

Article

Smart Microscopy Camera Kit: Automatic Counting
of Blood Cells in Peripheral Blood Smear Images
Using RetinaNet on Raspberry Pi CM3+

Natthakorn Kasamsumran1,a , Amornthep Phunsin2,b , Suree Pumrin1,c,* ,
and Wanchalerm Pora1,d

1 Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University,
Bangkok 10330, Thailand
2 Q-Wave Systems Co., Ltd., Bangkok 10140, Thailand
E-mail: anatthakorn.engr@gmail.com, bamornthep@qwavesys.com,
c,*suree.p@chula.ac.th (corresponding author), dwanchalerm.p@chula.ac.th

Abstract. Microscopic examination of peripheral blood smear images for blood cell
counting remains a critical yet labor-intensive task in clinical diagnostics. This research
presents MicrosisDCN, an intelligent microscopy camera system designed to automate
blood cell detection and counting, powered by a compact embedded platform based on the
Raspberry Pi Compute Module 3+. The system incorporates a 5-megapixel image sensor
and a versatile eyepiece fitting that is compatible with the most compound microscopes,
providing a portable, cost-effective, and user-friendly solution. Calibration procedures
ensure alignment with traditional high-power field (HPF) standards, allowing cell counts to
be reported in standard mitotic count units. To detect red blood cells, white blood cells, and
platelets in real-time, the system uses a special version of a deep learning model called
RetinaNet, which has been improved with a technique called auto-anchor parameterization.
MicrosisDCN achieves a mean Average Precision (mAP) of 86.81% in detecting a few types
of blood cells with minimal errors: 1.06% for red blood cells, 0.06% for white blood cells,
and 4.23% for platelets. The results indicate that MicrosisDCN, which combines traditional
microscopy with advanced vision technologies, serves as an efficient, practical, and scalable
solution for clinical and medical laboratory applications.

Keywords: Microscopy imaging, peripheral blood smear, object detection, Raspberry Pi.

ENGINEERING JOURNAL Volume 29 Issue 6
Received 10 June 2024
Accepted 26 May 2025
Published 30 June 2025
Online at https://engj.org/
DOI:10.4186/ej.2025.29.6.43

DOI:10.4186/ej.2025.29.6.43

44 ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/)

1. Introduction

The diagnosis of infectious diseases in both humans

and animals often relies on the analysis of biological
specimens such as blood, urine, stool, and sputum.
Among these, blood analysis—specifically the complete
blood count (CBC)—is one of the most commonly
utilized methods in clinical laboratories. The CBC
provides essential quantitative data on various blood
components, including red blood cells (RBCs), white
blood cells (WBCs), and platelets (thrombocytes). This
diagnostic tool plays a crucial role in identifying infections,
monitoring immune responses, and assessing overall
health status.

A substantial proportion of infection diagnoses—
estimated at up to 70% of all laboratory investigations
[1]—relies on the examination of peripheral blood smears
under a microscope. This technique enables detailed
visualization of individual cells and abnormalities in their
morphology or count, providing critical insights for
clinical assessment. The microscope, a cornerstone of
medical diagnostics, utilizes combinations of eyepiece and
objective lenses, offering magnifications typically ranging
from 40× to 1000× [2], thereby facilitating the
observation of microscopic structures with high
resolution and clarity.

Although widely used, microscopic examination is
inherently labor-intensive and time-consuming, often
requiring technicians to manually observe blood smears
for extended periods. This repetitive and tedious process
can lead to visual fatigue and increase the likelihood of
human error, ultimately affecting diagnostic accuracy. To
overcome these limitations, this research introduces the
development of an automated smart camera system,
MicrosisDCN, designed to detect and count blood cells
autonomously. By minimizing the need for prolonged
manual inspection, this innovation aims to significantly
reduce analysis time while enhancing diagnostic efficiency.

MicrosisDCN (see Fig. 1 and Fig. 2) is an intelligent
camera system designed to interface seamlessly with
conventional microscope eyepieces. It leverages a deep
convolutional neural network (DCNN) to perform
automatic classification and counting of blood cells. The
system is built around the EagleEYE Smart Camera (EY-
PRO-32), which features an embedded Raspberry Pi
Compute Module 3+ (CM3+) developed by Q-Wave
Systems. The accompanying development kit includes
custom circuit boards with an integrated power supply and
a 5-megapixel image sensor, optimized for efficient image
acquisition and real-time neural network processing.

To ensure seamless integration with a wide range of
microscopes, the camera is designed to be compatible with
standard eyepiece tube diameters of 23.2 mm, 30 mm, and
30.5 mm. Tailored for machine vision applications, the
device includes all essential electronic circuits required for
research-grade performance. Its robust design provides
operational stability, making it suitable for extended
laboratory use and precise biological analyses.

The software component of the system integrates
image processing and classification algorithms
implemented in Python. The OpenCV library [3] is utilized
for handling blood cell images, while TensorFlow [4] and
Keras [5] are employed for developing and training the
neural networks. To enhance processing capabilities, the
system leverages multi-GPU processing. A mean Average
Precision (mAP) of 80% is set as the minimum
performance benchmark to ensure the system’s reliability
and accuracy in real-world diagnostic applications.

2. Methodology and Methods

2.1. Convolution Neural Network

This section describes the types of neural networks

utilized in this research. A convolutional neural network
(CNN) [6] simulates human vision by dividing the visual
space into small, manageable parts. These areas are
analyzed and combined to determine what is visible in the
scene. The network extracts features from these subspaces,
such as color borders of images that contrast between
objects. Just as humans recognize contrasting colors by
focusing on specific regions and their surrounding context,
CNNs identify objects by applying mathematical
operations, including spatial convolution and image
processing, to the photographs.

Fig. 1. 3D CAD design concept of the MicrosisDCN
smart camera kit for integration with compound
microscopes.

Fig. 2. Comparison between a standard trinocular
microscope with a digital camera attachment (left) and the
MicrosisDCN smart camera kit, which supports both
binocular and trinocular microscope attachments (right).

DOI:10.4186/ej.2025.29.6.43

ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/) 45

The process begins with the configuration of a kernel
designed to extract object-recognition features. This
involves applying filters to the first pixel of an image. The
filter is then moved across the entire image, where it is
applied to every pixel. Max pooling is then used to identify
the maximum value within the area covered by the filter.
Essentially, the filter scans the image, applies the selected
operation, and the highest value in each area becomes the
result. This method is repeated throughout the image, with
the filter moving in steps, also known as strides, across the
image grid. Each stride reduces the size of the feature map.
The process ultimately helps train the neural network by
adjusting weights over several iterations to improve
accuracy and reduce loss.

Feature extraction occurs in sub-areas of the image,
such as contours that intersect. Filters help classify and
extract features based on differences in pixel values,
allowing the CNN to discern relevant characteristics. To
increase the breadth of features, multiple filters can be
employed, and this process is performed on large datasets
to ensure a comprehensive feature set. Image filters are
typically two-dimensional, depending on the area being
analyzed. For instance, to detect diagonal black lines in an
image, a 3×3 filter can be applied. The center of the filter
represents the aggregation of data from the image pixels,
known as anchors. When applied to a 3×3 pixel section,
the filter combines the pixel values and computes the
resulting feature map. The filter then slides over the entire
image, creating a feature map based on the combined data
from all covered pixels.

