content in the soil. These input sensors will transmit data 
to a controller, thereby creating a precision irrigation 
system. 
 

4. Materials and Methods 
 
An actual IPIS was developed, installed and tested in 

a durian orchard to evaluate its capabilities in self-
adjusting the amount of daily water irrigation in response 
to weather conditions. The system also includes soil 
moisture monitoring and an alarm feature to notify when 
soil water content falls outside the established threshold. 

The development of an IPIS encompasses several 
stages, including conceptual design, system prototyping, 
procurement, detailed design, field installation, and testing. 
The system integrates multiple technologies, including 
weather instruments, automation control, and crop water 
requirement algorithm. Design also considers critical 
factors, including operational costs, lifespan, ease of use, 
functionality, and profitability for fruit growers. 

 
4.1. System Design 

 
The system’s core function is to dynamically 

determine and regulate water allocation per individual tree 
through advanced algorithmic control, leveraging real-
time sensor data to modulate motor-pump actuation, 
motor-drive valves state, and comprehensive water 
distribution monitoring. The integrated control logic 
enables precise water resource management by translating 
analytical insights into automated irrigation interventions, 
thereby optimizing water utilization efficiency in fruit 
orchard environments.  

While there are numerous advanced technologies 
available, it is crucial for developers to balance between 
cost, complexity, reliability, and maintainability. The most 
effective technology is considered the one that aligns best 
with the specific objectives of the application.  

Although achieving precise irrigation in response to 
weather conditions is a primary goal, user acceptance and 
system utility must also be prioritized. With these 
considerations in mind, the automatic weather station, soil 
moisture sensors, and Programmable Logic Controller 
(PLC) were integrated to develop a novel system. The 
weather data is used to calculate the required water for 
crops while validating against soil moisture content. 
Multiple algorithms operate in the backend, with a 
touchscreen facilitating user interaction. 

The IPIS comprises three main parts including (1) 
weather sensors and other instruments for data collection 
(2) signal quality validation and preprocessing, and (3) 
computational algorithms for water volume quantification 
and adaptive irrigation management.  

Figure 2 illustrates the interconnection between each 
component. A compact programmable logic controller 
(PLC) functions as the central processing unit, collecting 
data from an automatic weather station, soil moisture 
sensors, a flow meter, and a water pressure sensor. The 
output from the PLC is linked to a variable speed drive 
(VSD), which subsequently connects to the pumps motor. 
There are three digital output signals connected to three 
motor-driven valves. A local panel comprises various 
switches and selectors used to turn the pump and valves 
on and off.  

 

 
 

Fig. 2. IPIS Systematic Control and Instrument Diagram. 
 
4.2. Equipment and Sensors Specifications 

 
To estimate the evapotranspiration based on Penman-

Monteith Eq. (1) [40], the instruments as listed on item  
1-6 shown in Table 2 are required. The sensors came in  
a set of “Automatic Weather Station” which is also include 
a datalogger and a small LCD for data monitoring.  The 
rainfall sensor, soil moisture sensor, flow meter, and water 
pressure sensor are individual components used for 
monitoring the irrigation system and for triggering 
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interlocks when system malfunctions are detected. These 
sensors were calibrated before installation at the site. 
 
Table 2. Sensors Basic Specification. 
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) 

M
e
a
su

re
 

ra
n

g
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1.  
Air 
temperature 

C 1  0.5 0-60 

2.  Air pressure hPa 0.1  0.3 
500-
1100 

3.  
Relative 
humidity 

% 0.1  3 0-100 

4.  Wind speed m s-1 0.1  0.3 0-45 

5.  
Wind 
direction 

Degr
ee 

1  3 0-360 

6.  
Solar 
radiation 

W m-

2 
1  2 0-2000 

7.  Rainfall mm 0.2  4 0-8 

8.  Soil moisture % 1  3 0-100 

9.  Flow meter 
m3 

hr-1 
0.1  0.5 0-600 

10.  
Water 
pressure 

bar 0.1  0.1 0-10 

  
The selection of sensors and equipment in this study 

prioritizes reliability, accuracy, quality, and operational 
capability under tropical conditions. This necessitates that 
all equipment functions effectively in environments 
characterized by high humidity, elevated temperatures, 
and dusty conditions. 

