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Abstract. High precision of hydrological prediction is crucial for real–time operation of 
flood and drought risk mitigation and strategic planning. This study assessed the predictive 
performances of three machine learning algorithms; Extreme Gradient Boosting (XGBoost), 
Random Forest (RF), and Deep Neural Networks (DNNs) for water level prediction. 
Accordingly, the one–day and one–week water level prediction models for six key gauged 
stations along the Chao Phraya River and its major tributaries were developed. Selecting 
input features was carried out based on the physical river–reservoir system using past water 
level, rainfall, controlled reservoir outflow, and upstream discharges with different travel 
times. The statistical evaluation indicated that both XGBoost and RF with rainfall input 
robustly outperformed than DNNs, as it strongly achieved higher R2 from 0.937 to 0.999 
for model training and from 0.743 to 0.995 for model testing and lower MAE, MSE, and 
RMSE values for all daily prediction scenarios. Among these algorithms, RF demonstrated 
the superior performance for low water level prediction exhibiting the smallest percentage 
error of overestimating lying between +0.0088% and +0.9380%. XGBoost, RF, and DNNs 
algorithms exhibited small average percentage errors for high water level prediction ranging 
from –2.2696% to +1.1587%. Additionally, daily model can capture the entire testing dataset 
with high precision than weekly model. Daily predictions provide valuable real–time insights 
for forecasting water levels during critical flood and drought periods. In contrast, weekly 
predictions assist in strategic water resource planning to address challenges in diverse 
hydrological environments. 
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1. Introduction 
 
High precision hydrological prediction plays a crucial 

role for water resource planning and management as well 
as disaster mitigation in the context of climate variability 
caused by natural and human–induced factors [1]. 
Hydrological prediction is a primary process in water 
resource management to predict the future behavior and 
likelihood of hydrological data in the water resources 
system such as rainfall, runoff, river water level, reservoir 
inflow, reservoir water level, etc. During normal operation, 
it has been adopted for water resource planning to bridge 
the imbalance between water availability and water 
requirement and establish the proper water allocation plan. 
During critical water situation, hydrological prediction has 
been served as the key supportive tool to provide key 
critical data and deliver informed decision to dam 
operators for disaster warning and mitigation like severe 
floods and prolonged droughts [2]. Highly precise river 
water level prediction is vital for practical applications like 

flood warning systems, real–time control of hydraulic 
structures [3], and drought mitigation efforts. This is 
because it can signal rapid floods, indicate significant river 
level drawdown, and monitor riverbank stability, which is 
affected by water level fluctuation [4] and its impact on 
geotechnical properties [5, 6]. Predicting the changes in 
river water levels commonly involves both natural and 
human–induced factors such as rainfall, runoff, regulated 
flow, watershed and meteorological conditions [7]. These 
factors contribute to the observable water level data 
exhibiting non–stationarity, non–linearity, randomness, 
and periodic patterns [8]. 

Traditionally, the physically–based modelling which is 
the process driven approach, has been widely applied for 
water level prediction. However, in–depth analysis of the 
physically–based modelling between watershed 
characteristics and hydrological processes occurred in the 
watershed system has demanded the numerous input data 
and extensive knowledge and skill of the modelers to 
handle the uncertainties of parameter estimation and 
complexity of model structures [1]. Consequently, data 
driven approach using statistical or Machine Learning (ML) 
techniques has been widely adopted for river level 
prediction by establishing the relationship between the 
input and output variables while comprehensive physical 
watershed characteristics are not incorporated [9–11]. 
Therefore, ML has been regarded as more efficient tool 
than the physically–based model in term of computational 
effort and cost [12]. Moreover, ML has produced 
remarkable advances in streamflow prediction providing 
better predictive performance than the calibrated 
conceptual and physical–based hydrological models [13]. 

For over a decade, ML has been increasingly adopted 
as an alternative tool in data–driven modelling across 
various engineering domains [14], such as product 
classification [15], battery sales forecasting [16], air traffic 
[17], structural design and analysis [18, 19], geotechnical 
engineering [20] and hydrological modelling [21, 22]. It has 
gradually substituted the traditional statistically–stochastic 

techniques like autoregressive and Box–Jenkins models 
due to drawback of computational complexity and its 
limited applicability to non–linear systems [10, 23]. 
Moreover, the fundamental stationary assumption of the 
statistically–stochastic models indicating constant 
statistical properties of hydrological data over time might 
not be entirely realistic for real world water scenarios. 
Consequently, the enhanced capability of ML for 
hydrological prediction has been proven and presented 
though many case studies worldwide [21, 22]. Moreover, 
ML can produce better predictive results for large scale 
applications when dealing with large dataset with high 
dimensionality and non–linearity relationship [12, 24, 25].  

Several classical ML algorithms have been employed 
for hydrological prediction such as, linear and logistic 
regression, Support Vector Machines (SVM), K–Nearest 
Neighbors (KNN), Multi–layer Perceptron (MLP), 
Random Forest (RF), Gradient Boosting (GB), Extreme 
Gradient Boosting (XGBoost), and Radial Bias Function 
(RBF), etc. The recent revolution and achievement of 
Deep Neural Networks (DNNs) which incorporate 
multiple layers of artificial neural networks (ANNs), has 
been renowned due to ability to learn complex patterns 
and representations from huge datasets.  

Numerous case studies worldwide have demonstrated 
the improved predictability and performances of various 
ML algorithms in hydrological applications. For example, 
improvement of river flow prediction by ML methods has 
ensured proficiency of Multi–Layer Artificial Neural 
Networks (ANNs) in precisely capturing the stage–
discharge relation [26]. Enhanced predictive performance 
of maximum flood depth in the river using advanced 
convolutional neural networks was also exhibited [27]. 
The predictability of Long Short–Term Memory (LSTM) 
algorithm in predicting rainfall–runoff during extreme 
hydrological events was investigated and compared to the 
conceptual and process–based models [28]. Two ML 
algorithms; Radial Basis Function (RBF) and Support 
Vector Model (SVM) were developed to predict daily, 
weekly and monthly reservoir evaporation losses and high 
accuracy level of daily model with SVM was accordingly 
found [29]. In addition, SVM algorithm substantially 
outperformed in predicting daily reservoir water level than 
ANFIS model [7]. Three ML algorithms including Multi–
Layer Perceptron Neural Network (MLP–NN), Long–
Short Term Memory Neural Network (LSTM), and 
Extreme Gradient Boosting (XGBoost) applied for the 
river water level prediction were explored with the 
different input scenarios. These three ML prediction 
models showed the robust performances while MLP–NN, 
which is fully connected NN model with more than one 
layer exhibits the best predictive results for river water 
level prediction [10].  

ML models with SVM and Gene Expression 
Programming (GEP) and model trees (MT) algorithms 
were applied to predict three standardized streamflow 
indices, namely Standardized Precipitation Index (SPI), 
Standardized Streamflow Index (SSI), and Standardized 
Precipitation Evapotranspiration Index (SPEI) for 
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hydrological drought monitoring. The results showed the 
high precision of SPI when modelling by ML algorithms 
and MT could perform well in predicting SSI [30]. The 
application of ML algorithms focusing on drought index 
prediction was also implemented for drought monitoring 
in semi–arid region. Four significant ML algorithm 
including Random Forest (RF), Voting Regression, 
AdBoost Regressor, and K–Nearest Neighbor Regressor, 
were adopted to predict 1–, 3–, 9–, and 12–month SPI and 
SPEI drought indices. The result revealed the good 
predictability of these four ML algorithms in predicting 3–, 
and 12–month SPEI index [31].  

