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Abstract. Microscopic examination of peripheral blood smear images for blood cell 
counting remains a critical yet labor-intensive task in clinical diagnostics. This research 
presents MicrosisDCN, an intelligent microscopy camera system designed to automate 
blood cell detection and counting, powered by a compact embedded platform based on the 
Raspberry Pi Compute Module 3+. The system incorporates a 5-megapixel image sensor 
and a versatile eyepiece fitting that is compatible with the most compound microscopes, 
providing a portable, cost-effective, and user-friendly solution. Calibration procedures 
ensure alignment with traditional high-power field (HPF) standards, allowing cell counts to 
be reported in standard mitotic count units. To detect red blood cells, white blood cells, and 
platelets in real-time, the system uses a special version of a deep learning model called 
RetinaNet, which has been improved with a technique called auto-anchor parameterization. 
MicrosisDCN achieves a mean Average Precision (mAP) of 86.81% in detecting a few types 
of blood cells with minimal errors: 1.06% for red blood cells, 0.06% for white blood cells, 
and 4.23% for platelets. The results indicate that MicrosisDCN, which combines traditional 
microscopy with advanced vision technologies, serves as an efficient, practical, and scalable 
solution for clinical and medical laboratory applications. 
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1. Introduction 
 
The diagnosis of infectious diseases in both humans 

and animals often relies on the analysis of biological 
specimens such as blood, urine, stool, and sputum. 
Among these, blood analysis—specifically the complete 
blood count (CBC)—is one of the most commonly 
utilized methods in clinical laboratories. The CBC 
provides essential quantitative data on various blood 
components, including red blood cells (RBCs), white 
blood cells (WBCs), and platelets (thrombocytes). This 
diagnostic tool plays a crucial role in identifying infections, 
monitoring immune responses, and assessing overall 
health status. 

A substantial proportion of infection diagnoses—
estimated at up to 70% of all laboratory investigations 
[1]—relies on the examination of peripheral blood smears 
under a microscope. This technique enables detailed 
visualization of individual cells and abnormalities in their 
morphology or count, providing critical insights for 
clinical assessment. The microscope, a cornerstone of 
medical diagnostics, utilizes combinations of eyepiece and 
objective lenses, offering magnifications typically ranging 
from 40× to 1000× [2], thereby facilitating the 
observation of microscopic structures with high 
resolution and clarity. 

Although widely used, microscopic examination is 
inherently labor-intensive and time-consuming, often 
requiring technicians to manually observe blood smears 
for extended periods. This repetitive and tedious process 
can lead to visual fatigue and increase the likelihood of 
human error, ultimately affecting diagnostic accuracy. To 
overcome these limitations, this research introduces the 
development of an automated smart camera system, 
MicrosisDCN, designed to detect and count blood cells 
autonomously. By minimizing the need for prolonged 
manual inspection, this innovation aims to significantly 
reduce analysis time while enhancing diagnostic efficiency. 

MicrosisDCN (see Fig. 1 and Fig. 2) is an intelligent 
camera system designed to interface seamlessly with 
conventional microscope eyepieces. It leverages a deep 
convolutional neural network (DCNN) to perform 
automatic classification and counting of blood cells. The 
system is built around the EagleEYE Smart Camera (EY-
PRO-32), which features an embedded Raspberry Pi 
Compute Module 3+ (CM3+) developed by Q-Wave 
Systems. The accompanying development kit includes 
custom circuit boards with an integrated power supply and 
a 5-megapixel image sensor, optimized for efficient image 
acquisition and real-time neural network processing. 

To ensure seamless integration with a wide range of 
microscopes, the camera is designed to be compatible with 
standard eyepiece tube diameters of 23.2 mm, 30 mm, and 
30.5 mm. Tailored for machine vision applications, the 
device includes all essential electronic circuits required for 
research-grade performance. Its robust design provides 
operational stability, making it suitable for extended 
laboratory use and precise biological analyses. 

The software component of the system integrates 
image processing and classification algorithms 
implemented in Python. The OpenCV library [3] is utilized 
for handling blood cell images, while TensorFlow [4] and 
Keras [5] are employed for developing and training the 
neural networks. To enhance processing capabilities, the 
system leverages multi-GPU processing. A mean Average 
Precision (mAP) of 80% is set as the minimum 
performance benchmark to ensure the system’s reliability 
and accuracy in real-world diagnostic applications. 
 

 

 
2. Methodology and Methods 

 
2.1. Convolution Neural Network 

 
This section describes the types of neural networks 

utilized in this research. A convolutional neural network 
(CNN) [6] simulates human vision by dividing the visual 
space into small, manageable parts. These areas are 
analyzed and combined to determine what is visible in the 
scene. The network extracts features from these subspaces, 
such as color borders of images that contrast between 
objects. Just as humans recognize contrasting colors by 
focusing on specific regions and their surrounding context, 
CNNs identify objects by applying mathematical 
operations, including spatial convolution and image 
processing, to the photographs. 