 
4.2.1. Automatic Weather Station (AWS) 

 
An automatic weather station (AWS) is a sophisticated 

meteorological monitoring system engineered to 
autonomously collect and record atmospheric data. It 
comprises a suite of sensors and instruments that measure 
various parameters, including temperature, humidity, wind 
speed and direction, atmospheric pressure, precipitation, 
and solar radiation. AWS is extensively used for data 
acquisition to compute evapotranspiration in accordance 
with the Penman–Monteith (FAO) recommendation [10].  

The use of AWS for data collection provides a 
significant advantage in terms of data resolution, with a 
scanning rate measured in seconds. However, it is crucial 
to regularly inspect and monitor these instruments to 
prevent disruptions, particularly after the initial weeks of 
field installation. The quality of data is critical; the 
presence of outliers can lead to incorrect water estimations. 
To address this, we developed a sub-algorithm to manage 
outliers and trigger an audible alarm in the event of 
anomalies. 

 

4.2.2. Rain sensor 
 

Rain sensors were employed to detect precipitation 
and quantify rainfall. Data from the rain sensors were 
transmitted to the analog input of the PLC and utilized to 
automatically adjust the irrigation schedule and water 
quantity. If precipitation is detected during irrigation, the 
system will cease and cancel irrigation.  

 
4.2.3. Soil Moisture Sensor (SMS) 

 
Soil moisture sensors were employed to assess the soil 

water content. Two frequency-domain reflectometry soil 
moisture sensors were installed at depths 25 and 50 
centimeters from the ground surface to capture moisture 
conditions in the upper and lower parts of the root zone, 
which is primarily located within the top 45 cm of the soil.  
The data from these sensors, which provide the 
percentage of water content in the soil, were transmitted 
to the PLC in real-time. This data was utilized to verify 
whether the water content in the root zone was within the 
range of 50-75%. If the water content fell outside this 
range, the PLC generated an audible alarm.  

 
4.2.4. Flow meter  

 
An electromagnetic flowmeter was installed to 

measure the water flow at the pump outlet. The device 
operates based on Faraday's law of electromagnetic 
induction, which states that voltage is induced when a 
conductor moves through a magnetic field. The flow 
meter indicates the water flow rate in cubic meters per 
hour and calculates the volume in cubic meters, enabling 
validation of the water supply quantity against the 
evapotranspiration calculation result.   

 
4.2.5. Water pressure meter 

 
A pressure sensor was installed at the main pipe to 

monitor the water pressure. The output signal from the 
sensor was sent to the PLC for monitoring and was used 
as a feedback control signal to control the water pressure.  

 
4.2.6. Variable Speed Drive (VSD) 

 
To ensure that water is sprayed equally through the 

sprinkler emitter, the water pressure must always remain 
stable. VSD has a duty to automatically control the water 
pressure by adjusting the speed of the pump-motor.  
Additionally, VSD can save electricity costs by reducing 
inrush current during motor startup by approximately  
10-15%.   

 
4.2.7. Programmable Logic Controller (PLC) 

 
The selection of a PLC is driven by a combination of 

a high-performance processor, ensuring that it can handle 
large amounts of data and last long when operated in high-
moisture and warm environments. Additionally, PLCs 



DOI:10.4186/ej.2025.29.8.91 

98 ENGINEERING JOURNAL Volume 29 Issue 8, ISSN 0125-8281 (https://engj.org/) 

offer the advantages of logic programming, software 
development, software simulators for pre-test, and 
flexibility in scalability. The programming language used 
for the PLC differs from traditional hard-coded 
programming. Most modern PLCs support standardized 
languages such as ladder logic, function block diagrams, 
and structured text. For this project, the author selected 
function block programming due to its modularity and 
ease of visualization during development. Although the 
initial cost is slightly higher than a microcontroller board, 
the long-term operating cost is lower than cloud 
computing when the user does not require a subscription 
payment.  The PLC (Siemens S7-1200) used in this study 
was an industrial-grade compact model. It features 14 
digital outputs and 10 digital inputs, operating at 24V DC 
power. Additionally, it included two analog outputs and 
two analog inputs. The PLC can operate in environments 
with temperatures of up to 60°C and humidity levels of up 
to 95%. The CPU processing time of Boolean is 0.08 
microseconds per instruction and includes 8 MB of 
memory. PLC reads data from the AWS and soil moisture 
sensors via the Modbus protocol while communicating to 
the VSD and HMI screens via Ethernet TCP/IP.   