There were research studies proven that tree–based 
ML algorithms such as Random Forest (RF), Gradient 
Boosting (GB), and Extreme Gradient Boosting 
(XGBoost) are more reliable than traditional and 
conventional ML algorithms such as Artificial Neural 
Network (ANN) and Radial Bias Function (RBF) for 
reservoir water level prediction [32]. Extreme Gradient 
Boosting (XGBoost) presents high level of accuracy in 
capturing fluctuation of river water level [33], reservoir 
water level [32], and also groundwater level [34]. Moreover, 
XGBoost is considered as operative algorithm in handling 
with complex and non–linear parameters that massively 
utilized to various ML prediction challenges [23]. It 
exhibits superior speediness to learn large–scale dataset 
and use regularization technique to prevent overfitting 
[23]. This algorithm can achieve the desirable results 
significantly faster than the traditional solutions on a single 
machine potentially up to ten times [27]. Importantly, 
XGBoost can capture sudden fluctuation in a short time 
of prediction data [34]. 

It is emphasized that optimum hyperparameter of 
some conventional ML algorithms strongly influences the 
predictive performances. Consequently, optimization 
algorithms can be incorporated to enhance the superiority 
of ML algorithms [35]. Both gradient–based optimization; 
gradient descent, stochastic gradient descent, and adam, 
and population–based optimization; Genetic Algorithm 
(GA), Particle Swarm Optimization (PSO), and 
Differential Evolution (DE), have been broadly used to 
tune ML hyperparameters. For example, Particle Swarm 
Optimization (PSO) was utilized to optimize the LSTM 
hyperparameter to enhance capability to learn data 
characteristic for water level prediction [36]. It is revealed 
that the better performance of the hourly short–term 
streamflow prediction across the spatial scale in the river 
basin by convolutional neural network (CNN) was 
substantially improved when Imperialist Competitive 
Algorithm (ICA) and Grey Wolf Optimizer (GWO) was 
incorporated to adjust the hyperparameter of CNN [37].    

To enhance the predictability for hydrological 
prediction, hybrid prediction models integrating ML 
algorithms with statistical techniques both in the pre–
processing (data preparation) and post–processing 
(prediction refinement) steps, have been implemented. 
For instance, the boundary–corrected maximal overlap 
discrete wavelet transforms (BC–MODWT) which is the 
signal processing technique to decompose the signal data, 

was deployed with DNNs for real–time rainfall and runoff 
prediction [38]. The monthly long–term streamflow 
prediction was developed by proposing the hybrid SVR–
ANN combined with Bayesian Model Averaging (BMA) 
method in the post–processing step to refine the 
predictive results [39]. In addition, LSTM and Light 
Gradient Bossing Machine (LightGBM) integrated with 
reciprocal error method was developed for annual runoff 
prediction. The results obtained by integrated prediction 
model (LSTM–LightGBM) showed better performance 
metrics than two single prediction models (LSTM and 
LightGBM) [40]. Moreover, the Stacked Heterogeneous 
Ensemble Method (SHEM) which is an ensemble 
machine learning technique that combines predictions 
from diverse models to generate a conclusive prediction in 
improving the overall predictive performances, was used 
for rainfall prediction [41]. 

Due to its importance, this study employed three 
powerful ML algorithms; XGBoost, RF, and DNNs to 
predict one–day and one–week ahead water levels along 
the Chao Phraya River (CPYR) and its tributaries where 
headwater of the river flow of CPYR originates. CPYR is 
a principal artery located in the Chao Phraya River Basin 
(CPYRB) in Central Thailand. It plays a vital role in 
shaping history, culture, and economic development of 
the country. It originates in the north where four main 
tributaries; Ping, Wang, Yom, and Nan, join. It travels 
over 370 kilometers southward, eventually discharging 
into the Gulf of Thailand [42]. CPYR serves as a lifeline 
for millions of people providing water mainly for 
agriculture, industry, domestic use, and ecology. The river 
flow and water level of CPYR are significantly governed 
by the flow regulation of four main storage dams, namely, 
Bhumibol (BB), Sirikit (SK), Khwae Noi Bumrungdan 
(KNB) and Pasak Cholasite (PS) dams which varies 
seasonally due to downstream water demands and local 
and regional tropical climate factors. It is revealed that the 
annual average rainfall in the upper basin substantially 
ranges from 1,173 mm to 1,748 mm, exceeding annual 
rainfall in the lower basin which is approximately 1,100 
mm [43]. The increased river flow and water levels along 
CPYR during monsoon season (May.–Oct.) have led to 
flooding particularly in inundated low–lying area 
downstream of Chao Phraya Diversion Dam (CPY). 
Conversely, during dry season (Nov.–Apr.), the decreased 
river flow and water level drawdown have caused the 
water scarcity in the lower basin. Therefore, to monitor 
flooding and drought situations along CPYR, six key 
gauged flow stations located upstream and downstream of 
CPY dam as shown in Fig. 1, were selected to predict 
water level by ML algorithms. The core novelty of this 
work lies in the unique and valuable dataset and the 
selection of key input features. These were used to 
establish various water level prediction models for both 
daily and weekly scenarios, which provide insights for 
real–time operation and strategic water resources planning. 
Furthermore, the predictive performance of these models 
was evaluated by exploring their capability in predicting 
both low and high water levels. These resulting findings 
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contribute to improved flood and drought monitoring and 
control in the central region of Thailand. 

 

2. Material and Methods 
 
2.1. Input Features for Water Level Prediction 

Modelling 
 

To develop the daily and weekly models for water 
level prediction, the long–term historical water level and 
discharge records of six gauged stations; P.17, W.4A, N.67, 
C.2, USCPY, and C.29, were accordingly collected to 
encompass various climatic conditions occurred in the 
region. Additionally, a wide range of potential variables 
such as weather parameters including rainfall, controlled 
outflow by upper reservoirs, and upstream discharges 
were collected and identified as influential factors on water 
levels corresponding to their statistical correlation and 
physical characteristic relation. To characterize the local 
weather influencing seasonal changes of river water level, 
the rainfall data for each gauged station was downloaded 
based on its location from the National Aeronautics and 
Space Administration (NASA) power product [44]. To 
determine proper lag time of input features in the 
prediction models, the travel time of upstream discharges 
and regulated reservoir outflow to reach the downstream 
gauged stations was accordingly considered. It is 
recognized that the significance of data correlation and 
feature importance increases with larger sample sizes. 
Consequently, the observation dataset used in this study 
comprised available data up to 2023 as summarized in 
Table 1. 

After the data collection, a quality control process to 
ensure the data reliability was then implemented to detect 
minor percentage of data errors including missing values, 
inconsistencies, and outliers for subsequent analysis. The 
data entry errors in datasets were removed and missing 
values in between days were imputed using mean method. 
For extended periods of missing values, such as a week or 
a month or more, historical data from similar water years 
(dry year, normal year, and wet year) were replaced to 
maintain temporal relationships in datasets. Duplicate 
records from inconsistent datasets were detected and 
removed to prevent overrepresentation. The extreme 
outliers were preserved if representing true extreme events. 
However, if outliers due to technical fault were found, 
removal or mean methods were adopted to handle those 
values.  