The sliding process is referred to as the stride,
determining the number of steps the convolution filter
moves. Typically, strides are set to one, but if the stride is
increased to two, the feature map size will shrink. Padding
is sometimes added to the image’s edges, usually with zero
values or other constants, to maintain consistent feature
map dimensions. This ensures that convolution
operations can cover the entire image without dimension
loss. In practice, the convolution operates in three
dimensions, considering not only the height and width of
the image but also its depth, which accounts for color
channels like red, green, and blue. The filter size—whether
3×3 or 5×5—also influences the convolution operation’s
design.

Once the convolution is complete, dimensionality
reduction is necessary to decrease the number of variables.
This step reduces the model’s training time and helps
prevent overfitting. It also allows the neural network to
function with fewer layers by reducing the size of each
layer while maintaining the same depth. Pooling methods,
such as max pooling and mean pooling, are commonly
used for dimensionality reduction. Max pooling involves
identifying the highest value within a filter’s area, using this
maximum value as the feature map’s result. As the filter
moves over the image, the pooling operation continually
extracts relevant features, reducing the image’s spatial
dimensions. For example, with a 2×2 max pooling filter,
the feature map will be reduced from 4×4 to 2×2,

preserving only the most significant values, with the depth
unchanged.

2.2. Object Detection Using CNNs

Neural networks used for object recognition enable

computers to identify, process, and interpret objects from
images, closely mimicking the human brain’s visual
processing capabilities, also known as computer vision. In
computer vision, the task is divided into four key areas:

• Object classification [7], which involves categorizing an
image based on its content, typically identifying the
overall object class.

• Classification and localization [8], which involves
categorizing the objects in the image and pinpointing
their exact locations with the help of bounding boxes.

• Object detection [9], which identifies multiple object
classes within an image and specifies the locations of
each class, utilizing bounding boxes to mark each
object’s position.

• Image segmentation [10], which identifies various classes
of objects and accurately locates them using either
polygonal or curve-boundaries.

The Large Scale Visual Recognition Challenge 2015
(ILSVRC2015) [11] served as a critical test platform for
neural network models, where researchers competed using
a dataset of over 1.4 million images, divided into 1,000
object classes. This competition fostered advancements in
object detection and recognition, with models like
VGGNet [12], R-CNN [13], Fast-RCNN [14], Faster-
RCNN [15], GoogleNet (Inception) [16], ResNet [17], and
RetinaNet [18] making significant contributions.

In the landmark study on deep residual learning for
image recognition [17], the authors addressed the
vanishing gradient problem, which occurs when the
gradient of the loss function approaches zero, hindering
further training. This problem often arises in very deep
neural networks. To combat this, a shortcut connection
was introduced within the network architecture, allowing
the gradients to propagate more effectively. By replacing
traditional activation functions like Sigmoid with ReLU,
residual networks (ResNet) were able to maintain
performance even with greater depth.

Further advancements were made with the
introduction of focal loss in dense object detection [18],
which enhanced the ResNet model by addressing class
imbalance issues, a common problem in object detection
tasks. Focal loss modifies the cross-entropy loss function
to focus on hard-to-detect examples, thereby improving
the accuracy of predictions for underrepresented classes.
Researchers combined ResNet with feature pyramid
networks (FPN) and focal loss, creating a more effective
object detection framework.

The Keras RetinaNet [23] library, released by
researchers, allows developers to train and improve
RetinaNet models in Keras using Jupyter Notebooks [19],
an interactive Python environment for development. The

DOI:10.4186/ej.2025.29.6.43

46 ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/)

ability to train these models in Jupyter makes it easier to
experiment with various configurations and fine-tune the
models for specific applications.

When evaluating the performance of object detection
models, the intersection over union (IoU) metric plays a
crucial role. IoU measures the overlap between the
predicted bounding box and the ground truth box. The
average precision (AP) metric, which is calculated at
various IoU thresholds (e.g., 0.50, 0.75, and the range
between 0.50 and 0.95), provides an overall measure of a
model’s accuracy [20]. The PASCAL VOC metric [21]
focuses on specific thresholds like IoU = 0.50 (AP50) and
IoU = 0.75 (AP75), which are commonly used to evaluate
the effectiveness of object detection algorithms.
Furthermore, the AP values for small, medium, and large
objects (APS, APM, and APL) provide insights into the
model’s ability to detect objects of various sizes.

Based on the research findings, RetinaNet [18]
outperformed Faster R-CNN [14] in terms of accuracy,
which led to its selection for further work. The researcher
chose RetinaNet as the backbone for developing a neural
network model within the MicrosisDCN camera system.
Using transfer learning, the model is trained on a new,
untrained image dataset to accurately classify blood cell
images captured by a microscope. The trained model will
be embedded into the EagleEYE Smart Camera, which
will leverage libraries such as OpenCV [3], TensorFlow [4],
and PiCamera [22] for image processing and camera
integration.

2.3. RetinaNet Architecture

Facebook AI Research introduced RetinaNet, a one-
stage object detection model utilizing focal loss to address

the issue of class imbalance and the overwhelming
presence of easy negative samples during training [18].
This design improves prediction accuracy, particularly in
scenarios with numerous background objects. RetinaNet
employs ResNet and Feature Pyramid Network (FPN) as
its core architectural components for feature extraction,
alongside two task-specific subnetworks for classification
and bounding box regression. It outperforms two-stage
detectors such as Fast R-CNN [14] and Faster R-CNN [15]
in terms of accuracy and efficiency.

The backbone network of RetinaNet (Fig. 3) is
typically a pre-trained Convolutional Neural Network
(CNN) from the ResNet family, such as ResNet50 or
ResNet101. Traditional CNNs pass outputs sequentially
from one layer to the next. In contrast, ResNet introduces
shortcut (residual) connections, enabling information to
bypass intermediate layers. These residual links improve
gradient flow during training, making deeper networks
easier to optimize and less prone to accuracy degradation.
The ResNet backbone comprises multiple stages, each
generating feature maps at different spatial resolutions—
critical for detecting objects at various scales.

To enhance multi-scale feature representation,
RetinaNet integrates a Feature Pyramid Network (FPN)
into the backbone. The FPN constructs a rich, multi-
resolution feature pyramid by merging semantically strong
but low-resolution features from deeper layers with high-
resolution features from earlier layers. This fusion enables
robust object detection across different object sizes. At
each level of the FPN, RetinaNet generates a set of
anchors—predefined bounding boxes with various aspect
ratios and scales—that tile the image. These anchors serve
as reference boxes for predicting object locations.

Each level of the FPN feeds into two separate
subnetworks, also known as heads: one for classification
and another for bounding box regression.

• The classification subnet estimates the likelihood of
object presence for each of the A anchors and K
object classes at every spatial location. It applies four
3×3 convolutional layers with 256 filters each,
followed by ReLU activations. A final 3×3
convolutional layer with K×A filters outputs the
class scores. A sigmoid function is used to produce
binary predictions per class. The focal loss is
employed here to reduce the impact of well-classified
examples and focus learning on hard, misclassified

Fig. 3. Architecture of RetinaNet with a Feature Pyramid
Network (FPN) using a ResNet-50 backbone [18].

Table 1. The comparison is based on the average precision (AP) of the Faster R-CNN, Faster R-CNN with FPN, Faster
R-CNN with TDM, YOLOv2, SSD 513, and RetinaNet models [18].