 

 
 

Fig. 1. 3D CAD design concept of the MicrosisDCN 
smart camera kit for integration with compound 
microscopes. 
 

 

Fig. 2. Comparison between a standard trinocular 
microscope with a digital camera attachment (left) and the 
MicrosisDCN smart camera kit, which supports both 
binocular and trinocular microscope attachments (right). 
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The process begins with the configuration of a kernel 
designed to extract object-recognition features. This 
involves applying filters to the first pixel of an image. The 
filter is then moved across the entire image, where it is 
applied to every pixel. Max pooling is then used to identify 
the maximum value within the area covered by the filter. 
Essentially, the filter scans the image, applies the selected 
operation, and the highest value in each area becomes the 
result. This method is repeated throughout the image, with 
the filter moving in steps, also known as strides, across the 
image grid. Each stride reduces the size of the feature map. 
The process ultimately helps train the neural network by 
adjusting weights over several iterations to improve 
accuracy and reduce loss. 

Feature extraction occurs in sub-areas of the image, 
such as contours that intersect. Filters help classify and 
extract features based on differences in pixel values, 
allowing the CNN to discern relevant characteristics. To 
increase the breadth of features, multiple filters can be 
employed, and this process is performed on large datasets 
to ensure a comprehensive feature set. Image filters are 
typically two-dimensional, depending on the area being 
analyzed. For instance, to detect diagonal black lines in an 
image, a 3×3 filter can be applied. The center of the filter 
represents the aggregation of data from the image pixels, 
known as anchors. When applied to a 3×3 pixel section, 
the filter combines the pixel values and computes the 
resulting feature map. The filter then slides over the entire 
image, creating a feature map based on the combined data 
from all covered pixels. 

The sliding process is referred to as the stride, 
determining the number of steps the convolution filter 
moves. Typically, strides are set to one, but if the stride is 
increased to two, the feature map size will shrink. Padding 
is sometimes added to the image’s edges, usually with zero 
values or other constants, to maintain consistent feature 
map dimensions. This ensures that convolution 
operations can cover the entire image without dimension 
loss. In practice, the convolution operates in three 
dimensions, considering not only the height and width of 
the image but also its depth, which accounts for color 
channels like red, green, and blue. The filter size—whether 
3×3 or 5×5—also influences the convolution operation’s 
design. 

Once the convolution is complete, dimensionality 
reduction is necessary to decrease the number of variables. 
This step reduces the model’s training time and helps 
prevent overfitting. It also allows the neural network to 
function with fewer layers by reducing the size of each 
layer while maintaining the same depth. Pooling methods, 
such as max pooling and mean pooling, are commonly 
used for dimensionality reduction. Max pooling involves 
identifying the highest value within a filter’s area, using this 
maximum value as the feature map’s result. As the filter 
moves over the image, the pooling operation continually 
extracts relevant features, reducing the image’s spatial 
dimensions. For example, with a 2×2 max pooling filter, 
the feature map will be reduced from 4×4 to 2×2, 

preserving only the most significant values, with the depth 
unchanged. 

 
2.2. Object Detection Using CNNs 

 
Neural networks used for object recognition enable 

computers to identify, process, and interpret objects from 
images, closely mimicking the human brain’s visual 
processing capabilities, also known as computer vision. In 
computer vision, the task is divided into four key areas: 

• Object classification [7], which involves categorizing an 
image based on its content, typically identifying the 
overall object class. 

• Classification and localization [8], which involves 
categorizing the objects in the image and pinpointing 
their exact locations with the help of bounding boxes. 

• Object detection [9], which identifies multiple object 
classes within an image and specifies the locations of 
each class, utilizing bounding boxes to mark each 
object’s position. 

• Image segmentation [10], which identifies various classes 
of objects and accurately locates them using either 
polygonal or curve-boundaries. 

The Large Scale Visual Recognition Challenge 2015 
(ILSVRC2015) [11] served as a critical test platform for 
neural network models, where researchers competed using 
a dataset of over 1.4 million images, divided into 1,000 
object classes. This competition fostered advancements in 
object detection and recognition, with models like 
VGGNet [12], R-CNN [13], Fast-RCNN [14], Faster-
RCNN [15], GoogleNet (Inception) [16], ResNet [17], and 
RetinaNet [18] making significant contributions. 