This cleaned data stored in a structured format was 
statistically preprocessed through correlation analysis to 
create appropriate input features for water level prediction 
by three different ML algorithms including XGBoost, RF, 
and DNNs. Input variables exhibiting strong statistical 
correlations with the target water level data were designed 
as potential inputs at specific gauged stations. Specifically, 
features demonstrating the highest correlation coefficients 
were prioritized during the input feature selection process 
in correspondence with physical interaction. Accordingly, 
three daily prediction scenarios, namely Scenario 1 (S1), 

Scenario 2 (S2), and Scenario 3 (S3), varying the prediction 
algorithms were designed to predict one–day ahead water 
levels. The objective was to test and compare their 
predictive performances of each scenario particularly to 
facilitate real–time control of hydraulic structures in the 
lower basin during normal and extreme conditions. 
Furthermore, one weekly prediction scenario, Scenario 4 
(S4) using XGBoost was also developed to predict one–
week ahead water levels aiming to support water 
management and operation planning. Selecting input 
features for the daily water level prediction models 
significantly depends on the strong relationship between 
two variables, while identifying the lag time of each input 
is determined by the travel time of water from upstream 
to the given gauged stations. As the weekly prediction 
model involves coarser data granularity of input and 
output variables, considering weekly averages of the river 
water level and relevant upstream discharge, and summed 
weekly values of controlled outflow and rainfall, this 
operation helps to smooth out short–term noise and focus 
on longer–term trends. Consequently, the input features 
for weekly water level prediction models were kept as 
same as daily model by ignoring lag–time interpretation. 
The selected input features for different scenarios of water 
level prediction models are summarized in Table 2. The 
analysis of correlation coefficient between target water 
level at all gauged stations and these features using daily 
full dataset is presented in Table 3.  

It is demonstrated that target water levels are strongly 
correlated with their past water levels for all gauged 
stations with correlation coefficient of 0.856–0.998. 
Consequently, past water levels were identified as key 
inputs in water level prediction models for all gauged 
stations. A low correlation between rainfall and river water 
level data across all stations was exhibited, varying from 
0.121 to 0.230. However, rainfall data collected at the same 
location as the target water levels was specified as a 
substantial input for prediction models. The results of 
correlation analysis for all gauged stations demonstrated 
mild to strong correlation between upstream discharges 
and target water levels at specific stations which vary from 
0.266 to 0.937. Although the relation between reservoir 
outflows and downstream water levels varied from weak 
to moderate relation, with correlation coefficients of            
0.045 to 0.444, these reservoir outflows were included in 
the water level prediction models due to physical 
interactions. 

To predict the water level at Station P.17 at time t+1 
or one–day/one–week ahead prediction, past water level 
at time t, rainfall at time t, reservoir outflow from the BB 
dam with lag time t–1, and upstream discharges with lag 
time t–1 at Station W.4A were specified as input features. 
Measuring streamflow at Station P.17 signals the water 
level fluctuation for flood monitoring in the CPYRB 
where headflow from the Ping and Wang rivers are 
converged. For Station W.4A measuring streamflow 
across the Wang river, past water level at time t and rainfall 
at time t were only used as input features for water level 
prediction at time t+1. As Station N.67 is located 
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downstream of the SK and KNB dams measuring flow 
and water levels across Nan river where Yom and Nan 
rivers join, therefore, the input features are past water level 
and rainfall at time t, reservoir outflows from both SK and 
KNB dams with lag time t–4 and t–1, respectively, and 
upstream discharges from Station Y.17 at time t and 
Station N.22A at time t–1. Station C.2 is regarded as key 
crucial gauged station used for flood and drought 
monitoring along CPYR where head flow from four main 
tributaries are combined. Consequently, identifying the 
input features for water level prediction of Station C.2 
include reservoir outflows from three main dams with 
different lag times; BB dam with lag time t–2, SK dam with 
lag time t–4, and KNB dam with lag time t–1. In addition, 
upper discharges from three main stations at time t; P.17, 
Y.17, and N.67 together with past water level and rainfall 
at time t were used accordingly for C.2 prediction. The 
precise prediction of upstream water level of CPY dam is 
very important for downstream flood control along the 
lower CPYR, therefore, predicting USCPY’s water level is 
determined by the head flow at Station C.2, past water 
level and rainfall at time t. To predict water level of Station 
C.29, located downstream of CPY dam where PS river 
joins, input features include reservoir outflow from PS 
dam, USCPY’s water level, past water level at C.29, and 
rainfall at time t.   

The next step involved splitting the dataset into two 
separate sets: training set and testing set. In this study, 
initial 80% of the chronologically contiguous dataset was 
designated as the training set. This portion was used to 
train the model by teaching it the underlying patterns and 
relationships between the input features and the 
corresponding water levels. The final 20% of the 
chronologically contiguous dataset was set aside as the 
testing set to evaluate the performance of the trained 
model. The number of testing samples varied from 647 to 
2,155 for all daily model scenarios and from 93 to 308 for 
the weekly model scenario depending on data availability 
of input features of each station. This testing set served as 
a proxy for unseen data, enabling an assessment of how 
well the model generalizes to new observations. In general, 
various methods can be employed to perform the train–
test data splits, such as random sampling or time–based 
splitting. Since this dataset was time series data, 
consequently, time–based splitting was employed for 
train–test data splits in this study. An 80:20 train–test ratio, 
a widely adopted practice in machine learning, was used 
for all prediction scenarios. This ratio ensures that the 80% 
training data is substantial enough for robust parameter 
estimation, while the 20% testing data is sufficient to 
reliably assess the model's predictability and generalization 
capabilities.  

 

 
 

Fig. 1. The study area in the Choa Phraya River Basin. 
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Table 1. Data used for water level prediction modelling. 
Data Station Name Data Type Unit Data Length 

Sta. P.17 Ping River, Banphot Phisai District, Nakhon Sawan Province Water level, Rainfall m. msl., mm. 1/1/1999–31/10/2022 
Sta. W.4A Wang River, Sam Ngao District, Tak Province Water level, Rainfall m. msl., mm. 1/1/1993–30/6/2022 
Sta. N.67 Nan River, Chum Saeng District, Nakhon Sawan Province Water level, Rainfall m. msl., mm. 1/1/2000–31/3/2023 
Sta. C.2 Chao Phraya River, Mueang District, Nakhon Sawan Province Water level, Rainfall m. msl., mm. 1/1/2000–31/3/2023 
USCPY Upstream Chao Phraya Dam, Sapphaya District, Chai Nat Province Water level, Rainfall m. msl., mm. 1/1/2000–9/4/2021 
Sta. C.29 Chao Phraya River, Bang Sai District, Phra Nakhon Si Ayutthaya Province Water level, Rainfall m. msl., mm. 1/6/2012–25/2/2022 
RBB Controlled Outflow from Bhumibol Dam Controlled outflow MCM 1/1/1999–31/3/2022 
RSK Controlled Outflow from Sirikit Dam  Controlled outflow MCM 1/1/2009–31/3/2023 
RKNB Controlled Outflow from Khwae Noi Bumrung Dan Dam  Controlled outflow MCM 1/1/2009–31/3/2023 
RPS Controlled Outflow from Pasak Cholasite Dam  Controlled outflow MCM 1/6/2012–14/11/2020 
QP.17 Discharge at Station P.17 Discharge CMS 1/1/1999–31/3/2022 
QW.4A Discharge at Station W.4A Discharge CMS 1/1/1993–30/6/2022 
QY.17 Discharge at Station Y.17 Discharge CMS 1/1/2009–31/3/2023 
QN.22A Discharge at Station N.22A Discharge CMS 1/1/2009–31/3/2023 
QN.67 Discharge at Station N.67 Discharge CMS 1/1/2009–31/3/2023 
QC.2 Discharge at Station C.2 Discharge CMS 1/1/2000–31/3/2023 
QUSCPY Upstream discharge at Chao Phraya Dam Discharge CMS 1/1/2000–9/4/2021 