Model Backbone AP AP50 AP75 APS APM APL

Faster R-CNN ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN with FPN ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN with TDM Inception-ResNet 36.8 55.7 39.2 16.2 39.8 52.1

YOLOv2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

RetinaNet ResNet-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2

DOI:10.4186/ej.2025.29.6.43

ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/) 47

ones, effectively mitigating the class imbalance
problem.

• The regression subnet is architecturally identical to
the classification subnet but outputs bounding box
coordinates. Specifically, it predicts four values per
anchor, corresponding to the adjustments needed to
refine the anchor box into a tightly fitting bounding
box around the detected object.

These subnetworks are shared across all levels of the
FPN, enhancing efficiency and consistency. By combining
deep residual learning, multi-scale feature aggregation, and
focal loss, RetinaNet achieves state-of-the-art results in
one-stage object detection.

We implemented RetinaNet using a Keras-based
framework [23], incorporating anchor optimization
techniques [24]. For our experiments, we selected
ResNet50 as the backbone due to its strong performance
and suitability for transfer learning. An FPN was
constructed atop the backbone, and during training, we
used pretrained weights while freezing the backbone layers
to retain general-purpose features and accelerate
convergence.

2.4. Metrics Evaluation

The success of this study is defined by the final model
achieving a minimum mean Average Precision (mAP) of
80% across the validation datasets. To thoroughly evaluate
the performance of the proposed model, we computed a
comprehensive set of key metrics, including precision,
recall, mean Average Precision (mAP), mean absolute
error (MAE), root mean squared error (RMSE), and the
coefficient of determination (R² or R-square). These
metrics were chosen to evaluate both the classification
performance and the quantitative prediction accuracy of
the model.

The following sections provide detailed explanations
of each metric, including their calculation and
interpretation.

Precision, also referred to as positive predictive value
(PPV), measures the model’s ability to correctly identify
instances of a particular class. It quantifies how many of
the predicted positive instances are actually correct.
Precision is calculated using Eq. (1) as follows:

Precision =
TP

PP
=

TP

TP+FP
 (1)

where TP (true positives) and FP (false positives)
represent the number of objects correctly and incorrectly
recognized by the model as belonging to the target class,
respectively. The sum of TP and FP, denoted as PP
(Predicted Positives), reflects the total number of objects
predicted to belong to that class.

Recall, also known as the true positive rate (TPR) or
sensitivity, measures the model’s ability to correctly
identify all relevant instances of a particular class. In other
words, it quantifies how many actual positives were

successfully detected by the model. Recall is computed
using Eq. (2) as follows:

Recall =
TP

P
=

TP

TP+FN
 (2)

where P indicates the number of items in an interested
class, and FN represents the number of objects that the
model does not recognize as belonging to that class.

The average precision of class X, 𝐴𝑃𝑥 , is calculated by
averaging precision, 𝑃𝑥, over the recall domain, 𝑅𝑥, with
𝑅𝑥 ∈ [0,1]. Its value is computed using the following
formula from (3):

𝐴𝑃𝑥 = ∫ 𝑃𝑥(𝑅𝑥)𝑑𝑅𝑥1

0
 (3)

For class X, if we test the model only 𝑁 times, we will

have a set of 𝑁 pairs of (𝑅𝑛
𝑥, 𝑃𝑛

𝑥), 𝑛 = 0, … , 𝑁 − 1 and we
can assume that 𝑅𝑛

𝑥 ≥ 𝑅𝑛−1
𝑥 . Using the following method,

we can estimate the average precision of class X:

𝐴𝑃𝑥 ≈ ∑ (𝑅𝑛
𝑥𝑁−1

𝑛=1 − 𝑅𝑛−1
𝑥)𝑃𝑛

𝑥 (4)

Assume we have M classes of items, including the

one(s) in which we are not interested. The metric known
as mean average precision (mAP) can be determined using
the formula in (5) as follows:

𝑚𝐴𝑃 =
1

𝑀
∑ 𝐴𝑃𝑥𝑀−1

𝑥=0 (5)

mAP provides a single numerical representation that
captures the model's overall performance across several
classes and instances of objects.

The mAP at IoU=0.5 (or 0.95) represents the mean
average precision calculated at a given threshold. The IoU
is a quantitative measure of object detector accuracy. A
correct detection covers the ground truth bounding box
by at least 50% (95%). The study enabled an IoU of 0.5 to
accurately predict a certain cell type.

This is due to comparing the image prediction results
using our model with the solutions counted cell by cell,
called the test set. We count the total number of RBCs,
WBCs, and platelets in each image, determining the actual

count for the test set images as 𝑎𝑖 , and the predicted count

for the predicted ones as 𝑝𝑖 . We will explain how we
calculated the following metrics:

Mean Absolute Error (MAE) is a statistical measure
that calculates the average magnitude of the difference
between the actual and projected values in a dataset. It
calculates the mean of the differences between the
observed values and the predicted values in the dataset.

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑝𝑖 − 𝑎𝑖|𝑛

𝑖=1 (6)

Root Mean Squared Error (RMSE) is the square root

of the Mean Squared Error (MSE). It calculates the
standard deviation of the differences between observed
values and predicted values. The average of the squared

DOI:10.4186/ej.2025.29.6.43

48 ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/)

differences between the original and projected values in a
given data collection calculates the MSE. The metric
quantifies the residual dispersion.

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑝𝑖 − 𝑎𝑖)2𝑛

𝑖=1 (7)

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑝𝑖 − 𝑎𝑖)2𝑛

𝑖=1 (8)

Additionally, we can use the coefficient of

determination (R-square) to determine the accuracy of the
proportion between the variance of the enumerated data
and the variance of the total data. The R-square value is
close to 1, indicating that the neural network model has
high accuracy and a low error value.

𝑅2 =
(∑ (𝑝𝑖∙𝑎𝑖

𝑛
𝑖=1))2

(∑ 𝑎𝑖
2𝑛

𝑖=1)∙(∑ 𝑝𝑖
2𝑛

𝑖=1)
 (9)

3. Camera Kit Implementation

The core idea of this study was to integrate imaging

and control systems into a unified camera unit. To achieve
this, we leveraged the Raspberry Pi—a compact computer
board equipped with a CPU, GPU, and RAM, capable of
connecting to a display screen, keyboard, and mouse—as
an embedded system suitable for development and neural
network execution. For our specific needs, we selected
and customized the EagleEYE Smart Camera (EY-PRO-
32) by Q-Wave Systems Co., Ltd., a commercial vision
solution designed for industrial applications.

The EagleEYE Smart Camera (EY-PRO-32) (Fig. 4
and 5) is an industrial-grade machine vision camera that
operates on a Linux Real-Time (RT) operating system. It
contains an embedded Raspberry Pi Compute Module 3+
with a supporting circuit board, a stable power supply, and
an OV5647 image sensor offering a resolution of 5
megapixels.

We chose this camera setup because it complemented
our existing C-mount lens system (0.5X magnification),
which supports eyepiece sizes of 23.2 mm, 30 mm, and
30.5 mm. The camera unit includes essential hardware
interfaces for research and has been modified for
compatibility with compound microscopes. Switching
from a 32GB SD card to a 32GB eMMC significantly
improved system stability during extended operation.

To enable the system to support neural network
inference, we customized the Raspberry Pi OS (32-bit),
also known as Raspbian, with a desktop environment and
necessary packages such as OpenCV, TensorFlow, and
PiCamera. This customized image—MicrosisDCN
V.1.0e—was tailored to work on Raspberry Pi Model B 3,
Model B 3+, and Raspberry Pi 4 (with at least 1 GB RAM).
Internet connectivity is achieved through the built-in LAN
port, and USB ports were configured to support Wi-Fi
adapters and allow control via wireless mouse and
keyboard on most models.