In the landmark study on deep residual learning for 
image recognition [17], the authors addressed the 
vanishing gradient problem, which occurs when the 
gradient of the loss function approaches zero, hindering 
further training. This problem often arises in very deep 
neural networks. To combat this, a shortcut connection 
was introduced within the network architecture, allowing 
the gradients to propagate more effectively. By replacing 
traditional activation functions like Sigmoid with ReLU, 
residual networks (ResNet) were able to maintain 
performance even with greater depth. 

Further advancements were made with the 
introduction of focal loss in dense object detection [18], 
which enhanced the ResNet model by addressing class 
imbalance issues, a common problem in object detection 
tasks. Focal loss modifies the cross-entropy loss function 
to focus on hard-to-detect examples, thereby improving 
the accuracy of predictions for underrepresented classes. 
Researchers combined ResNet with feature pyramid 
networks (FPN) and focal loss, creating a more effective 
object detection framework. 

The Keras RetinaNet [23] library, released by 
researchers, allows developers to train and improve 
RetinaNet models in Keras using Jupyter Notebooks [19], 
an interactive Python environment for development. The 
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ability to train these models in Jupyter makes it easier to 
experiment with various configurations and fine-tune the 
models for specific applications. 

When evaluating the performance of object detection 
models, the intersection over union (IoU) metric plays a 
crucial role. IoU measures the overlap between the 
predicted bounding box and the ground truth box. The 
average precision (AP) metric, which is calculated at 
various IoU thresholds (e.g., 0.50, 0.75, and the range 
between 0.50 and 0.95), provides an overall measure of a 
model’s accuracy [20]. The PASCAL VOC metric [21] 
focuses on specific thresholds like IoU = 0.50 (AP50) and 
IoU = 0.75 (AP75), which are commonly used to evaluate 
the effectiveness of object detection algorithms. 
Furthermore, the AP values for small, medium, and large 
objects (APS, APM, and APL) provide insights into the 
model’s ability to detect objects of various sizes. 

Based on the research findings, RetinaNet [18] 
outperformed Faster R-CNN [14] in terms of accuracy, 
which led to its selection for further work. The researcher 
chose RetinaNet as the backbone for developing a neural 
network model within the MicrosisDCN camera system. 
Using transfer learning, the model is trained on a new, 
untrained image dataset to accurately classify blood cell 
images captured by a microscope. The trained model will 
be embedded into the EagleEYE Smart Camera, which 
will leverage libraries such as OpenCV [3], TensorFlow [4], 
and PiCamera [22] for image processing and camera 
integration.  
 

 
2.3. RetinaNet Architecture 
 

Facebook AI Research introduced RetinaNet, a one-
stage object detection model utilizing focal loss to address 

the issue of class imbalance and the overwhelming 
presence of easy negative samples during training [18]. 
This design improves prediction accuracy, particularly in 
scenarios with numerous background objects. RetinaNet 
employs ResNet and Feature Pyramid Network (FPN) as 
its core architectural components for feature extraction, 
alongside two task-specific subnetworks for classification 
and bounding box regression. It outperforms two-stage 
detectors such as Fast R-CNN [14] and Faster R-CNN [15] 
in terms of accuracy and efficiency. 

The backbone network of RetinaNet (Fig. 3) is 
typically a pre-trained Convolutional Neural Network 
(CNN) from the ResNet family, such as ResNet50 or 
ResNet101. Traditional CNNs pass outputs sequentially 
from one layer to the next. In contrast, ResNet introduces 
shortcut (residual) connections, enabling information to 
bypass intermediate layers. These residual links improve 
gradient flow during training, making deeper networks 
easier to optimize and less prone to accuracy degradation. 
The ResNet backbone comprises multiple stages, each 
generating feature maps at different spatial resolutions—
critical for detecting objects at various scales. 

To enhance multi-scale feature representation, 
RetinaNet integrates a Feature Pyramid Network (FPN) 
into the backbone. The FPN constructs a rich, multi-
resolution feature pyramid by merging semantically strong 
but low-resolution features from deeper layers with high-
resolution features from earlier layers. This fusion enables 
robust object detection across different object sizes. At 
each level of the FPN, RetinaNet generates a set of 
anchors—predefined bounding boxes with various aspect 
ratios and scales—that tile the image. These anchors serve 
as reference boxes for predicting object locations. 

Each level of the FPN feeds into two separate 
subnetworks, also known as heads: one for classification 
and another for bounding box regression. 

• The classification subnet estimates the likelihood of 
object presence for each of the A anchors and K 
object classes at every spatial location. It applies four 
3×3 convolutional layers with 256 filters each, 
followed by ReLU activations. A final 3×3 
convolutional layer with K×A filters outputs the 
class scores. A sigmoid function is used to produce 
binary predictions per class. The focal loss is 
employed here to reduce the impact of well-classified 
examples and focus learning on hard, misclassified 

 

Fig. 3. Architecture of RetinaNet with a Feature Pyramid 
Network (FPN) using a ResNet-50 backbone [18]. 