 
4.2.8. HMI (Human Machine Interface) 

 
IPIS is equipped with a 7-inch HMI feature of a 

touchscreen installed on the front panel of the control 
cubicle for users to monitor, control, and perform 
irrigation processes. HMI is utilized to communicate 
between humans and systems using process control 
graphics that include an operation control panel, real-time 
data display, and equipment status.  These interactive 
interfaces enable operators to monitor and control 
orchard irrigation using intuitive visual representations 
and real-time data updates. By providing user-friendly 
graphics for system interaction, HMI enhances operational 
efficiency, reduces human error, and enables quick 
decision making in various irrigation methods. 
 
4.3. Data Collection and Communication 

 
The overall accuracy of the system varies depending 

on the individual processes involved. This includes data 
collection, processing through the evapotranspiration (ETO) 
computation and analysis module, and finally, transmission 
of the output signal to the equipment.  The accuracy of 
the ETO calculation largely depends on the quality of data 
collection. Each sensor's data is read by the datalogger and 
PLC every second. Data exchange between the PLC and 
other equipment and components such as datalogger, 
VSD and HMI are based on the Modbus TCP protocol 
while the communication between PLC and soil moisture 
sensor is Modbus RTU. Pressure and flow signals are 
connected to the PLC's analog input via a 4-20 mA current. 

The quality of the data may be lower due to disturbances 
caused by external noise such as cellular phone signals, 
lightning, and electric surges. To reduce the issue of outlier 
data that can significantly skew the average and have the 

potential for inaccurate results, the raw data is averaged 
into one-hour datasets. The one-hour dataset is used for 
calculating crop evapotranspiration (ETO). The daily ETO 
value is then obtained by summarizing the one-hour data. 

 
4.4. Processing Control Algorithms 

  
The Intelligent Precision Irrigation System (IPIS) was 

developed to optimize irrigation management for open-
field fruit orchards. It not only estimates the water 
requirements of crops but also autonomously controls 
water delivery. Advanced features, such as irrigation 
triggers based on light intensity, and preset irrigation times 
or quantity, provide fruit farmers with greater flexibility to 
align with their irrigation practices. The design algorithms 
consist of primary algorithms, which include data 
collection real-time crop water requirement calculation, 
and precision control of water supply quantity. Sub-
algorithms are implemented for safety operations, error 
prevention, data repository management, and system 
alarms. The IPIS can be operated in either autonomous or 
manual mode, selectable via the HMI display. Each 
operation mode is designed for different purposes.  

Figure 3 illustrates the overall equipment connection 
and process diagram. The PLC is the central processor 
interface to every component. Upon system initiation, the 
PLC resets memory and commences data scanning from 
all sensors. The raw data is utilized to validate quality and 
subsequently processed to analyze crop water demand. 
The system then awaits a command from the user, which 
may be received in either autonomous or manual 
operation mode. Upon receiving a command, the system 
proceeds by sending signals to the Variable Speed Drive 
(VSD) and valves to activate the pumps motor and open 
the valves, respectively. Once the commanded processes 
are successfully executed, the system sends a signal to stop 
the pump and enter standby mode. 

 

 
 

Fig. 3. Process Flow Diagram. 

4.4.1. Autonomous operation mode 
  

In autonomous operation mode, IPIS automatically 
irrigates crops daily, with water delivery triggered by  
either light intensity or a pre-set timer without human 
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intervention. Utilizing light intensity, IPIS can be set to 
initiate irrigation at a specific light intensity on HMI, such 
as 50 µmol s-1 m-2, equivalent to approximately 24.75 W 

m-2 (1 W m-2 ≈ 2.02 µmol m-2 s-1), to start watering in the 
early morning.  

As plants absorb nutrients and photosynthesize, even 
at low light levels, light intensity significantly affects the 
efficiency and rate of nutrient uptake [51]. The minimum 
light intensity required to activate photosynthesis is 
known as the light compensation point (LCP), at which 
photosynthesis balances respiration. This point varies by 
plant species, typically falling between 50 and 150 µmol.s-

1.m-2 of photosynthetic photon flux density (PPFD) [52].  
 

4.4.2. Manual operation mode 
 

In the manual operation mode, users can choose 
irrigation by specifying the amount of water in liters per 
tree or by setting the duration of irrigation to hours and 
minutes. 

The design of IPIS aims to assist growers in various 
scenarios by providing flexible irrigation control. Growers 
can command the system to irrigate with specific 
quantities and frequency such as 300 liters per tree, when 
operated in manual mode. The system can be set to irrigate 
every 30 minutes, followed by a 15-minute pause, in a 
continuous cycle until the total amount of water reaches 
300 liters, at which point the irrigation will stop. This 
method allows water to be absorbed slowly into the soil 
and helps reduce the ambient temperature at midday. 
Additionally, in the manual mode, users have the freedom 
to start or stop the pump at any time, and they can preset 
the start or stop time in advance. 