Assembly of the MicrosisDCN smart camera kit into
the compound microscope follows a straightforward
process, as illustrated in Figs. 6, 7, 8 and 9.

Fig. 4. Specifications of the EagleEYE Smart Camera
(EY-PRO-32).

Fig. 5. The EagleEYE Smart Camera is modified to
become the MicrosisDCN smart camera and installing an
operating system and our main program.

Fig. 6. Assembly process: First, prepare the MicrosisDCN
smart camera kit by inspecting component conditions and
removing the dust protection cap from the eyepiece lens.
If the eyepiece tube diameter is 23.2 mm, the kit can be
attached directly.

DOI:10.4186/ej.2025.29.6.43

ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/) 49

Once the neural network model is trained on a host

computer, it is deployed onto the MicrosisDCN camera
unit. The unit attaches directly to the eyepiece tube of the
microscope. Users can operate the model via terminal
commands within the pre-configured virtual environment.

For instance, running the Python script for inference can
be done using a command like

python blood_detection.py

The visualization of the inference results is shown in

Fig. 10, which illustrates the integrated display interface of
the MicrosisDCN smart camera system. The screen
presents both real-time detection outcomes and system
performance metrics. The components displayed are as
follows:
1. Display Window—Shows the original microscope image

with localized, countable cells using the OpenCV
library.

2. Red Blood Cell Detection—The neural network detects
and localizes red blood cells (RBCs), showing their
class name and corresponding mAP value.

3. White Blood Cell Detection—White blood cells (WBCs)
are similarly localized with class labels and their
respective mAP scores.

4. Platelet Detection—Platelets are detected, annotated, and
presented with their class name and mAP value.

5. Total Cell Count—Displays the total number of
microscopic cells detected and counted in the full
image frame.

6. RBC Count per HPF—Indicates the number of red
blood cells counted within the standard field of view
(HPF) of the camera.

7. WBC Count per HPF—Shows the number of white
blood cells counted in the same field of view.

8. Platelet Count per HPF—Displays the platelet count
within the camera unit’s standard HPF area.

9. Processing Time—Reports the total inference and
processing duration from model execution to final cell
count, in seconds.

10. System Resource Toolbar—Shows the camera unit’s
system status, including CPU usage, available RAM,
and ongoing processes.

11. Terminal Window—Displays the Raspbian OS terminal
running within the virtual environment, where the
neural network model is executed.

12. Actual Cell Count (Ground Truth)—Presents the manually
validated number of cells in the image, separated by
class (RBC, WBC, Platelet).

Fig. 7. Using a screwdriver, loosen the screw securing the
eyepiece and remove the eyepiece from the microscope.

Fig. 8. Securely attach the MicrosisDCN smart camera kit
to the microscope. Then, use a screwdriver to tighten the
screws sufficiently to prevent any movement of the
attached camera kit.

Fig. 9. Connect the HDMI cable, wireless keyboard and
mouse set, and LAN cable or Wi-Fi card to establish an
internet connection. The system will automatically boot up
upon completion of these connections.

Fig. 10. Python GUI interface of the MicrosisDCN smart
camera kit, enabling access to the deep learning model for
counting small cells, including RBCs, WBCs, and platelets.

DOI:10.4186/ej.2025.29.6.43

50 ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/)

13. Predicted Cell Count per HPF—Reports the number of
cells predicted by the system within the camera’s
standard HPF area, classified into RBCs, WBCs, and
platelets, following the method in [25, 26].

This comprehensive output allows for easy visual

verification of detection performance and supports
quantitative comparisons between predicted and actual
cell counts. By combining image annotation, neural
network inference, and system monitoring into a single
interface, the MicrosisDCN kit offers a complete and
efficient tool for microscopic blood analysis.

4. High-Power Fields in Digital Microscopy for

Mitotic Count

Mitotic count is a widely used method for assessing
cell proliferation and identifying abnormal cell
populations in histopathology. The count is typically
reported as the number of mitotic figures per high-power
field (HPF), where an HPF refers to the field of view (FoV)
under a microscope at a standardized total magnification
of 400×—usually achieved by combining a 10× eyepiece
with a 40× objective lens. The concept of HPF plays a
crucial role in ensuring consistency across observers and
imaging systems.

4.1. Total Magnification

In optical microscopy, total magnification, denoted

𝑚𝑇 , is calculated as the product of the magnifications of

the objective lens 𝑚𝑜 and the eyepiece lens 𝑚𝑒:

𝑚𝑇 = 𝑚𝑜 × 𝑚𝑒 (10)

For instance, using a 40× objective and a 10×

eyepiece yields 𝑚𝑇 = 400×, which satisfies the high-
power field condition commonly used in biological studies.

In digital microscopy, magnification does not stop at
the eyepiece or objective. Instead, the image formed by
the objective is relayed through additional optics—such as
a projection lens or adapter—before reaching the camera
sensor. This additional scaling is represented by the

adapter magnification 𝑚𝑎 , leading to the total camera
magnification:

𝑚𝐶 = 𝑚𝑜 × 𝑚𝑎 (11)

For example, using a 40× objective with a 0.5×

adapter results in 𝑚𝐶 = 20×.
Unlike optical microscopy, where the human eye

perceives magnification, digital microscopy relies on
sensor-captured image dimensions. Therefore, accurate
calibration of the digital field of view and understanding
of magnification scaling are essential for quantitative tasks
such as mitotic index estimation.

4.2. Field of View

The field of view (FoV) represents the observable

area through a microscope. In optical microscopy, the
FoV is typically circular and depends on the field number
(FN) of the eyepiece and the magnification of the
objective lens:

𝐷𝐹𝑉 =
𝐹𝑁

𝑚𝑜
 (11)

𝐴𝐹𝑉 = 𝜋 (
𝐷𝐹𝑉

2
)

2
= 𝜋 (

𝐹𝑁

2𝑚𝑜
)

2
 (12)

Table 2 provides the diameter of the FN, and Table

3 provides examples 𝐴𝐹𝑉 for different combinations of
FN and objective magnification. For instance, at 40×
magnification with FN = 20, the field area is
approximately 0.19625 mm².

Fig. 11. Comparison between the circular field of view
(FoV) observed through the eyepiece and the rectangular
FoV captured by the digital image sensor. The eyepiece
FoV is defined by the field number (FN) and objective
magnification, while the digital sensor captures a
rectangular area whose real-world dimensions should be
calibrated using a stage micrometer.

Table 2. The diameter of the field of view (FoV).

Magnification FN18 FN20 FN22

4× 4.50 mm 5.00 mm 5.50 mm

10× 1.80 mm 2.00 mm 2.20 mm

40× 0.45 mm 0.50 mm 0.55 mm

100× 0.18 mm 0.20 mm 0.22 mm

 Table 3. The area of the field of view (FoV).