Table 1. The comparison is based on the average precision (AP) of the Faster R-CNN, Faster R-CNN with FPN, Faster 
R-CNN with TDM, YOLOv2, SSD 513, and RetinaNet models [18]. 
 

Model Backbone AP AP50 AP75 APS APM APL 

Faster R-CNN ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9 

Faster R-CNN with FPN ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2 

Faster R-CNN with TDM Inception-ResNet 36.8 55.7 39.2 16.2 39.8 52.1 

YOLOv2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 

SSD513 ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8 

RetinaNet ResNet-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2 

 
  



DOI:10.4186/ej.2025.29.6.43 

ENGINEERING JOURNAL Volume 29 Issue 6, ISSN 0125-8281 (https://engj.org/) 47 

ones, effectively mitigating the class imbalance 
problem. 

• The regression subnet is architecturally identical to 
the classification subnet but outputs bounding box 
coordinates. Specifically, it predicts four values per 
anchor, corresponding to the adjustments needed to 
refine the anchor box into a tightly fitting bounding 
box around the detected object. 

These subnetworks are shared across all levels of the 
FPN, enhancing efficiency and consistency. By combining 
deep residual learning, multi-scale feature aggregation, and 
focal loss, RetinaNet achieves state-of-the-art results in 
one-stage object detection. 

We implemented RetinaNet using a Keras-based 
framework [23], incorporating anchor optimization 
techniques [24]. For our experiments, we selected 
ResNet50 as the backbone due to its strong performance 
and suitability for transfer learning. An FPN was 
constructed atop the backbone, and during training, we 
used pretrained weights while freezing the backbone layers 
to retain general-purpose features and accelerate 
convergence. 

 
2.4. Metrics Evaluation 
 

The success of this study is defined by the final model 
achieving a minimum mean Average Precision (mAP) of 
80% across the validation datasets. To thoroughly evaluate 
the performance of the proposed model, we computed a 
comprehensive set of key metrics, including precision, 
recall, mean Average Precision (mAP), mean absolute 
error (MAE), root mean squared error (RMSE), and the 
coefficient of determination (R² or R-square). These 
metrics were chosen to evaluate both the classification 
performance and the quantitative prediction accuracy of 
the model. 

The following sections provide detailed explanations 
of each metric, including their calculation and 
interpretation. 

Precision, also referred to as positive predictive value 
(PPV), measures the model’s ability to correctly identify 
instances of a particular class. It quantifies how many of 
the predicted positive instances are actually correct. 
Precision is calculated using Eq. (1) as follows: 

 

Precision =  
TP

PP
=

TP

TP+FP
                          (1) 

 
where TP (true positives) and FP (false positives) 
represent the number of objects correctly and incorrectly 
recognized by the model as belonging to the target class, 
respectively. The sum of TP and FP, denoted as PP 
(Predicted Positives), reflects the total number of objects 
predicted to belong to that class. 

Recall, also known as the true positive rate (TPR) or 
sensitivity, measures the model’s ability to correctly 
identify all relevant instances of a particular class. In other 
words, it quantifies how many actual positives were 

successfully detected by the model. Recall is computed 
using Eq. (2) as follows: 

 

Recall =  
TP

P
=

TP

TP+FN
                            (2) 

 

where P indicates the number of items in an interested 
class, and FN represents the number of objects that the 
model does not recognize as belonging to that class. 

The average precision of class X, 𝐴𝑃𝑥 , is calculated by 
averaging precision, 𝑃𝑥, over the recall domain, 𝑅𝑥, with 
𝑅𝑥 ∈ [0,1].  Its value is computed using the following 
formula from (3): 
 

𝐴𝑃𝑥 = ∫ 𝑃𝑥(𝑅𝑥)𝑑𝑅𝑥1

0
                         (3) 

 
For class X, if we test the model only 𝑁 times, we will 

have a set of 𝑁 pairs of (𝑅𝑛
𝑥, 𝑃𝑛

𝑥), 𝑛 = 0, … , 𝑁 − 1 and we 
can assume that 𝑅𝑛

𝑥 ≥ 𝑅𝑛−1
𝑥 . Using the following method, 

we can estimate the average precision of class X: 
 

𝐴𝑃𝑥 ≈ ∑ (𝑅𝑛
𝑥𝑁−1

𝑛=1 − 𝑅𝑛−1
𝑥 )𝑃𝑛

𝑥                   (4) 

 
Assume we have M classes of items, including the 

one(s) in which we are not interested. The metric known 
as mean average precision (mAP) can be determined using 
the formula in (5) as follows: 
 

𝑚𝐴𝑃 =
1

𝑀
∑ 𝐴𝑃𝑥𝑀−1

𝑥=0                           (5) 

 

mAP provides a single numerical representation that 
captures the model's overall performance across several 
classes and instances of objects. 