 
4.4.3. Interlocking and error prevention 

 
The system is enhanced with safety protection and 

interlocking mechanisms designed to prevent harm to 
people and equipment. The pump will not start unless at 
least one valve is open. Furthermore, if the water flow rate 
is less than 5 m³.hr-1, and the pressure drops below 1 bar 
within 15 seconds after the pump starts, the protection 
logic will stop the pump to prevent damage. Additionally, 
the IPIS will not initiate operation during rainfall or 
continue operation if rain is detected while watering. In 
the event of any equipment malfunction, the system will 
pause the process and produce an audible alarm until the 
user pushes the acknowledge button, the system will then 
continue the remaining process.  

To ensure uniform water distribution across all trees, 
it is essential to maintain consistent water pressure 
throughout the sprinkler system. This is achieved by the 
PLC which adjusts the actual pressure, as measured by  
a pressure transmitter, to match the user-defined setpoint. 
The PLC communicates with the variable speed drive 
(VSD) to regulate pressure by controlling the motor's 
speed. When the pressure falls below the desired setpoint, 
the VSD increases the motor speed to compensate. 
Conversely, when the pressure exceeds the setpoint, the 

VSD decreases the motor speed to restore the pressure to 
the desired level. 

The total quantity of water is measured by a magnetic 
flow meter, which is installed at the water outlet of the 
pump (see  

 
Fig. ). The flow meter measures flow rate in m3/hr 

and the totalizer in m3, when pump is on, the water flow 
will be measured. When the actual quantity is equal to the 
daily ETC, the pump will automatically stop. 

 
4.5. Graphic User Interface for Controlling and 

Monitoring 
 

 To enhance irrigation efficiency and precision, an 
intelligent precision irrigation system (IPIS) must offer 
operational flexibility and adaptability in various scenarios. 
An effective system requires the presentation of essential 
foundational data to facilitate informed decision-making. 
It should feature an intuitive and straightforward control 
panel to minimize the learning curve and incorporate a 
reporting mechanism for the real-time monitoring of the 
irrigation progress and the long-term data analysis. 
Consequently, IPIS is equipped with a graphical user 
interface (GUI) capable of displaying real-time data on 
weather conditions, plant water requirements, soil 
moisture levels, and the actual amount of water received 
by the plants. Additionally, it includes a user-friendly 
control panel for the convenient scheduling and 
customization of irrigation regimes, as illustrated in Fig. 4  
 

 
 
Fig. 4. User Graphic Interface. 

The primary interface presents the current weather 
information in the upper frame, with the control panel 
located on the left and operational status indicators for the 
water pump, valves, water pressure, and flow rate 
displayed centrally. This graphical interface enables users 
to select between the automated and manual irrigation 
modes. The system supports various irrigation methods, 
allowing users to define light-intensity thresholds for 
irrigation initiation, set irrigation durations, or specify 
irrigation frequency. Furthermore, the system pressure 
can be adjusted by clicking on the pump icon and 
inputting the desired pressure value via a menu. As 
depicted in Fig. 4, this orchard comprises three distinct 
zones, and the farmer can selectively irrigate any individual 
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zone. Control via a graphical interface offers significant 
advantages in terms of convenience, speed, and error 
reduction, leading to genuine optimization compared to 
traditional control panels. Nevertheless, the system also 
provides alternative on/off control options via physical 
switches and buttons to accommodate users who are less 
familiar with touchscreen interfaces.  

Effective irrigation optimization relies on plant water 
use data for analytical adjustments to water application in 
accordance with plant needs. While IPIS calculates 
estimated plant water requirements based on standard 
crops references, growers need to refine parameters to 
align with their specific crop conditions such as canopy 
radius, crop water coefficient, and local environmental 
factors. Therefore, IPIS is designed to display weather 
conditions, plant water demand, and Vapor Pressure 
Deficit (VPD) as crucial information for farmer decision 
support, as shown in Fig. 5.  

 

 
 

Fig. 5. Weather Data Monitoring. 

 
To facilitate accurate tracking and analysis of water 

demand trends over time, a broader temporal perspective 
of data is essential for identifying clear patterns and 
changes. Figure 6 illustrates the dynamic relationship 
between the VPD, air temperature, and relative humidity. 
This demonstrates that as air temperature increases, VPD 
also increases, leading to increased plant transpiration and 
consequently, higher water demand. IPIS incorporates 
various graphical data representations to enhance the ease 
of irrigation analysis. 