Note: m. msl.–meter above mean sea level, MCM–Million Cubic Meter, CMS–Cubic Meter per Second 

 

Table 2. Input features for one–day and one–week ahead water level prediction models. 
Gauged 
Stations 

Scenario 
Design 

Model 
Types 

Input Features 

Water 
Level 

Rainfall Reservoir Outflow Upstream Discharge 

BB  SK KNB PS P.17 W.4A Y.17 N.22A N.67 C.2 USCPY 

t+1 – – t t t–1/t–2*   t–4 t–1 t t t–1 t t–1 t t t–1 

P.17 S1: XGBoost Daily ✓ ✓ ✓ – – – – ✓ – – – – – 
 S2: RF Daily ✓ ✓ ✓ – – – – ✓ – – – – – 
 S3: DNNs Daily ✓ ✓ ✓ – – – – ✓ – – – – – 
 S4: XGBoost Weekly ✓ ✓ ✓ – – – – ✓ – – – – – 

W.4A S1: XGBoost Daily ✓ ✓ – – – – – – – – – – – 
 S2: RF Daily ✓ ✓ – – – – – – – – – – – 
 S3: DNNs Daily ✓ ✓ – – – – – – – – – – – 
 S4: XGBoost Weekly ✓ ✓ – – – – – – – – – – – 

N.67 S1: XGBoost Daily ✓ ✓ – ✓ ✓ – – – ✓ ✓ – – – 
 S2: RF Daily ✓ ✓ – ✓ ✓ – – – ✓ ✓ – – – 
 S3: DNNs Daily ✓ ✓ – ✓ ✓ – – – ✓ ✓ – – – 
 S4: XGBoost Weekly ✓ ✓ – ✓ ✓ – – – ✓ ✓ – – – 

C.2 S1: XGBoost Daily ✓ ✓ ✓* ✓ ✓ – ✓ – ✓ – ✓ – – 

 S2: RF Daily ✓ ✓ ✓* ✓ ✓ – ✓ – ✓ – ✓ – – 

 S3: DNNs Daily ✓ ✓ ✓* ✓ ✓ – ✓ – ✓ – ✓ – – 

 S4: XGBoost Weekly ✓ ✓ ✓* ✓ ✓ – ✓ – ✓ – ✓ – – 

USCPY S1: XGBoost Daily ✓ ✓ – – – – – – – – – ✓ – 
 S2: RF Daily ✓ ✓ – – – – – – – – – ✓ – 
 S3: DNNs Daily ✓ ✓ – – – – – – – – – ✓ – 
 S4: XGBoost Weekly ✓ ✓ – – – – – – – – – ✓ – 

C.29 S1: XGBoost Daily ✓ ✓ – – – ✓ – – – – – – ✓ 
 S2: RF Daily ✓ ✓ – – – ✓ – – – – – – ✓ 
 S3: DNNs Daily ✓ ✓ – – – ✓ – – – – – – ✓ 
 S4: XGBoost Weekly ✓ ✓ – – – ✓ – – – – – – ✓ 

Note:  Acronyms–Bhumibol Dam–BB |Sirikit Dam–SK|Khwae Noi Bamrung Dan Dam–KNB|Pasak Chonlasite Dam–PS|Upstream Chao Phraya Dam–
USCPY|Scenarios–S1, S2, S3 Daily Prediction Models, S4 Weekly Prediction Model, t = Daily or Weekly Data 

 

Table 3. Correlation coefficient between target water level at all gauged stations and selected input features. 
Water Level at 

Gauged 
Stations 

Correlation Coefficient 

Water Level Rainfall Reservoir Outflow Upstream Discharge 

BB  SK KNB PS P.17 W.4A Y.17 N.22A N.67 C.2 USCPY 

t+1 t t t–1/t–2*   t–4 t–1 t t t–1 t t–1 t t t–1 

P.17 0.977 0.122 0.241 – – – – 0.593 – – – – – 

W.4A 0.983 0.183 – – – – – – – – – – – 

N.67 0.997 0.223 – 0.045 0.422 – – – 0.801 0.266 – – – 

C.2 0.998 0.202 0.043* 0.022 0.444 – 0.749 – 0.820 – 0.937 – – 

USCPY 0.986 0.121 – – – – – – – – – 0.563 – 

C.29 0.856 0.230 – – – 0.598 – – – – – – 0.854 

Note:  Acronyms–Bhumibol Dam–BB |Sirikit Dam–SK|Khwae Noi Bamrung Dan Dam–KNB|Pasak Chonlasite Dam–PS|Upstream Chao Phraya Dam–
USCPY| t = Daily  

 
2.2.  ML Algorithms Selected  
 
2.2.1. Extreme Gradient Boosting (XGBoost) 

 
Extreme Gradient Boosting (XGBoost), a powerful 

ensemble machine learning algorithm based on sequential 
decision trees, was introduced by Tianqi Chen in 2014 [45]. 
XGBoost is an optimized version of gradient boosting 

utilizing several techniques in efficient way such as 
regularization, tree pruning, etc. [46]. Each tree in the 
XGBoost is trained sequentially aiming to minimize the 
prediction residuals made by the previous trees to achieve 
the better performance as graphically illustrated in Fig. 2(a). 
Due to its efficiency, scalability, and flexibility, XGBoost 
has been widely demonstrated and proven their 
performances for hydrological prediction applications [47, 
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48] such as reservoir inflow [49], river water level [10, 23, 
33], flood event [50], groundwater level [34], etc.  

In general, the supervised XGBoost learning primarily 
involves minimizing objective function which consists of 
two terms; (1) loss function and (2) regularization term as 
expressed in Eq. (1). This loss function measures the 
discrepancy between the predicted and observed values in 
the model training process. Selecting the loss function of 
XGBoost depends on the specific problems. For robust 
regression tasks, the common loss functions are Mean 
Squared Error (MSE) as given in Eq. (2), Mean Absolute 
Error (MAE), and Huber loss. The regularization term in 
Eq. (3) is used to prevent model overfitting and 
complexity for the improvement of prediction 
performance.   