The mAP at IoU=0.5 (or 0.95) represents the mean 
average precision calculated at a given threshold. The IoU 
is a quantitative measure of object detector accuracy. A 
correct detection covers the ground truth bounding box 
by at least 50% (95%). The study enabled an IoU of 0.5 to 
accurately predict a certain cell type. 

This is due to comparing the image prediction results 
using our model with the solutions counted cell by cell, 
called the test set. We count the total number of RBCs, 
WBCs, and platelets in each image, determining the actual 

count for the test set images as 𝑎𝑖 , and the predicted count 

for the predicted ones as 𝑝𝑖 . We will explain how we 
calculated the following metrics: 

Mean Absolute Error (MAE) is a statistical measure 
that calculates the average magnitude of the difference 
between the actual and projected values in a dataset. It 
calculates the mean of the differences between the 
observed values and the predicted values in the dataset. 
 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑝𝑖 − 𝑎𝑖|𝑛

𝑖=1                 (6) 

 
Root Mean Squared Error (RMSE) is the square root 

of the Mean Squared Error (MSE). It calculates the 
standard deviation of the differences between observed 
values and predicted values. The average of the squared 
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differences between the original and projected values in a 
given data collection calculates the MSE. The metric 
quantifies the residual dispersion. 
 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑝𝑖 − 𝑎𝑖)2𝑛

𝑖=1               (7) 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑝𝑖 − 𝑎𝑖)2𝑛

𝑖=1        (8) 

 
Additionally, we can use the coefficient of 

determination (R-square) to determine the accuracy of the 
proportion between the variance of the enumerated data 
and the variance of the total data. The R-square value is 
close to 1, indicating that the neural network model has 
high accuracy and a low error value. 
 

𝑅2 =
(∑ (𝑝𝑖∙𝑎𝑖

𝑛
𝑖=1 ))2

(∑ 𝑎𝑖
2𝑛

𝑖=1 )∙(∑ 𝑝𝑖
2𝑛

𝑖=1 )
                    (9) 

 

3. Camera Kit Implementation 
 
The core idea of this study was to integrate imaging 

and control systems into a unified camera unit. To achieve 
this, we leveraged the Raspberry Pi—a compact computer 
board equipped with a CPU, GPU, and RAM, capable of 
connecting to a display screen, keyboard, and mouse—as 
an embedded system suitable for development and neural 
network execution. For our specific needs, we selected 
and customized the EagleEYE Smart Camera (EY-PRO-
32) by Q-Wave Systems Co., Ltd., a commercial vision 
solution designed for industrial applications. 

The EagleEYE Smart Camera (EY-PRO-32) (Fig. 4 
and 5) is an industrial-grade machine vision camera that 
operates on a Linux Real-Time (RT) operating system. It 
contains an embedded Raspberry Pi Compute Module 3+ 
with a supporting circuit board, a stable power supply, and 
an OV5647 image sensor offering a resolution of 5 
megapixels. 

 

We chose this camera setup because it complemented 
our existing C-mount lens system (0.5X magnification), 
which supports eyepiece sizes of 23.2 mm, 30 mm, and 
30.5 mm. The camera unit includes essential hardware 
interfaces for research and has been modified for 
compatibility with compound microscopes. Switching 
from a 32GB SD card to a 32GB eMMC significantly 
improved system stability during extended operation. 

To enable the system to support neural network 
inference, we customized the Raspberry Pi OS (32-bit), 
also known as Raspbian, with a desktop environment and 
necessary packages such as OpenCV, TensorFlow, and 
PiCamera. This customized image—MicrosisDCN 
V.1.0e—was tailored to work on Raspberry Pi Model B 3, 
Model B 3+, and Raspberry Pi 4 (with at least 1 GB RAM). 
Internet connectivity is achieved through the built-in LAN 
port, and USB ports were configured to support Wi-Fi 
adapters and allow control via wireless mouse and 
keyboard on most models. 

Assembly of the MicrosisDCN smart camera kit into 
the compound microscope follows a straightforward 
process, as illustrated in Figs. 6, 7, 8 and 9. 

 

 

 

 

 

Fig. 4. Specifications of the EagleEYE Smart Camera 
(EY-PRO-32). 

 
 

Fig. 5. The EagleEYE Smart Camera is modified to 
become the MicrosisDCN smart camera and installing an 
operating system and our main program. 