 

 
 

Fig. 6. Air Temperature, RH, VPD Chart. 

In summary, the system features an intuitive graphic 
user interface on HMI screen that facilitates monitoring, 

configuration, and command execution, while also 
allowing for parameter adjustments tailored to specific 
crop and field conditions. A comprehensive display of 
weather conditions, plant water demand, and VPD 
provides farmers with critical information for informed 
irrigation decisions. By offering a broader temporal 
perspective on data, the system enables farmers to identify 
long-term trends and patterns in water demand, thereby 
allowing for more effective planning and resource 
management. This user-friendly interface not only 
streamlines the irrigation analysis process, but also helps 
reduce errors during the irrigation process, ultimately 
contributing to more efficient and sustainable agricultural 
practices. 

 

5. Field Experiment and Testing Result 
 
To validate IPIS efficacy, a field experiment was 

conducted to confirm that the system developed through 
the integration of sensors, a PLC, programming, and 
various equipment, functions as anticipated in a real-world 
fruit orchard environment. The following section offers a 
comprehensive account of the experimental procedures 
and results. 

A field experiment was conducted at a durian orchard 
in Rayong Province, Thailand (12°46’46.5”N, 101°48’27.3”E) 
during January to April 2024.  

 

 
 
Fig. 7. Weather Sensors. 

 
 

Fig. 8. Soil Moisture 
Sensor. 

 
This orchard contains three plots with 250 durian 

trees in total with an average height of 7.5 meters and a 
canopy radius of 4 meters in a total cultivator area of 6.8 
acres on loam soil. The water is distributed by a 7.5 kW 3-
phases motor driven pump with nominal pressure of 1.5 
bar and maximum flow rate of 69 m-3.hr-1. The water flows 
through the polyvinyl chloride pipe and is delivered to 
each tree by two mini-sprinkler emitters, each with a flow 
rate of 150 Liters per hour. The weather sensors were only 
calibrated at vendor’s laboratory. These sensors were 
mounted on a metal pole at high of 2 meters (see  

Fig. 7). Soil moisture sensors were calibrated against 
soil in the field then the sensors were put below the 
ground surface at 25 cm and 50 cm (see  
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Fig. 8 ).  
 

 

Fig. 9. Pumping Station and Control Panel. 

The PLC, VSD, and other control devices were 
mounted in a control cubicle at shop before transport and 
installation at field. The motor-drive valves, magnetic flow 
meter, and pressure transmitter were installed to the 
existing pipes (see Fig. 9). The installation of equipment 
took 12 weeks from mid-October to December 2023. A 
final inspection was conducted to ensure that sensors, 
wiring, system communication, datalogger, and controller 
all functioned properly with no errors.    

The testing was conducted over a four-month period 
from January to April 2024. However, as the system 
required adjustments during the initial months, only the 
data from April, which is the most complete and of highest 
quality, are presented in this study. The test includes three 
parts which are data collecting and monitoring, automatic 
control function, and precision of irrigation system. All 
data were recorded in internal memory of the HMI and 
downloaded to a computer once a week for analysis. 

  
5.1. Data Collecting and Quality Analysis  

 
The first part of the testing involved analysing the 

quality of data using visualization techniques to identify 
patterns, outliers, and missing data, as well as conducting 
statistical analysis to assess the distribution, mean, and 
standard deviation. The input data were analysed and the 
result presented as Table 3.  

 
Table 3. Descriptive Statistic Data. 
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Mean 30.3 100.9 56.3 0.5 0.8 57.7 27.0 