Magnification FN18 FN20 FN22

4×
15.89625
mm2

19.62500
mm2

23.74625
mm2

10×
2.54340
mm2

3.14000
mm2

3.79940
mm2

40×
0.15896
mm2

0.19625
mm2

0.23746
mm2

100×
0.02543
mm2

0.03140
mm2

0.03799
mm2

DOI:10.4186/ej.2025.29.6.43

ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/) 51

Figure 11 illustrates the contrast between a circular
FoV from optical microscopy and a rectangular FoV from
digital imaging. In digital microscopy, the FoV is
rectangular, determined by the physical dimensions of the
image sensor and the total camera magnification. The real-
world field area is:

𝐴𝑟𝑒𝑎𝑙 = 𝑊𝑟𝑒𝑎𝑙 ∙ 𝐻𝑟𝑒𝑎𝑙 (13)

where 𝑊𝑟𝑒𝑎𝑙 and 𝐻𝑟𝑒𝑎𝑙 are the calibrated width and
height of the image, measured in micrometers using a
stage micrometer (see Figs. 12 and 13).

4.3. Mitotic Count and HPF Normalization

A high-power field (HPF) corresponds to the area

observed at 400× magnification, and mitotic figures are
commonly reported per 10 or 50 HPFs to enhance
statistical reliability.

However, the physical size of an HPF—𝐴𝐻𝑃𝐹 —
varies depending on the microscope’s FN and objective
lens. This variability introduces inconsistency between
laboratories and observers. To address this, a standardized

HPF area of 𝐴𝑠𝑡𝑑 = 0.23746 𝑚𝑚2 has been proposed,
corresponding to the area of an HPF when FN = 22 at
40×.

To convert an observed mitotic count over 10 HPFs

(𝑛𝑜𝑏𝑠) into a normalized count based on the standard area,
use:

𝑛10𝑠𝑡𝑑 =
𝐴10𝑠𝑡𝑑

𝐴10𝐻𝑃𝐹
× 𝑛𝑜𝑏𝑠 (14)

This normalized count 𝑛10𝑠𝑡𝑑 can then be compared
directly with diagnostic guidelines, without needing to
account for variations in HPF size across microscopes.

In digital microscopy, normalization proceeds by

computing the ratio of the digital field area 𝐴𝑟𝑒𝑎𝑙 to both

𝐴𝐻𝑃𝐹 and 𝐴𝑠𝑡𝑑. For example, if one digital image frame
captures an area of 0.180 × 0.135 = 0.0243 mm2 (as in
Section 4.4), then 10 such images equate to 0.243 mm2
which less than 1/9.77 of the standard area. Thus, the
mitotic count over 10 digital frames must be scaled down
by this ratio to yield the count per 10 standardized HPFs.
This ensures equivalence between digital and conventional
methods and enables consistent thresholding across
modalities.

4.4. Calibration of Digital Microscopy

Calibration is essential in digital microscopy to

determine the real-world dimensions represented by each
pixel in a captured image. This step is necessary because,
unlike optical microscopy, digital magnification depends
on the entire optical path and image acquisition system,
including the objective lens, intermediate optics (e.g.,
adapters), and the camera sensor.

Calibration is typically performed using a stage
micrometer or test patterns with known physical
dimensions (Fig. 12 and 13). By comparing the known
length on the micrometer to the number of pixels it spans
in the image, one can determine the physical size per pixel
and, subsequently, the field of view (FoV).

For example, using a Raspberry Pi Camera Module
(with an OV5647 sensor) coupled with a 0.5× optical
adapter, an image with a resolution of 640 × 480 pixels
may initially correspond to an approximate physical area
of 0.180 mm × 0.135 mm, yielding:

𝐴𝑟𝑒𝑎𝑙 = 0.180 × 0.135 = 0.0243 𝑚𝑚2 (15)

Fig. 12. Calibration of the microscope using both an ocular
micrometer and a stage micrometer. The stage micrometer
provides a known scale (typically 0.01 mm per division),
allowing for accurate determination of the field
dimensions as seen through the eyepiece or captured by
the digital sensor.

Fig. 13. Captured image showing a calibration grid with
squares of known dimensions, used to accurately
determine the field of view (FoV) of the digital camera in
microscopy applications.

Fig. 14. Captured images showing the apparent sensor area
during calibration with a stage micrometer: (left)
horizontal calibration to determine the apparent width of
the sensor field, and (right) vertical calibration to
determine the apparent height. These measurements
provide the actual field of view (FoV) dimensions used in
quantitative digital microscopy.

DOI:10.4186/ej.2025.29.6.43

52 ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/)

However, this theoretical estimate based on optical
specifications often deviates from actual measurements
due to variations in lens alignment, sensor cropping, and
projection geometry. Thus, empirical calibration is needed.

In Fig. 14, calibration results using a stage
micrometer show that the actual calibrated field
dimensions are smaller:

• Width: 𝑊𝑟𝑒𝑎𝑙 = 0.150 𝑚𝑚

• Height: 𝐻𝑟𝑒𝑎𝑙 = 0.110 𝑚𝑚

This gives a corrected FoV:

𝐴𝑟𝑒𝑎𝑙 = 0.150 × 0.110 = 0.0165 𝑚𝑚2 (16)

To normalize mitotic counts from digital images to a

standard high-power field (HPF) area of 𝐴𝑠𝑡𝑑 =
0.23746 𝑚𝑚2, we compute the ratio:

𝐴𝑠𝑡𝑑

𝐴𝑟𝑒𝑎𝑙
=

0.23746

0.01650
≈ 14.39 ≈ 14.4 (17)

Hence, to obtain a mitotic count equivalent to that

over 10 standardized HPFs, one must multiply the total
count from 10 digital images by this factor:

𝑛10𝑠𝑡𝑑 = 14.4 × 𝑛𝑜𝑏𝑠 (18)

This normalization step ensures compatibility with

standard histopathology guidelines, even when using
compact or low-cost digital microscopy systems.

5. Results of RBC, WBC, and Platelet Detection

The RetinaNet neural network model, composed of a
ResNet50 backbone and a Feature Pyramid Network
(FPN), was implemented to enable high-performance
object detection within the MicrosisDCN camera set.
Utilizing transfer learning, the ResNet50 architecture was
pre-trained on the publicly available Blood Cell Dataset to
initialize its convolutional layers. This allows the model to
extract meaningful spatial features using learned filters,
which are then passed through the FPN for multi-scale
object classification and localization.

To enhance detection performance, the anchor boxes
were modified to better match the typical bounding box
sizes of red blood cells (RBCs), white blood cells (WBCs),
and platelets in microscopic images. This process enabled
RetinaNet to generate high-quality feature maps for
accurately localizing and classifying small cellular
structures.

Training was categorized into three approaches:
1. Non-parameterized training—The model was trained

directly using default settings and anchor parameters
without further customization.

2. First parameterized training—Anchor parameters and
other hyperparameters were adjusted to optimize
detection for blood cell sizes and spatial distributions.

3. Second parameterized training—Additional tuning
was performed based on insights from the first model,
including anchor scaling and anchor ratio refinement.

The expanded training dataset consisted of

microscope images with a resolution of 1280×960 pixels.
Within this dataset, subregions were extracted for use in
feature learning. A filter, or kernel, was applied to these
image regions to extract features relevant for classification
and localization.

Key aspects of the RetinaNet anchor configuration
include:

• Strides: Represent the step size of the convolutional
filter as it slides across the image. Larger strides yield
coarser but faster feature maps.

• Ratios: Define the aspect ratio (height to width) of
anchors. These are used to model objects of varying
shapes.

• Scales: Determine the scale of anchor boxes relative
to the input image size.

• Anchors: Computed using the combination of scales
and ratios. For instance, if a feature map has
dimensions of 128×128 pixels, the number of
anchors is determined by the product of ratio and
scale combinations applied at each location.