 

 

Fig. 6. Assembly process: First, prepare the MicrosisDCN 
smart camera kit by inspecting component conditions and 
removing the dust protection cap from the eyepiece lens. 
If the eyepiece tube diameter is 23.2 mm, the kit can be 
attached directly.  
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Once the neural network model is trained on a host 

computer, it is deployed onto the MicrosisDCN camera 
unit. The unit attaches directly to the eyepiece tube of the 
microscope. Users can operate the model via terminal 
commands within the pre-configured virtual environment. 

For instance, running the Python script for inference can 
be done using a command like 

python blood_detection.py 

 
 
The visualization of the inference results is shown in 

Fig. 10, which illustrates the integrated display interface of 
the MicrosisDCN smart camera system. The screen 
presents both real-time detection outcomes and system 
performance metrics. The components displayed are as 
follows: 
1. Display Window—Shows the original microscope image 

with localized, countable cells using the OpenCV 
library. 

2. Red Blood Cell Detection—The neural network detects 
and localizes red blood cells (RBCs), showing their 
class name and corresponding mAP value. 

3. White Blood Cell Detection—White blood cells (WBCs) 
are similarly localized with class labels and their 
respective mAP scores. 

4. Platelet Detection—Platelets are detected, annotated, and 
presented with their class name and mAP value. 

5. Total Cell Count—Displays the total number of 
microscopic cells detected and counted in the full 
image frame. 

6. RBC Count per HPF—Indicates the number of red 
blood cells counted within the standard field of view 
(HPF) of the camera. 

7. WBC Count per HPF—Shows the number of white 
blood cells counted in the same field of view. 

8. Platelet Count per HPF—Displays the platelet count 
within the camera unit’s standard HPF area. 

9. Processing Time—Reports the total inference and 
processing duration from model execution to final cell 
count, in seconds. 

10. System Resource Toolbar—Shows the camera unit’s 
system status, including CPU usage, available RAM, 
and ongoing processes. 

11. Terminal Window—Displays the Raspbian OS terminal 
running within the virtual environment, where the 
neural network model is executed. 

12. Actual Cell Count (Ground Truth)—Presents the manually 
validated number of cells in the image, separated by 
class (RBC, WBC, Platelet). 

 

 

Fig. 7. Using a screwdriver, loosen the screw securing the 
eyepiece and remove the eyepiece from the microscope. 

 

 

Fig. 8. Securely attach the MicrosisDCN smart camera kit 
to the microscope. Then, use a screwdriver to tighten the 
screws sufficiently to prevent any movement of the 
attached camera kit. 

 

 

Fig. 9. Connect the HDMI cable, wireless keyboard and 
mouse set, and LAN cable or Wi-Fi card to establish an 
internet connection. The system will automatically boot up 
upon completion of these connections. 

 

 

Fig. 10. Python GUI interface of the MicrosisDCN smart 
camera kit, enabling access to the deep learning model for 
counting small cells, including RBCs, WBCs, and platelets. 
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13. Predicted Cell Count per HPF—Reports the number of 
cells predicted by the system within the camera’s 
standard HPF area, classified into RBCs, WBCs, and 
platelets, following the method in [25, 26]. 

 
This comprehensive output allows for easy visual 

verification of detection performance and supports 
quantitative comparisons between predicted and actual 
cell counts. By combining image annotation, neural 
network inference, and system monitoring into a single 
interface, the MicrosisDCN kit offers a complete and 
efficient tool for microscopic blood analysis. 
 
4. High-Power Fields in Digital Microscopy for 

Mitotic Count 
 

Mitotic count is a widely used method for assessing 
cell proliferation and identifying abnormal cell 
populations in histopathology. The count is typically 
reported as the number of mitotic figures per high-power 
field (HPF), where an HPF refers to the field of view (FoV) 
under a microscope at a standardized total magnification 
of 400×—usually achieved by combining a 10× eyepiece 
with a 40× objective lens. The concept of HPF plays a 
crucial role in ensuring consistency across observers and 
imaging systems. 
 
4.1. Total Magnification 

 
In optical microscopy, total magnification, denoted 

𝑚𝑇 , is calculated as the product of the magnifications of 

the objective lens 𝑚𝑜 and the eyepiece lens 𝑚𝑒: 
 

𝑚𝑇 = 𝑚𝑜 × 𝑚𝑒                          (10) 
 

For instance, using a 40× objective and a 10× 

eyepiece yields 𝑚𝑇  = 400×, which satisfies the high-
power field condition commonly used in biological studies. 