 

 Obj(θ) = L(θ) + Ω(θ)                                      (1) 

 

 L(θ) = 
1

2
∑ (yi – pi)2 n

i = 1                                    (2) 

 

 Ω(θ) = γT + 
1

2
λ ∑ Ovalue

2T
i = 1                              (3) 

 

where, Obj(), (L(θ)), and (Ω(θ)) are objective function, 
loss function, and regularization term, respectively. θ 
represents the optimal parameter values that minimize the 
objective function resulting in the best fit of training 
process between the trained data (yi) and the predicted 
output (pi). γ is a controlled hyperparameter of the 
regularization term in tree–based learning models. This 
influences the decision to make a further partition on a 
leaf node of a tree–based model. The number of leaf 
nodes in the tree is denoted by T, which is a key factor 
controlling the model complexity. A larger number of leaf 
nodes can significantly enhance the overfitting risk. λ is a 
hyperparameter used to scale the regularization term. A 
larger λ indicates the increased penalty to model 
encouraging the reduction of model complexity. Ovalue is a 
measure of the diversity or dissimilarity of the data points 
within the leaf node. The tree structures are iteratively 
built for T iterations until the desired number of models is 
accomplished. In each iteration, the output value (Ovalue) 
for all leaf nodes is computed using Eq. (4). 
 
 

Ovalue = 
∑ (yi – pi) 

 n
i = 1

n + λ
 (4) 

 
The learning rate (ε) specifies magnitude of model 

adjustment to handle the prediction error made by 
previous iterations. It significantly governs the 
convergence speed and precision of the prediction model. 
A larger values of learning rate can speed up the training 
process leading to faster convergence and increased risk 
of overfitting. In contrast, the smaller values of learning 
rate can reduce risk of overfitting leading to the improved 
data generalization. However, it may require larger 
number of trees to achieve the same level of predication 
accuracy and the convergence speed is substantially lower. 

In the last step, XGBoost updates the prediction (p
i
t) by 

combining the initial prediction (p
i
0) value with a weighted 

sum of gradient of the loss function and the regularization 
term determined by the learning rate as expressed in Eq. 
(5).    
 

p
i
t =  p

i
0 + 𝜀[ ∑ L (yi, pi

0 + Ovalue)
n
i = 1 +

1

2
λOvalue

2 ] (5) 

 
2.2.2. Random Forest (RF) 
 

Random Forest (RF) is multiple decision tree–based 
ensemble machine learning algorithm widely applied for 
both regression and classification problems. It was 
introduced by Breiman in 2001 [51]. RF creates multiple 
decision trees by training each on a random sample of 
training data and average their predictions to make the 
final prediction as depicted in Fig. 2(b). As the number of 
trees in RF increases, model performance generally 
stabilizes which helps to reduce the risk of overfitting [52]. 
RF can also excel in capturing the non–linearity system 
within the data. Furthermore, small number of the model 
parameters in RF makes the implementation easy [53]. The 
room for growth of RF algorithm has been applied for 
water science and hydrological applications such as water 
level [33, 45, 54], sea level [56], flood discharge simulation 
[53], reservoir inflow [55, 56]. 
 
2.2.3. Deep Neural Networks (DNNs) 
 

Deep Neural Networks (DNNs) is a type of Artificial 
Neuron Networks (ANNs) broadly applied for regression, 
classification, and patter recognition problems. DNNs has 
been employed for both short–term and long–term 
predictions of hydrological data such as river water level 
[57], river tide level [58], reservoir water level [59]; rainfall 
[60], runoff [61], and river water temperature [62], etc. 
Generally, DNNs comprises multiple hidden layers of 
fully interconnected neurons that perform a series of 
complex transformations on input data implemented by 
activation functions to generate the predicted output as 
shown in Fig. 2(c). The deeper DNNs architectures with 
multiple layers have demonstrated superior precise 
prediction in capturing complex relationships between 
input and output variables. The crucial parameters 
identifying the DNNs architectures and training are 
number of layers, number of neurons in each layer, 
connection weights between neurons, the choice of 
activation function employed, epochs, batch size, and 
validation split. The background of DNNs is basically 
rooted in the foundation of ANNs. The predicted output 
is determined as a function of input data through the 
application of activation functions or y = f(x) where x is 
input data and y is predicted output. The relationship 
between inputs and outputs within the hidden layers of 
DNNs is expressed in Eq. (6). 
 

  y = g( ∑ wixi+bi ) (6) 
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where the output of neuron ith from the previous layer is 
denoted as xi, the weight between the present and neuron 
ith is represented as wi. Each neuron in hidden layer 
calculates a weighted sum of inputs from the previous 
layer with the added bias value (b) that is initialized with 
random values. Activation function (g) is then employed 
resulting in the output for the specific neuron. The typical 
activation functions of DNNs are sigmoid, tanh, and 
ReLu (Rectifier Linear Unit) to introduce non–linearity 
[58]. Sigmoid function maps the input values to output 
range between 0 and 1 producing a smooth S–shaped 
curve as expressed in Eq. (7). The tanh function in Eq. (8) 
outputs the values in a range of –1 to 1. The ReLu function 
replaces the negative value with 0 as given in Eq. (9).  

 
 

sigm(x) = 
1

1+e–x
 (7) 

 
 tanh(x) = 2(2x)–1 (8) 

 

 f(x) = max(0, x) (9) 

 
2.3.  Model Training and Testing  

 
The model training and testing of the daily and weekly 

prediction models were conducted for one–day ahead and 
one–week ahead water level predictions at six gauged 
stations. As previously mentioned, selecting the 
combination of input features was carried out and 
structured in the water level prediction models based on 
the physical river–reservoir system using past water level, 
rainfall, controlled outflow by upper reservoirs, and 
upstream discharges with different travel times. Python–a 
programming language with three ML algorithms; 
XGBoost, RF, and DNNs, was used for the development 
of the water level prediction models. Hyperparameter 
tuning for different prediction scenarios was then 
implemented.  

Key hyperparameters of XGBoost algorithm include 
learning rate, number of trees (or boosting rounds), 
maximum depth of each tree, and regularization 
parameters to prevent overfitting. However, two main 
hyperparameters that had a significant impact on the 
predictions were identified in this study; (1) learning rate, 
which was tested from 0.001 to 0.3, and (2) number of 
estimators (n–estimators), which ranged from 100 to 500. 
Grid search cross–validation using the “GridsearchCV” 
library was also executed for hyperparameter tuning.  

RF was selected in the context of predicting water 
levels in a river in this study. Key hyperparameters of RF 
including n–estimators, maximum tree depth, minimum 
samples leaf, and minimum sample split, were accordingly 
tuned. Number of estimators were ranged from 50 to 200, 

maximum tree depth from 10 to 30, minimum samples per 
leaf from 1 to 4, and minimum samples per split from 2 to 
10.  

DNNs, Deep Neural Networks was also selected to 
predict the river water level as it can learn complex 
relationship of large datasets. In this study, ReLU was used 
as it is well–suited for regression problems. The network 
undergoes a training process involving forward 
propagation, where data is passed through the network to 
produce predictions, followed by the calculation of a loss 
function. The backpropagation process then adjusts 
weights and biases using gradient descent to minimize loss 
and improve the network’s performance. To minimize the 
loss function during the model training, adam optimizer 
which is an adaptive learning rate algorithm, was 
accordingly used.  

After that the best training model in prediction by 
each algorithm using 80% of dataset was obtained and 
testing model was then conducted using the best model 
parameters and remaining 20% of dataset. 
 