In RetinaNet, five levels of feature maps are
generated from the ResNet50 backbone, each handling
different object sizes due to downsampling. As an example,
a feature map of 512×512 allows for fine-grained object
localization, while lower-resolution feature maps (e.g.,
128×128) focus on larger-scale patterns.

This anchor-based detection strategy enabled robust
and scalable cell detection performance across varying cell
types and sizes in microscope images. Detection outcomes
using each training approach are evaluated and discussed
in Section 6, including mAP scores for each cell class.

Fig. 16. Overview of data preparation, model training
process, and evaluation of cell detection capability.

Table 4. The RetinaNet default parameters.

Sizes 32 64 128 256 512

Strides 8 16 32 64 128

Ratios 0.5 1 2 3

Scales 1 1.2 1.6

DOI:10.4186/ej.2025.29.6.43

ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/) 53

To train the three neural network models, we used a

standardized command-line interface. The base command
for training was
python train.py --weights ./snapshots/blood_model.h5 --config
config.ini --compute-val-loss --tensorboard-dir ./tensorboard_log --
multi-gpu 2 --multi-gpu-force --batch-size 2 --epochs 50 --steps 1000
csv annotations.csv classes.csv --val-annotations val_annotations.csv.

For the non-parameterized model (i.e., the default

training configuration), the --config config.ini argument
was omitted.

After training, each model was converted into an
inference model using the command:
python convert_model.py –config config.ini
./snapshots/blood_model_csv_XX.h5
./snapshots/blood_model_csv_XX_convert.h5,

where XX represents the number of the training epoch
(ranging from 01 to 50).

To evaluate the inference model’s performance using
the validation set, we calculated the mean Average
Precision (mAP) for all three classes—RBC, WBC, and
platelets—using the command:
python evaluate.py csv class.csv
val_annotations.csv./snapshots/blood_model_csv_XX_convert.h5.

This procedure enabled consistent model evaluation

and comparison across different parameter configurations
and training strategies.

5.1. The Model Without Adjusting Parameters

We trained the neural network model without
parameter adjustments for 50 epochs. The mean Average
Precision (mAP) values for the three target classes—red
blood cells (RBC), white blood cells (WBC), and
platelets—are summarized in Table 5. The highest
recorded mAP value is 0.7356, while the lowest is 0.6794.
All three classes yielded mAP values below 0.80 (80%),
indicating moderate overall performance.

To further assess the model’s predictive accuracy, we
compared its cell counts against ground-truth annotations
derived from human visual inspection over a set of 100
identical microscope images. Evaluation metrics included
the mean absolute error (MAE), root mean squared error

(RMSE), and the coefficient of determination (R-squared).
The MAE and RMSE values for RBC and WBC
detections were relatively low, suggesting that the model
performs well in identifying these two cell types.
Conversely, platelet detection exhibited significantly
higher MAE and RMSE values, indicating suboptimal
performance.

In terms of R2, RBC and WBC predictions showed
values close to one, reflecting strong correlation with
ground-truth counts. However, the platelet class exhibited
an R-squared value of only 0.1564, implying weak
predictive capability. The low score can be attributed to
insufficient overlap between the predicted and actual
bounding boxes, which hampers accurate class
identification. Representative results are illustrated in Fig.
17 for RBCs, and Fig. 18 for WBCs and platelets. While
the neural network effectively detects RBCs and WBCs, it
consistently fails to identify platelets.

Table 5. The model with the first adjusting parameter.

Sizes 16 32 64 128 256

Strides 8 16 32 64 128

Ratios 0.5 1 2 3

Scales 1 1.2 1.6

Table 6. The model with the second adjusting parameter.

Sizes 8 16 32 64 128

Strides 4 8 16 32 64

Ratios 0.5 1 2 3

Scales 1 1.2 1.6

Table 7. The result of trained model without adjusting

parameter.

Class Name RBC WBC Platelets

MAE 6.09 0.12 58.91

RMSE 8.4977 0.4899 96.7841

R-Squared 0.9985 0.9730 0.1564

mAP 0.7356

Fig. 17. The actual (left) and predicted (right) red blood
cells (RBCs) count results of the trained model without
adjusting parameters.

DOI:10.4186/ej.2025.29.6.43

54 ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/)

5.2. The Model with the First Adjusting Parameters

In the initial model, where parameters were not

adjusted, the prediction accuracy for all three classes—red
blood cells (RBC), white blood cells (WBC), and
platelets—remained below 0.8000 (80%). This suggests
that the neural network could effectively detect RBCs and
WBCs but failed to accurately identify platelets. The mean
absolute error (MAE) for RBCs and WBCs was 6.09 and
0.12, respectively, whereas the MAE for platelets reached
58.91, underscoring the model’s inadequacy in detecting
platelets.

To improve the model’s performance across all three
cell types, we modified the anchor settings to better align
with the actual object sizes in the annotated images,
thereby producing feature maps more capable of accurate
classification. Table 4 presents the default anchor
parameter values, where the sizes parameter defines the
image point area used for feature separation, based on the
number of feature layers. The smallest value, 32,
corresponds to an area of 32×32 pixels. Objects smaller
than this threshold are mapped inadequately and therefore
remain undetected.

Following the anchor optimization method proposed
by Zlocha et al. [24], which tailored anchors for small
object detection in CT scan images, we reconfigured the
anchor parameters (referred to as type 1) and retrained the
model. Table 8 summarizes the training process over 50
epochs. The resulting mAP values for the three classes
ranged from 0.7305 to 0.8681, representing a substantial
improvement, with all values now exceeding the 0.8000
(80%) threshold. These results suggest that the refined
model performs better in detecting all three cell types.

To validate the model, we compared its predictions
against ground-truth counts performed by human
observers using 100 identical microscope images. The
revised model produced low MAE and RMSE values for
all classes, and the R-squared values were close to 1.00,
indicating high correlation and low variance between
predicted and actual counts. Fig. 19 and 20 present sample
predictions of RBCs, WBCs, and platelets. The results
confirm that the improved neural network model is
capable of reliably detecting and counting all three cell
types.

Fig. 18. The actual (left) and predicted (right) white blood
cells (WBCs) and platelets count results of the trained
model without adjusting parameters.

Table 8. The result of trained model with the first
adjusting parameter.

Class Name RBC WBC Platelets

MAE 1.06 0.06 4.23

RMSE 1.6432 0.2449 9.1011

R-Squared 0.9998 0.9933 0.9960

mAP 0.8681

Fig. 19. The actual (left) and predicted (right) red blood
cells (RBCs) count results of the trained model with the
first adjusting parameter.

DOI:10.4186/ej.2025.29.6.43

ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/) 55

5.3. The Model with the Second Adjusting

Parameters

In the second parameter adjustment, the prediction

accuracy for all three classes declined significantly. This
configuration employed anchor optimization to reduce
anchor sizes further, enabling the convolutional (CONV)
layers to extract more localized features—an essential
aspect of accurate feature extraction. As shown in Table
16, the Sizes parameter represents the pixel area assigned
for each anchor, which must be appropriately scaled to
allow smaller feature layers to detect fine details. In this
configuration, the smallest anchor was set to 32×32 pixels,
as in earlier models.