In digital microscopy, magnification does not stop at 
the eyepiece or objective. Instead, the image formed by 
the objective is relayed through additional optics—such as 
a projection lens or adapter—before reaching the camera 
sensor. This additional scaling is represented by the 

adapter magnification 𝑚𝑎 , leading to the total camera 
magnification: 
 

𝑚𝐶 = 𝑚𝑜 × 𝑚𝑎                        (11) 
 

For example, using a 40× objective with a 0.5× 

adapter results in 𝑚𝐶 = 20×.  
Unlike optical microscopy, where the human eye 

perceives magnification, digital microscopy relies on 
sensor-captured image dimensions. Therefore, accurate 
calibration of the digital field of view and understanding 
of magnification scaling are essential for quantitative tasks 
such as mitotic index estimation. 
 
 

4.2. Field of View 

 
The field of view (FoV) represents the observable 

area through a microscope. In optical microscopy, the 
FoV is typically circular and depends on the field number 
(FN) of the eyepiece and the magnification of the 
objective lens:  

𝐷𝐹𝑉 =
𝐹𝑁

𝑚𝑜
                                (11) 

𝐴𝐹𝑉 = 𝜋 (
𝐷𝐹𝑉

2
)

2
= 𝜋 (

𝐹𝑁

2𝑚𝑜
)

2
                (12) 

 

 
Table 2 provides the diameter of the FN, and Table 

3 provides examples 𝐴𝐹𝑉  for different combinations of 
FN and objective magnification. For instance, at 40× 
magnification with FN = 20, the field area is 
approximately 0.19625 mm². 

 
 

 

 

Fig. 11. Comparison between the circular field of view 
(FoV) observed through the eyepiece and the rectangular 
FoV captured by the digital image sensor. The eyepiece 
FoV is defined by the field number (FN) and objective 
magnification, while the digital sensor captures a 
rectangular area whose real-world dimensions should be 
calibrated using a stage micrometer. 

Table 2. The diameter of the field of view (FoV). 
 

Magnification FN18 FN20 FN22 

4× 4.50 mm 5.00 mm 5.50 mm 

10× 1.80 mm 2.00 mm 2.20 mm 

40× 0.45 mm 0.50 mm 0.55 mm 

100× 0.18 mm 0.20 mm 0.22 mm 

 
 Table 3. The area of the field of view (FoV). 
 

Magnification FN18 FN20 FN22 

4× 
15.89625 
mm2 

19.62500 
mm2 

23.74625 
mm2 

10× 
2.54340 
mm2 

3.14000 
mm2 

3.79940 
mm2 

40× 
0.15896 
mm2 

0.19625 
mm2 

0.23746 
mm2 

100× 
0.02543 
mm2 

0.03140 
mm2  

0.03799 
mm2 
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Figure 11 illustrates the contrast between a circular 
FoV from optical microscopy and a rectangular FoV from 
digital imaging. In digital microscopy, the FoV is 
rectangular, determined by the physical dimensions of the 
image sensor and the total camera magnification. The real-
world field area is: 

 

𝐴𝑟𝑒𝑎𝑙 = 𝑊𝑟𝑒𝑎𝑙 ∙ 𝐻𝑟𝑒𝑎𝑙                       (13) 
 

where 𝑊𝑟𝑒𝑎𝑙  and 𝐻𝑟𝑒𝑎𝑙  are the calibrated width and 
height of the image, measured in micrometers using a 
stage micrometer (see Figs. 12 and 13). 

 

 
 

4.3. Mitotic Count and HPF Normalization 

 
A high-power field (HPF) corresponds to the area 

observed at 400× magnification, and mitotic figures are 
commonly reported per 10 or 50 HPFs to enhance 
statistical reliability. 

However, the physical size of an HPF—𝐴𝐻𝑃𝐹 —
varies depending on the microscope’s FN and objective 
lens. This variability introduces inconsistency between 
laboratories and observers. To address this, a standardized 

HPF area of 𝐴𝑠𝑡𝑑 = 0.23746 𝑚𝑚2 has been proposed, 
corresponding to the area of an HPF when FN = 22 at 
40×. 

To convert an observed mitotic count over 10 HPFs 

(𝑛𝑜𝑏𝑠) into a normalized count based on the standard area, 
use: 

𝑛10𝑠𝑡𝑑 =
𝐴10𝑠𝑡𝑑

𝐴10𝐻𝑃𝐹
× 𝑛𝑜𝑏𝑠                     (14) 

 

This normalized count 𝑛10𝑠𝑡𝑑 can then be compared 
directly with diagnostic guidelines, without needing to 
account for variations in HPF size across microscopes. 