2.4.  Evaluation of Model’s Predictive Performance 
 

Evaluating the model's performance includes a 
comparison of the predicted values with the actual water 
level values from both the training and testing datasets. 
The statistical metrics used in this study are as follows; R–
squared (R2), Mean Absolute Error (MAE), Mean Squared 
Error (MSE), and Root Mean Squared Error (RMSE). To 
fulfill a complete picture of the calculation process of 
prediction errors and model verification, both MSE and 
RMSE which are critical metrics for prediction models, 
were accordingly presented in this study. The R2, a 
dimensionless metric, measures the proportion of the 
variance in the target variable that is explained by the 
model. A higher R2 value closer to 1 indicates better 
predictive power. The units for MAE and RMSE are 
meters (m), while the unit for MSE is meters squared (m2). 
These metrics quantify the absolute and squared 
differences between the predicted and actual values. A 
lower value of MAE, MSE, and RMSE indicates better 
model performance. In this study, these evaluation metrics 
were calculated using Python library “sklearn” metrics. In 
the last step, the model’s capability to predict daily low and 
high water levels was assessed to leverage the application 
of ML for flood and drought monitoring during the critical 
periods. The lowest and highest values of water levels in 
each month of the tested results were compared to the 
observed water levels. Finally, average percentage error in 
prediction was computed. The overall workflow of this 
study is depicted in Fig. 3. 
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(a) XGBoost (b) Random Forest 
  

 
(c) Deep Neural Networks 

 
Fig. 2. Simplified structures of ML prediction models. 

 

 
 
Fig. 3. Workflow diagram of this study. 

3. Results and Discussion 
 
3.1.  Hyperparameter Tuning for the Optimal  
        Different Prediction Scenarios  

 
Hyperparameter tuning for the optimal different 

prediction scenarios was implemented in a way of 
minimizing MSE across 5–fold cross–validation to 
prevent overfitting during the training process as 
summarized in Table 4. Scenario 1, XGBoost–based daily 
prediction revealed that the learning rate of 0.1 was 

optimal for most gauged stations including Stations W.4A, 
N.67, C.2, USCPY, and C.29. However, Station P.17 
demonstrated the optimal learning rate of 0.01. For the 
Scenario 4, XGBoost–based weekly prediction exhibited 
the optimal learning rates of 0.01 for four gauged stations 
including Stations P.17, W.4A, USCPY, and C.29. 
Whereas, the bigger values of learning rates of 0.1 and 0.2 
were optimal for Stations N.67 and C.2, respectively. This 
key finding highlighted that optimal learning rates 
indicating the balance between the training speed and risk 
of overfitting of XGBoost algorithm for water level 
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prediction predominantly lied in the range of 0.01 to 0.1. 
The number of estimators (n–estimators) determining the 
number of decision trees to be sequentially built is also one 
of the significant hyperpameter of XGBoost. The analysis 
revealed that the n–estimators varying from 100 to 500 
were optimal for all gauged stations to effectively control 
the model complexity. However, the lower n–estimators 
of 100 were well–performed in daily prediction model 
which typically incorporated larger datasets. Conversely, 

the bigger n–estimators of 500 were suited for weekly 
prediction model characterized by smaller datasets. This 
finding suggests that XGBoost–based prediction model 
exploiting smaller datasets like weekly or monthly model 
may require the higher number of n–estimators to achieve 
the better predictive performance. However, higher values 
of n–estimators substantially increased the computational 
resources and training time. 
 

 
Table 4. Hyperparameter tuning for the optimal different prediction scenarios. 

Gauged Stations Scenario 1: XGBoost_daily 
model 

Scenario 2:  
RF_daily model 

Scenario 3:  
DNNs_daily model 

Scenario 4: XGBoost_weekly 
model 

P.17 learning rate: 0.01 
n–estimators: 500 

n–estimators: 100 
max. depth: 10 
min. samples leaf: 4 
min. samples split: 10 

learning rate: 0.001 
epochs: 50 
batch size: 32 
validation split: 0.2 
activation: relu 

learning rate: 0.01 
n–estimators: 400 

W.4A learning rate: 0.10 
n–estimators: 100 

n–estimators: 100 
max. depth: 10 
min. samples leaf: 4 
min. samples split: 10 

learning rate: 0.001 
epochs: 50 
batch size: 32 
validation split: 0.2 
activation: relu 

learning rate: 0.01 
n–estimators: 500 

N.67 learning rate: 0.10 
n–estimators: 100 

n–estimators: 100 
max. depth: 10 
min. samples leaf: 4 
min. samples split: 10 

learning rate: 0.001 
epochs: 50 
batch size: 32 
validation split: 0.2 
activation: relu 

learning rate: 0.10 
n–estimators: 100 

C.2 learning rate: 0.10 
n–estimators: 200 

n–estimators: 150 
max. depth: 10 
min. samples leaf: 2 
min. samples split: 2 

learning rate: 0.001 
epochs: 50 
batch size: 32 
validation split: 0.2 
activation: relu 

learning rate: 0.20 
n–estimators: 300 

USCPY learning rate: 0.10 
n–estimators: 100 

n–estimators: 150 
max. depth: 10 
min. samples leaf: 4 
min. samples split: 2 

learning rate: 0.001 
epochs: 50 
batch size: 32 
validation split: 0.2 
activation: relu 

learning rate: 0.01 
n–estimators: 500 

C.29 learning rate: 0.10 
n–estimators: 100 

n–estimators: 150 
max. depth: 10 
min. samples leaf: 2 
min. samples split: 10 

learning rate: 0.001 
epochs: 50 
batch size: 32 
validation split: 0.2 
activation: relu 

learning rate: 0.01 
n–estimators: 500 

Scenario 2, RF–based daily prediction demonstrated 
that designated n–estimators of 100 and 150 yielded the 
good predictive performance for all gauged stations. The 
maximum tree depth of 10 which is the lowest designed 
values controlling the complexity of the individual 
decision trees within the forest, gave the best predictive 
results for all gauged stations. Moreover, the maximum 
designated values for minimum samples per leaf and 
minimum samples per split which were 4 and 10, 
respectively, were found to be optimal for all gauged 
stations in controlling the tree size and model complexity. 
Among key hyperparameters of RF algorithm, number of 
estimators had a significant impact on the training 
performance compared to maximum tree depth, 
minimum samples per leaf, and minimum samples per 
split. Compared to XGBoost, the training time of RF–
based daily prediction was longer. 

Scenario 3, DNNs–based daily prediction for Station 
P.17 exhibited that the optimal values of key 
hyperparameters of DNNs including learning rate, 
number of epochs, batch size, and validation split are 
0.001, 50, 32, and 0.2, respectively. The learning rate is a 
crucial hyperparameter initially set to control step size 

taken for efficient training. The number of epochs 
determines the number of times during training process 
that entire training datasets are completely passed through 
the networks. The batch size directly influences the 
number of training examples in each parameter’s update. 
In this study, these hyperparameters were subsequently 
applied to other flow gauged stations for comparative 
analysis in term of their predictive performances. In 
addition, DNNs–based daily prediction exhibited the 
longest training time compared to XGBoost and RF due 
to complex architecture with multiple hidden layers of 
interconnected nodes of DNNs. This resulted in increased 
training time since a larger number of parameters needed 
to be learned during training process. 
 