For this experiment, the anchor parameter was
adjusted to type 2 for retraining the neural network. Table
9 presents training progress across 50 epochs. The
resulting mean average precision (mAP) values for the
three classes ranged from a maximum of 0.2293 to a
minimum of 0.0037. These values indicate substantially
lower prediction accuracy compared to both the baseline
model and the first parameter-adjusted model, with all
mAP values falling below the 0.8000 (80%) threshold.

The model was further evaluated by comparing its
predictions on a test set of 100 identical microscope
images to human-counted ground truth values. The
resulting mean absolute error (MAE) and root mean
squared error (RMSE) values were high for all three cell
types, confirming the model’s poor performance. While
the R-squared value for red blood cells approached 1.0,
suggesting some correlation between predicted and actual
values, the white blood cell count was low, and platelet
detection failed entirely—with no correct predictions
recorded.

Fig. 20. The actual (left) and predicted (right) white blood
cells (WBCs) and platelets count results of the trained
model with the first adjusting parameter.

Table 9. The result of trained model with the second
adjusting parameter.

Class Name RBC WBC Platelets

MAE 48.9 1.36 59.36

RMSE 61.0210 2.5287 97.3676

R-Squared 0.9710 0.3294 Negative

mAP 0.0037 to 0.2239

Fig. 21. The actual (left) and predicted (right) red blood
cells (RBCs) count results of the trained model with the
second adjusting parameter.

Fig. 22. The actual (left) and predicted (right) white blood
cells (WBCs) and platelets count results of the trained
model with the second adjusting parameter.

DOI:10.4186/ej.2025.29.6.43

56 ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/)

6. Conclusion and Discussion

This study presents the development of an intelligent

camera kit capable of automatically detecting and counting
blood cells from peripheral blood smear (PBS) images.
The system integrates RetinaNet with auto-anchor
optimization to enhance detection performance and
accelerate the blood cell counting process for diagnostic
applications. The resulting device, named MicrosisDCN,
is an embedded smart camera that operates alongside a
compound microscope to classify and quantify blood cells
in real time using a neural network model.

The MicrosisDCN camera attaches directly to the
eyepiece lens tube of a microscope. By multiplying the
standard FoV area by a factor of 14.4 40× “field images”
to equal standard area, the system can display blood cell
counts in a standardized format—matching the mitotic
count unit observed under a 40X objective lens. This
approach effectively emulates the conventional high-
power field (HPF) count but automates the detection
process, reducing manual effort and interpretation
variability.

Unlike commercial microscope cameras that serve
only as imaging interfaces and require specific trinocular
models and proprietary software, MicrosisDCN is
designed for versatility and independence. It supports
eyepiece diameters of 23.2 mm, 30.0 mm, and 30.2 mm,
and comes equipped with a fully functional embedded
system that includes screen, keyboard, and mouse
connectivity, eliminating the need for an external
computer.

The device runs a pre-installed neural network model
but can also be reprogrammed for custom detection tasks.
Users can retrain or fine-tune the detection algorithm for
specific applications—such as identifying parasites,
protozoa, or novel pathogens—by transferring the model
to a Linux or Windows computer, retraining with new
image datasets, and then redeploying to the MicrosisDCN
device.

To support this adaptability, the researcher created an
expanded image dataset by capturing and annotating
blood cell images under the microscope. A custom script
was developed to streamline the annotation process and
convert bounding box data into a scalable format that is
more efficient than traditional XML as the dataset grew.
This dataset was then used to train neural networks using
TensorFlow, forming the basis for the models embedded
in the MicrosisDCN system.

Three types of model training strategies were tested:

• Non-parameterized model training achieved the
highest mAP of 0.7356, successfully detecting red
and white blood cells but failing to identify platelets.

• Parameterized model 1 training reached the highest
performance with a mAP of 0.8681, accurately
detecting red blood cells (RBCs), white blood cells
(WBCs), and platelets.

• Parameterized model 2 training resulted in a
significantly lower mAP of 0.2239, failing to reliably
locate small cells.

Based on these findings, parameterized model 1 is
recommended for deployment on the MicrosisDCN
system. Users can initiate model inference or training
directly on the embedded Raspberry Pi Compute Module
3+ using the OV5647 image sensor (5 MP resolution).

In conclusion, AI-powered tools have revolutionized
blood cell counting, enhancing accuracy and time
efficiency. Utilizing techniques like CNNs, image
segmentation algorithms, and deep learning classification
models, these tools reduce manual labor and detect blood
cell types from microscopic images. However, these
solutions are often costly and require specialized hardware,
making them less accessible in low-resource settings or
smaller clinics. Our proposed method offers affordability,
simplicity, and adaptability, making it suitable for broader
clinical implementation in under-resourced healthcare
environments. MicrosisDCN offers a compact, cost-
effective, and highly adaptable solution for automated
blood cell analysis in diagnostic and research settings. Its
flexibility and self-contained design make it ideal for
fieldwork, education, and laboratory automation—
bridging the gap between traditional microscopy and
intelligent vision systems.

Acknowledgement

This research was supported as part of the Ph.D.

dissertation titled “Development of Abnormal Leukocyte
Counting System via Smartphone using Convolution
Neural Networks [26, 27],” which obtained the 100th
Anniversary Chulalongkorn University Fund for Doctoral
Scholarship, and was subsequently extended as part of the
M.Eng. thesis titled “The application of neural network to
detect multiple cells via compound microscope with image
sensor [28],” funded by Chulalongkorn University:
CU_GI_62_18_21_03.

Fig. 23. MicrosisDCN received a gold medal at the 48th
International Exhibition of Inventions Geneva, the Swiss
Confederation.

DOI:10.4186/ej.2025.29.6.43

ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/) 57

Finally, we are pleased to recognize the following
awards received for this research: Gold medal in class M:
Medicine, Surgery, Orthopedics, Material for the Disabled
at the 48th International Exhibition of Inventions Geneva,
the Swiss Confederation; the Higher Education
Innovation Award: Outstanding Award and Gold Medal
for the Artificial Intelligence and Smart Devices Topic;
and an Outstanding Research Proposal Award from the
National Research Council of Thailand (NRCT), Ministry
of Higher Education, Science, Research and Innovation at
the Thailand Research Expo 2020, Thailand.

References

[1] A. S. Adewoyin and B. Nwogoh, “Peripheral blood
film—A review,” Annals of Ibadan Postgraduate
Medicine, vol. 12, no. 2, pp. 71–79, Dec. 2014.

[2] D. Payne, “Use and limitations of light microscopy
for diagnosing malaria at the primary health care
level,” Bulletin of the World Health Organization, vol. 66,
no. 5, pp. 621–626, 1988.

[3] G. Bradski, “The opencv library,” Dr. Dobb’s
Journal: Software Tools for the Professional
Programmer, vol. 25, no. 11, pp. 120–123, Nov. 2000.

[4] B. Pang, E. Nijkamp, and Y. N. Wu, “Deep learning
with tensorflow: A review,” Journal of Educational and
Behavioral Statistics, vol. 45, no. 2, pp. 227–248, Jun.
2020.

[5] N. K. Manaswi and N. K. Manaswi, “Understanding
and working with Keras,” in Deep Learning with
Applications Using Python: Chatbots and Face, Object, and
Speech Recognition with TensorFlow and Keras, 1st ed.
Berkeley, CA: Apress, 2018, pp. 31–43.

[6] T. Kattenborn, et al., “Review on convolutional
neural networks (CNN) in vegetation remote
sensing,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 173, pp. 24–49, Mar. 2021.