Standard Error 0.11 0.02 0.9 0.0 0.0 0.9 0.3 

Median 30.1 100.7 54.5 0.0 0.6 61.3 28.6 

Mode N/A 101.7 99.9 0.0 0.0 50.5 34.2 

Standard Dev. 2.9 0.5 22.8 0.7 0.8 15.2 7.2 

Sample 
Variance 

8.5 0.3 518.5 0.5 0.6 231.5 51.1 

Kurtosis -1.3 5.6 -0.9 -0.9 -1.6 -0.8 -1.5 

Skewness 0.0 -0.2 0.3 0.9 0.3 -0.4 0.2 

Range 11.1 4.9 82.9 2.0 2.3 56.4 23.8 

Minimum 24.7 97.1 17.0 0.0 0.0 30.4 18.0 

Maximum 35.7 102.0 100.1 2.0 2.3 86.8 41.8 

Count 696 696 696 696 696 696 696 

The dataset presented in this research comprises  
1-hour interval averages derived from 1-second data 
collected throughout April which is the best quality of 
available data, totalling 30 days. A descriptive statistic 
technique is used to assess the quality of the data shown 
in Table 3. This results in a dataset with 696 data points. 
The dataset is complete, with no missing values. The 
distribution of the data is approximately normal, though 
there are some variations observed in relative humidity 
and radiation. Specifically, radiation values are zero during 
nighttime, and relative humidity frequently reaches 100% 
The relative humidity distribution exhibits slight 
platykurtosis (kurtosis = -0.9), indicating a flatter 
distribution with fewer extreme values compared to  
a normal distribution, which contributes to more stable 
VPD calculations in the Penman-Monteith equation. 
Despite these variations, the dataset maintains a high 
quality, with minor skewness and kurtosis deviations that 
do not significantly impact overall accuracy. 

 
5.2. IPIS Control Function Testing 

 
The second part of testing involved validating the 

algorithms used in autonomous and manual irrigation. To 
verify the system’s ability, IPIS was set to “AUT” 
(autonomous), and daily irrigation was initiated by light 
intensity. set at 24.75 W/m²—the threshold at which 
crops initiate photosynthesis. The irrigation cycle was 
configured with an ON duration of 30 and HOLD 360 
minutes, respectively. This means the trees receive water 
for 30 minutes, followed by a 360-minute hold period. If 
the amount of water applied was still less than the daily 
ETC, the system would continue to irrigate in subsequent 
30-minute batches, repeating the cycle until the actual 
amount of water matched the daily ETC, at which point 
the irrigation would stop. The number of irrigation events 
conducted in autonomous mode was based on a daily 
irrigation schedule. Consequently, the IPIS system 
automatically performed one or two irrigation cycles daily 
upon testing program, in total there were 166 events, with 
a few instances operated manually by the orchard owner. 
These manual interventions occurred due to activities 
such as grass cutting, fertilizer application, and plant 
pruning.  The test results from April 1st to April 7th are 
presented in the form of water flow, as shown in Fig. 10. 

 

 
 
Fig. 10. Water Volume and Frequency Record.  
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On April 1st, 6th, and 7th, the system operated in 
autonomous mode. Irrigation occurred in two batches: the 
first around 7.45-8.15 AM and the second approximately 
at 1.45-2.15 PM. The water flow rate varied depending on 
the number of selected tree plots. On the 2nd, 3rd, 4th, 
and 5th of April, the control mode was switched to 
"MAN" (manual) in afternoon because the grower needed 
to adjust the irrigation timing to accommodate activities 
such as grass cutting or pruning. This operational 
flexibility enables growers to manage irrigation in 
accordance with farm management activities. When 
autonomous mode is selected and remains unchanged, the 
system self-operates and optimizes, ensuring the highest 
precision in irrigation.  

 
5.3. IPIS Accuracy and Performance Test  

 
 In the final stage of testing, the accuracy and 

performance of the Intelligent Precision Irrigation System 
(IPIS) in supplying water to the orchard were evaluated. 
Specifically, the assessment focused on the precision with 
which the system estimated and delivered the required 
irrigation volume to meet the crop’s water demand. 

Due to the amount of water for irrigation is from the 
value of ETC, the result of ETC calculated was used to 
validate the performance of the system. The hourly 
consumption of ETC was plotted in a bar chart for a 
period of five days, as show in  

Fig. 11, to demonstrate performance of crops water 
estimation and if they were adjusted along time and 
weather conditions.   

 

 
 

Fig. 11. Hourly Crop Evapotranspiration. 

As a result, ETC was varied along the times and 
changed by weather conditions. An example of this is the 
values of the bar chart in mid-day were higher than the 
values in the mornings and evenings due to the higher 
temperature of the ambient air, radiation, and other 
parameters. In addition, we monitored daily water 
irrigation against radiation and vapor deficits, which are 
the most influent factors of evaporation, for a month to 
ensure that the system was performing correctly for crops 
water estimation.    

To further assess the system’s reliability, daily 
irrigation volumes were monitored in relation to key 
climatic variables—solar radiation and vapor pressure 
deficit (VPD)—over the course of one month.  

 
 
Fig. 12. Crops Water Demand, Radiation and VPD. 