3.2.  Predicted One–Day and One–Week Ahead  
        Water Levels of All Gauged Stations 
 

The predictive results of the one–day and one–week 
ahead water levels at P.17, W.4A, N.67, C.2, USCPY, and 
C.29 gauged stations are shown in Fig. 4 and the statistical 
performances are presented in Table 5. To implicitly 
visualize and compare the statistically predictive 
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performance metrics between daily models and weekly 
model, radar chart comparing R2, MAE, MSE, and RMSE 
values for four prediction model scenarios is presented as 
graphically shown in Fig. 5. It is exhibited that three daily 
model scenarios (S1, S3, and S3) for one–day ahead water 
level prediction robustly and consistently outperformed 
the weekly prediction model (S4) across different key 
gauged stations. With exception of Station C.29, these 
daily prediction models achieved strong R2 values ranging 
from 0.937 to 0.999 for model training and from 0.958 to 
0.994 for model testing, making it effective for water level 
short–term forecasting. The weekly prediction model, 
optimized for weekly time intervals across all gauged 
stations, showed potentially lower R2 values of 0.814 to 
0.999 for model training and 0.600 to 0.693 for model 
testing. Higher MAE, MSE, RMSE values were observed 
ranging from 0.002 to 0.580 meter for model training and 
0.015 to 0.670 meter for model testing due to the 
challenges of forecasting over a period. Since Station C.29 
is located downstream of CPY dam where localized flow 
and sea tidal backwater encroaching from the Gulf of 
Thailand [63] are significant factors, this leads to the high 
fluctuation in water level. Consequently, it showed lower 
R2 values of 0.600–0.786 and higher MAE, MSE, RMSE 
values ranging from 0.011 to 0.122 meter for the model 
testing in all prediction scenarios compared to other 
gauged stations. Moreover, since the inputs of weekly 
model were averaged from daily water level data, this 
influences model’s predictability to capture disturbed 
variability and seasonality. The choice between daily and 
weekly prediction models depends on the specific 
forecasting needs of the decision makers. Generally, the 
daily model excels in real–time monitoring, while the 
weekly model is used for strategic planning.  

This study also explored various modelling ML 
algorithms including XGBoost, RF, and DNNs, to predict 
one–day ahead and one–week ahead water levels at key 
gauged stations when applied for testing dataset. The 
Scenario 1 using XGBoost algorithm, showed high 
accuracy at Stations N.67 and C.2 when trained with 
rainfall data, though it faces challenges at Station C.29 due 
to non–seasonal variation of water level data. With rainfall 
data, XGBoost highly improved the precision at some 
stations particularly at Station P.17, though the overall 
performance varied with certain stations showing no 
significant changes. The Scenario 2 using RF algorithm 
exhibited similar stability with testing errors closely 
aligning with training errors, indicating good model 
robustness. It slightly outperformed in comparison to 
XGBoost, particularly at Stations P.17, C.2 and USPCY, 
but required longer training times and produced mixed 
results across different stations. The Scenario 3 using 
DNNs algorithm generally performed well with high R2, 
especially at Stations P.17 and W.4A. However, they still 
face challenges in some stations with non–seasonal 
variation in water levels like Station C.29. 

This study underscores the importance of selecting 
the most appropriate modeling approach based on the 

specific physical characteristics of the gauged stations and 
the prediction objectives. Among ML algorithms used in 
this study for water level prediction at six gauged stations, 
tree–based XGBoost and RF models, with rainfall input 
maintains consistent performance, reflecting their ability 
to generalize well to unanticipated data for all the gauged 
stations. In other words, XGBoost and RF algorithms 
provide the closer predictive performances for both daily 
and weekly water level predictions. While DNNs, a deep 
fully connected NN model, requires optimization to 
enhance their generalization capabilities as the bigger 
MAE, MSE, and RMSE values were found at some gauged 
stations particularly at Stations W.4A and USCPY. 
 
3.3.  Evaluation of Low Water Level and High Water  
        Level Prediction 
 

As previously mentioned, the ML algorithms applied 
to the daily water level prediction models for three 
scenarios can capture the entire testing dataset with high 
precision than weekly prediction model. Accordingly, the 
average percentage error of the lowest water level (Min. 
WL) and highest water level (Max. WL) for daily 
prediction was assessed. This error calculation was made 
for all gauged stations by comparing the lowest and 
highest daily observed water level values for each month 
within the testing dataset periods against the daily 
predicted values in the corresponding time periods. The 
comparative results between observed and predicted 
values of both low and high water levels are presented in 
Fig. 6 and Table 6. 

It is revealed that these three ML prediction models 
consistently exhibited a small positive average percentage 
error of overestimating low water levels. For all gauged 
stations except Scenario 3 of USCPY showing negative 
percentage errors, these errors lied closely to the observed 
low water level from +0.0088% to +0.9380%, +0.0089% 
to +0.7288%, and +0.0289% to +0.7652%, for Scenario 
1, Scenario 2, and Scenario 3, respectively. However, high 
average percentage error was obviously found at Station 
C.29 by +31.8743%, +11.6832%, and +12.3576%, 
respectively for these three scenarios as high fluctuation of 
unanticipated localized flow is a key influential factor. 
Among ML algorithms employed, RF demonstrated the 
best predictive performance for low water level prediction 
exhibiting the smallest percentage error found at most 
gauged stations.  

For the high water level prediction, these three ML 
models showed both positive and negative values of 
average percentage errors with small percentage error lying 
from –0.7995% to +0.4583%, –0.1046% to +1.1587%, 
and –2.2696% to +0.6018% for Scenario 1, Scenario 2, 
and Scenario 3, respectively. This indicated 
underestimating particularly at Stations P.17 and USCPY 
and overestimating at Stations N.67 and C.2 for all 
scenarios. All in all, these three ML algorithms; XGBoost, 
RF, and DNNs, demonstrated high predictive 
performance level for high water level prediction. 
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Fig. 4. Predicted one–day ahead water levels for daily prediction scenarios (S1, S2, S3) and one–week ahead water 
levels for weekly prediction scenario (S4) across all gauged stations. 
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Table 5. Statistical performances of predicted water levels at key gauged stations–training and testing data set. 
Water Level Prediction Models Gauged Stations 

Scenario Design Model Building Statistical Metrics P.17 W.4A N.67 C.2 USCPY C.29 

S1: Daily model 
using XGBoost 
algorithm 
with rainfall 
 

Training 

R2 0.957 0.971 0.995 0.999 0.978 0.969 
MAE 0.088 0.119 0.119 0.055 0.072 0.072 
MSE 0.018 0.056 0.028 0.005 0.014 0.009 
RMSE 0.135 0.236 0.168 0.074 0.118 0.093 

Testing 

R2 0.961 0.958 0.994 0.994 0.961 0.760 
MAE 0.097 0.135 0.132 0.123 0.106 0.082 
MSE 0.024 0.078 0.042 0.027 0.052 0.012 
RMSE 0.165 0.280 0.206 0.163 0.228 0.109 

S2: Daily model 
using RF algorithm 
with rainfall 
 
 

Training 

R2 0.968 0.978 0.997 0.999 0.984 0.980 
MAE 0.075 0.104 0.092 0.043 0.060 0.058 
MSE 0.013 0.041 0.018 0.004 0.010 0.006 
RMSE 0.115 0.203 0.134 0.062 0.101 0.075 

Testing 
 

R2 0.966 0.958 0.994 0.995 0.966 0.743 
MAE 0.087 0.137 0.132 0.118 0.096 0.087 
MSE 0.023 0.078 0.043 0.026 0.047 0.013 
RMSE 0.153 0.279 0.206 0.162 0.216 0.113 