[7] B. Zhao, et al., “A survey on deep learning‑based

fine‑grained object classification and semantic
segmentation,” International Journal of Automation and
Computing, vol. 14, no. 2, pp. 119–135, Apr. 2017.

[8] Y. Wu, et al., “Rethinking classification and
localization for object detection,” in Proc.
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Jun. 2020, pp. 10186–10195.

[9] Z. Zou, et al., “Object detection in 20 years: A
survey,” Proc. IEEE, vol. 111, no. 3, pp. 257–276,
Mar. 2023.

[10] H.-D. Cheng, et al., “Color image segmentation:
advances and prospects,” Pattern Recognition, vol. 34,
no. 12, pp. 2259–2281, Dec. 2001.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S.
Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, A. C. Berg, and L. Fei‑Fei, “ImageNet
large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
Dec. 2015.

[12] K. Simonyan and A. Zisserman, “Very deep

convolutional networks for large‑scale image

recognition,” arXiv preprint arXiv:1409.1556, Sep.
2014.

[13] R. Girshick, et al., “Rich feature hierarchies for
accurate object detection and semantic
segmentation,” in Proc. Conference on Computer Vision
and Pattern Recognition, Jun. 2014, pp. 580–587.

[14] R. Girshick, “Fast R‑CNN,” in Proc. IEEE
International Conference on Computer Vision, Dec. 2015,
pp. 1440–1448.

[15] S. Ren, et al., “Faster R‑CNN: towards real‑time
object detection with region proposal networks,”
Advances in Neural Information Processing Systems, vol. 28,
Dec. 2015, pp. 91–99.

[16] C. Szegedy, et al., “Going deeper with convolutions,”
in Proc. the IEEE Conference on Computer Vision and
Pattern Recognition, Jun. 2015, pp. 1–9.

[17] K. He, et al., “Deep residual learning for image
recognition,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition, Jun. 2016, pp. 770–778.

[18] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,
“Focal loss for dense object detection,” in Proc.
IEEE International Conference on Computer Vision, Oct.–
Nov. 2017, Venice, Italy, pp. 2999–3007.

[19] B. M. Randles, et al., “Using the Jupyter notebook as
a tool for open science: An empirical study,” in Proc.
ACM/IEEE Joint Conf. Digit. Libraries, Jun. 2017, pp.
489–490.

[20] T.-Y. Lin, et al., “Microsoft COCO: Common
objects in context,” in Computer Vision – ECCV 2014:
13th European Conf. Zurich, Switzerland, Sept. 6–12,
2014, Proc., Part V, Cham, Switzerland: Springer,
2014, pp. 740–755.

[21] M. Everingham, et al., “The PASCAL visual object
classes challenge: a retrospective,” International Journal
of Computer Vision, vol. 111, no. 1, pp. 98–136, Jan.
2015.

[22] A. F. Symon, et al., “Design and development of a
smart baby monitoring system based on Raspberry
Pi and Pi camera,” in Proc. 4th International Conference
on Advances in Electrical Engineering (ICAEE), Sep.
2017, pp. 130–135.

[23] H. Gaiser, M. de Vries, and V. Lacatusu, Keras
RetinaNet. 2019. Fizyr. Accessed: Jun. 1, 2024.
[Software]. Available:
https://github.com/fizyr/keras-
retinanet/tree/0.5.1

[24] M. Zlocha, Q. Dou, and B. Glocker, “Improving
RetinaNet for CT lesion detection with dense masks
from weak RECIST labels,” in Med. Image Comput.
Comput. Assist. Interv. – MICCAI 2019: 22nd Int. Conf.,
Shenzhen, China, Oct. 13–17, 2019, Proc., Part VI,
Cham, Switzerland: Springer, 2019, pp. 402–410.

[25] D. Kim, L. Pantanowitz, P. Schüffler, D. V. K.
Yarlagadda, O. Ardon, V. E. Reuter, M. Hameed, D.
S. Klimstra, and M. G. Hanna, “(Re)defining the

high‑power field for digital pathology,” Journal of
Pathology Informatics, vol. 11, p. 33, 2020. [Online].
Available: https://doi.org/10.4103/jpi.jpi_48_20

DOI:10.4186/ej.2025.29.6.43

58 ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/)

[26] D. J. Meuten, F. M. Moore, and J. W. George,
“Mitotic count and the field of view area: time to

standardize,” Veterinary Pathology, vol. 53, no. 1,

pp. 7–9, Jan. 2016.

doi: 10.1177/0300985815593349. :contentReference
[oaicite:1]{index=1}

[27] N. Kasamsumran, W. Pora, and E. Karoopongse,
“Development of abnormal leukocyte counting
system via smartphone using convolutional neural
network,” Chulalongkorn Univ. Theses
Dissertations (Chula ETD). [Online]. Available:
https://digital.car.chula.ac.th/chulaetd/11536.

Accessed: Jul. 04, 2025.

[28] N. Kasamsumran, P. Ittichaiwong, C.
Chinudomporn, K. Veerakanjana, E. Karoopongse,

and W. Pora, “AI‑assisted web application for
leukocyte abnormality counting with YOLOv11 and

smartphone microscopy,” IEEE Access, vol. 13,

pp. 89079–89107, 2025.

doi: 10.1109/ACCESS.2025.3569767.
[29] N. Kasamsumran and S. Pumrin, “The application of

neural network to detect multiple cells via compound
microscope with image sensor,” Chulalongkorn
Univ. Theses Dissertations (Chula ETD), [Online].
Available:
https://digital.car.chula.ac.th/chulaetd/9614

Natthakorn Kasamsumran received a B.Eng. degree in electrical engineering from Burapha
University, Thailand and an M.Eng. degree in electrical engineering from Chulalongkorn University,
Thailand, where he is currently a Ph.D. candidate in electrical engineering with the 100th Anniversary
Chulalongkorn University Fund for Doctoral Scholarship in the department of electrical engineering,
faculty of engineering, Chulalongkorn University, Thailand. His current research interests include
embedded systems, the internet of things (IoT), artificial intelligence in medicine, microscopy
imaging, computer vision, machine learning, mechatronics, and invention creation and development.

Amornthep Phunsin holds a B.Sc. degree in industrial education with a major in
telecommunication engineering from King Mongkut’s Institute of Technology Ladkrabang,
Thailand. With nearly two decades of experience in the engineering field, he specializes in test and
measurement systems, embedded systems design, and hardware development. He founded Q-Wave
Systems Co., Ltd., where he leads the company’s strategic direction in engineering services, research
and development, and the innovation of embedded hardware solutions for industrial applications
and tech start-ups.

Suree Pumrin received her B.Eng. degree in electronics engineering from King Mongkut’s Institute
of Technology Ladkrabang, Thailand, in 1990, followed by M.S.E. degree in electrical engineering
from Arizona State University, USA., in 1992, and Ph.D. degree in electrical engineering from
University of Washington, USA., in 2002. She is currently an assistant professor at the Department
of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Thailand. Her research
interests include image processing, computer vision, and embedded systems.

Wanchalerm Pora received his B.Eng. and M.Eng. degrees in electrical engineering from
Chulalongkorn University, Thailand in 1992 and 1995, respectively. In 2000, he went to the United
Kingdom and earned a Ph.D. from Imperial College in London. He is currently the Head of
Embedded Systems and IC Design Research Laboratory, Department of Electrical Engineering,
Faculty of Engineering, Chulalongkorn University. His special interests include smart devices, IoT
systems, and artificial intelligence.