 
The results, depicted in  
Fig. 12,  show the daily irrigation volume (Liters per 

tree) recorded throughout April. The data reveal a 
progressive increase in water usage, from 289 Liters per 
tree on April 1 to higher values by April 29. This increase 
corresponds to rising temperatures and decreasing 
humidity during the month. Compared to the traditional 
fixed-schedule irrigation method used in this orchard, 
which consistently delivered 350 litres per tree per day 
totalling 10,500 litres, IPIS dynamically adjusted water 
delivery between 189 and 385 litres per tree per day, 
totalling 9,991 litres. This resulted in a monthly water 
saving of approximately 5.10%, representing a substantial 
improvement in water use efficiency. The observed trend 
underscores a strong correlation between crop water 
demand and both VPD and solar radiation levels. 

Additionally, irrigation precision was verified by 
comparing real-time soil moisture measurements with the 
estimated ETC values as shown in 

Fig. 13. The soil moisture was monitored, and if it 
remained within the range of 40-75%, the crops were 
deemed to have received an adequate amount of water.  

The water content in soil was correlated to volume of 
water, the soil moisture sensors were presented that the 
moisture content measured by SMS-A ranged between 50-
70%, whereas SMS-B showed values between 19-24%. 
This indicates effective water distribution within the root 
zone. However, the substantial disparity between SMS-A 
and SMS-B readings suggests the presence of localized dry 
pockets or potential depth misalignment in sensor 
placement, which could indicate heterogeneous soil 
conditions or preferential water flow patterns within the 
orchard profile. Despite this variation, the higher moisture 
content detected by SMS-A likely ensures adequate water 
availability for the primary root zone, as durian trees 
typically develop extensive surface root systems within the 
upper soil layers where SMS-A was positioned. For future 
deployments, implementing a more comprehensive sensor 
network with additional measurement points at strategic 
depths and lateral positions would provide enhanced 
spatial resolution of soil moisture distribution, enabling 
more precise irrigation zone management and reducing 
the risk of localized water stress in heterogeneous soil 
conditions. 
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Fig. 13. Irrigation and Soil Moisture. 

In summary of the experiment, the system underwent a 
comprehensive evaluation with a focus on performance, 
accuracy, data integrity, and both automated and manual 
functionalities. The results demonstrated that the volume 
of water supplied to the crops was accurately estimated 
and effectively controlled. Furthermore, the system 
exhibited flexibility in irrigation management and was 
designed to be user-friendly and easy to operate and learn. 
 

6. Discussion and Conclusions 
 
The optimization of irrigation using an Intelligent 

Precision Irrigation System (IPIS), which is based on  
the Penman-Monteith evapotranspiration model, has 
demonstrated superior water management compared to 
traditional irrigation methods. The experimental results 
confirm that IPIS delivers variable water volumes daily, 
dynamically responding to fluctuating weather conditions. 
Notably, the system adjusts irrigation schedules in real 
time based on solar radiation intensity, ensuring crops 
receive water precisely when required. This intelligent 
responsiveness ensures improved water-use efficiency. 

The flexibility of the system allows users to choose 
between fully automatic and manual control modes. This 
enables growers to manage the timing, frequency, and 
volume of irrigation according to their preferences or field 
activities, such as mowing, fertilization, and pesticide 
application, which may require deviations from the 
automated schedule. Users residing in remote areas need 
not be concerned about manually operating the pump, as 
the system autonomously executes these tasks daily, 
thereby saving both time and travel costs.  

A significant advancement of the proposed Intelligent 
Precision Irrigation System (IPIS) is the implementation 
of sophisticated estimation algorithms that calculate crop 
water requirements at hourly intervals. This temporal 
resolution represents the maximum precision achievable 
within the theoretical framework of the evapotranspiration 
equation (Eq. (1)), thereby substantially enhancing the 
accuracy and efficacy of irrigation management protocols. 
Consequently, the IPIS demonstrates considerable 
potential for mitigating water wastage attributed to 
excessive irrigation practices, as water is automatically 
distributed and regulated to correspond with actual 
physiological crop demands. Moreover, the precision in 
water application facilitates optimized fertilizer utilization 

through the significant reduction of nutrient leaching and 
surface runoff phenomena, thus addressing both water 
conservation and agrochemical efficiency objectives 
simultaneously. 