S3: Daily model 
using DNNs 
algorithm 
with rainfall 
 
 

Training 

R2 0.937 0.967 0.995 0.997 0.973 0.967 
MAE 0.109 0.120 0.119 0.079 0.081 0.074 
MSE 0.026 0.062 0.031 0.011 0.017 0.009 
RMSE 0.162 0.250 0.175 0.106 0.132 0.096 

Testing 

R2 0.994 0.960 0.994 0.995 0.851 0.786 
MAE 0.133 0.128 0.132 0.120 0.236 0.077 
MSE 0.042 0.076 0.043 0.023 0.203 0.011 
RMSE 0.205 0.277 0.206 0.153 0.451 0.103 

S4: Weekly model 
using XGBoost 
algorithm 
with rainfall 

Training 

R2 0.870 0.814 0.981 0.999 0.883 0.959 
MAE 0.155 0.354 0.238 0.033 0.204 0.083 
MSE 0.050 0.336 0.115 0.002 0.071 0.011 
RMSE 0.223 0.580 0.339 0.044 0.267 0.104 

Testing 

R2 0.704 0.770 0.940 0.963 0.908 0.600 
MAE 0.227 0.380 0.485 0.338 0.258 0.093 
MSE 0.116 0.403 0.447 0.174 0.121 0.015 
RMSE 0.341 0.635 0.670 0.417 0.348 0.122 

Note:  R2 is dimensionless | Units for MAE and RMSE are meters (m) | Unit for MSE is meters squared (m2) 

 
Fig. 5. Radar chart comparing the predictive performance metrics between daily models (S1, S2, and S3) and weekly 
model (S4).   
 

Table 6. Percentage error of low water level and high water level prediction. 
Gauged 
Station 

Testing Period Avg. %Error: S1–XGBoost Avg. %Error: S2–RF Avg. %Error: S3–DNNs 
Min. WL   Max. WL   Min. WL   Max. WL   Min. WL   Max. WL   

P.17 1/5/2020–31/10/2022 +0.1382% –0.1611% +0.0761% –0.0405% +0.0709% –0.0296% 
W.4A 5/8/2016–30/6/2022 +0.0088% –0.0207% +0.0089% –0.0035% +0.0289% +0.0397% 
N.67 1/5/2020–31/3/2023 +0.2660% +0.0430% +0.2140% +0.0779% +0.3062% +0.1347% 
C.2 1/5/2020–31/3/2023 +0.9380% +0.4583% +0.7288% +0.3055% +0.7652% +0.6018% 
USCPY 7/1/2017–9/4/2021 +0.5633% –0.1636% +0.3271% –0.1046% –2.1512% –0.0804% 
C.29 20/5/2020–25/2/2022 +31.8743% –0.7995% +11.6832% +1.1587% +12.3576% –2.2696% 
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Fig. 6. Comparison of low water level and high water level prediction. 

3.4.  Performance Evaluation and Model Limitations 
 
The daily prediction from the ML–based water level 

models offer valuable and real–time insights for decision–
makers. The predictive results of changing water levels aid 
informed decisions for proper water allocation in dry 
periods, and anticipating daily fluctuations in water levels 
during storm periods. This capability enables proactive 

measures for real–time flood and drought monitoring and 
disaster preparedness which will enhance resilience to 
extreme weather events. The weekly prediction from the 
ML–based water level models prove instrumental in 
anticipating periodic surges in water level and provides 
more profound insights into long–term average behavior 
of water levels, thereby aiding more sophisticated water 
resource management strategies.  
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Daily prediction models employing XGBoost, RF, 
and DNNs showed exceptional predictive capabilities, 
particularly in specific stations (P.17, N.67, C.2) where 
high R2 values and lower error metrics were observed. 
These models leveraged sophisticated techniques to 
capture complex data relationships and achieve precise 
water level predictions particularly when input variables 
were tailored to station–specific characteristics. While 
weekly prediction models presented unique challenges of 
capturing longer–term trends and variation, they 
demonstrated moderate to good fit for all gauged stations 
with varying degrees of predictive accuracy. Furthermore, 
integrating rainfall data into daily and weekly prediction 
models underscored the importance of feature selection 
and showed the increased accuracy. Moreover, ML–based 
water level prediction models performed effectively for all 
gauged stations with significant fluctuation and dynamic 
water level patterns. In contrast, gauged stations with 
uniform water level data did not perform well with ML–
based prediction models, as lower predictive accuracy was 
often displayed. Consequently, there is room for 
improvement by using time–series–specific ML models, 
such as Recurrent Neural Networks (RNN), Long Short–
Term Memory (LSTM) networks, or Gated Recurrent 
Units (GRU), to better capture temporal dependencies in 
the data. An alternative hybrid modeling approach could 
also be explored to achieve more accurate forecasts.  
Importantly, separating flood and non–flood events [64] 
to conduct water level prediction scenarios could be an 
optional strategy to further enhance model capabilities. 
For applicable use particularly during extreme weather 
events, model training strategies by fine–tuning on 
extreme event data are recommended after initial training 
on the full data are accomplished. In addition, selecting 
robust optimizers which are less sensitive to outliers are 
also suggested to enhance predictive capabilities. 
Furthermore, incorporating multi–step prediction [65] 
into both daily models such as t+1, t+2, …., t+7 and 
weekly models such as t+1, t+2, …., t+4 will greatly 
leverage their utility for hydrological forecasting and 
effective water management. 

 

4. Conclusion 
 

This research assessed capability of ML models 
including XGBoost, RF, and DNNs to predict water levels 
at key gauged stations along the Chao Phraya River and its 
major tributaries aiding in flood and drought monitoring 
and mitigation. The findings revealed that three scenarios 
of daily models for one–day ahead real–time prediction 
showed superior accuracy in terms of statistical metrics as 
it can capture the entire testing dataset well with high 
precision than the weekly model. Compared to daily 
models, weekly model for one–week ahead water level 
prediction particularly for short–term strategic planning 
task is underperformed for all gauged stations. Both 
three–based XGBoost and RF models with rainfall input 
apparently exhibits consistent performance than DNNs, a 
deep fully connected NN model, reflecting their ability to 

generalize well to unanticipated data for the entire dataset 
at all the gauged stations. In addition, RF demonstrates the 
best predictive performance for low water level prediction 
exhibiting the smallest percentage error of overestimating 
found at most gauged stations compared to XGBoost and 
DNNs. However, these three ML algorithms; XGBoost, 
RF, and DNNs, demonstrate high predictive performance 
level for high water level prediction as it shows small 
percentage error of both overestimating and 
underestimating at some gauged stations. Moreover, it is 
apparent that ML prediction models show higher 
effectiveness for all gauged stations with water level 
behaviors significantly varied by seasonal effect, while 
gauged stations with stable levels benefitted less. This 
indicates that ML–based predictive performance is closely 
linked to the seasonal variability in water level data. 
Therefore, alternative prediction approaches may be 
necessary for stations exhibiting uniform water levels. 
Daily predictions by ML models offer valuable real–time 
insights for water resource management, particularly for 
signaling daily water levels during critical flood and 
drought periods. However, weekly prediction assists in 
strategic planning for addressing challenges in diverse 
hydrological environments and efficient water use across 
reservoirs. 
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