During the experimental phase, the system was 
configured for data acquisition at one-second intervals to 
maximize measurement precision. However, this high-
frequency sampling potentially introduces anomalous 
values due to transient environmental perturbations. For 
operational deployment, the sampling rate can be 
calibrated to achieve an optimal balance between 
measurement fidelity and signal-to-noise ratio. In 
scenarios where extreme precision is not critical, reducing 
the sampling frequency to one-minute intervals could 
effectively mitigate outlier occurrences while simultaneously 
decreasing computational load and, consequently, system 
implementation costs. 

It is imperative to acknowledge that IPIS precision is 
fundamentally contingent upon sensor reliability, as any 
measurement anomalies directly impact irrigation volume 
calculations. High-precision sensors with superior durability 
characteristics inevitably entail elevated acquisition and 
maintenance expenditures. System developers must 
therefore establish an appropriate equilibrium between 
measurement accuracy, implementation costs, and user 
acceptance parameters. Excessively complex or cost-
prohibitive systems may encounter adoption resistance 
despite technical superiority, as documented in previous 
studies [53], [54]. 

Soil moisture data integrity is critical for effective 
irrigation control protocol implementation. Sensor 
placement should prioritize representativeness of the 
broader edaphic conditions throughout the orchard 
ecosystem. While increased sensor density correlates with 
enhanced measurement resolution, it simultaneously 
escalates initial capital investment and recurring 
maintenance requirements, necessitating careful cost-
benefit analysis. 

Throughout the evaluation period, the control 
infrastructure comprising the Programmable Logic 
Controller (PLC) and peripheral hardware components 
demonstrated remarkable operational stability under 
challenging environmental conditions characterized by 
elevated temperatures, high humidity levels, and 
significant particulate contamination, despite the absence 
of dedicated environmental control mechanisms. This 
demonstrated resilience suggests suitability for extended 
field deployment scenarios. Nevertheless, systematic 
preventive maintenance protocols remain essential for 
preserving measurement accuracy. For instance, 
vegetation encroachment around soil moisture sensors 
can generate artificially elevated moisture readings, while 
ambient light pollution initially compromised nocturnal 
net radiation measurements until remediated through 
strategic relocation of artificial light sources. 

Operational efficiency gains were also evident. The 
labour requirements for daily irrigation tasks were reduced 
by 50%, decreasing from two workers to one. Furthermore, 
the orchard owner expressed confidence that irrigation 



DOI:10.4186/ej.2025.29.8.91 

104 ENGINEERING JOURNAL Volume 29 Issue 8, ISSN 0125-8281 (https://engj.org/) 

volumes delivered by IPIS were consistently optimal—
neither excessive nor inadequate. 

User feedback confirmed that the system’s human-
machine interface (HMI) is intuitive and user-friendly. The 
graphical interface resembles modern mobile applications, 
reducing the learning curve and simplifying system 
interaction. Workers no longer need to manually monitor 
irrigation schedules or water volumes, improving overall 
workflow efficiency. 

Despite its advantages, the performance of IPIS 
depends heavily on the underlying irrigation infrastructure. 
A well-designed pumping and piping network is essential 
to ensure uniform water distribution across all trees. 
Inadequate hydraulic design could result in uneven 
irrigation, compromising crop health. Additionally, the 
crop coefficient (Kc) used in evapotranspiration 
calculations must be regularly calibrated to reflect the 
specific spatial and phenological conditions of the orchard. 

It is also important to note that the effectiveness of 
precision irrigation is contingent upon healthy crop 
conditions and good agronomic management. In cases of 
biotic or abiotic stress—such as Phytophthora infections 
impairing water uptake in durian roots, or arthropod 
infestations—automated irrigation may require manual 
intervention. Under such circumstances, growers may 
need to adjust crop coefficient values to compensate for 
altered water demand. Future research could address this 
limitation by integrating machine learning (ML) or 
artificial intelligence (AI) techniques. These could analyse 
multivariate agricultural datasets to detect anomalies and 
autonomously adjust irrigation parameters in real time, 
enhancing system adaptability and resilience. 

In conclusion, the initial investment in IPIS is justified, 
as sensor and controller costs continue to decline. With an 
initial investment of 10,761 USD, the system demonstrates  
a potential revenue increase 5% within one year, indicating 
approximately one year return on investment. The 
technology offers significant potential for widespread 
adoption in open-field orchard agriculture, supporting 
sustainable water management practices and long-term 
agricultural productivity. Nevertheless, growers with  
a basic understanding of electrical and control systems 
would benefit from improved system configuration, 
maintenance, and troubleshooting. 
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