In digital microscopy, normalization proceeds by 

computing the ratio of the digital field area 𝐴𝑟𝑒𝑎𝑙 to both 

𝐴𝐻𝑃𝐹 and 𝐴𝑠𝑡𝑑. For example, if one digital image frame 
captures an area of 0.180 × 0.135 = 0.0243 mm2 (as in 
Section 4.4), then 10 such images equate to 0.243 mm2 
which less than 1/9.77 of the standard area.  Thus, the 
mitotic count over 10 digital frames must be scaled down 
by this ratio to yield the count per 10 standardized HPFs. 
This ensures equivalence between digital and conventional 
methods and enables consistent thresholding across 
modalities. 
 
4.4. Calibration of Digital Microscopy 

 
Calibration is essential in digital microscopy to 

determine the real-world dimensions represented by each 
pixel in a captured image. This step is necessary because, 
unlike optical microscopy, digital magnification depends 
on the entire optical path and image acquisition system, 
including the objective lens, intermediate optics (e.g., 
adapters), and the camera sensor. 

Calibration is typically performed using a stage 
micrometer or test patterns with known physical 
dimensions (Fig. 12 and 13). By comparing the known 
length on the micrometer to the number of pixels it spans 
in the image, one can determine the physical size per pixel 
and, subsequently, the field of view (FoV). 

For example, using a Raspberry Pi Camera Module 
(with an OV5647 sensor) coupled with a 0.5× optical 
adapter, an image with a resolution of 640 × 480 pixels 
may initially correspond to an approximate physical area 
of 0.180 mm × 0.135 mm, yielding: 

 

𝐴𝑟𝑒𝑎𝑙 = 0.180 × 0.135 = 0.0243 𝑚𝑚2        (15) 
 

 

 

 

Fig. 12. Calibration of the microscope using both an ocular 
micrometer and a stage micrometer. The stage micrometer 
provides a known scale (typically 0.01 mm per division), 
allowing for accurate determination of the field 
dimensions as seen through the eyepiece or captured by 
the digital sensor. 

 

Fig. 13. Captured image showing a calibration grid with 
squares of known dimensions, used to accurately 
determine the field of view (FoV) of the digital camera in 
microscopy applications. 

 

Fig. 14. Captured images showing the apparent sensor area 
during calibration with a stage micrometer: (left) 
horizontal calibration to determine the apparent width of 
the sensor field, and (right) vertical calibration to 
determine the apparent height. These measurements 
provide the actual field of view (FoV) dimensions used in 
quantitative digital microscopy. 
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However, this theoretical estimate based on optical 
specifications often deviates from actual measurements 
due to variations in lens alignment, sensor cropping, and 
projection geometry. Thus, empirical calibration is needed. 

In Fig. 14, calibration results using a stage 
micrometer show that the actual calibrated field 
dimensions are smaller: 

• Width: 𝑊𝑟𝑒𝑎𝑙 = 0.150 𝑚𝑚 

• Height: 𝐻𝑟𝑒𝑎𝑙 = 0.110 𝑚𝑚 

This gives a corrected FoV: 
 

𝐴𝑟𝑒𝑎𝑙 = 0.150 × 0.110 = 0.0165 𝑚𝑚2     (16) 
 

To normalize mitotic counts from digital images to a 

standard high-power field (HPF) area of  𝐴𝑠𝑡𝑑 =
0.23746 𝑚𝑚2, we compute the ratio: 
 

𝐴𝑠𝑡𝑑

𝐴𝑟𝑒𝑎𝑙
=

0.23746

0.01650
≈ 14.39 ≈ 14.4             (17) 

 
Hence, to obtain a mitotic count equivalent to that 

over 10 standardized HPFs, one must multiply the total 
count from 10 digital images by this factor: 

 

𝑛10𝑠𝑡𝑑 = 14.4 × 𝑛𝑜𝑏𝑠                   (18) 
 
This normalization step ensures compatibility with 

standard histopathology guidelines, even when using 
compact or low-cost digital microscopy systems. 
 

5. Results of RBC, WBC, and Platelet Detection 
 

The RetinaNet neural network model, composed of a 
ResNet50 backbone and a Feature Pyramid Network 
(FPN), was implemented to enable high-performance 
object detection within the MicrosisDCN camera set. 
Utilizing transfer learning, the ResNet50 architecture was 
pre-trained on the publicly available Blood Cell Dataset to 
initialize its convolutional layers. This allows the model to 
extract meaningful spatial features using learned filters, 
which are then passed through the FPN for multi-scale 
object classification and localization. 

To enhance detection performance, the anchor boxes 
were modified to better match the typical bounding box 
sizes of red blood cells (RBCs), white blood cells (WBCs), 
and platelets in microscopic images. This process enabled 
RetinaNet to generate high-quality feature maps for 
accurately localizing and classifying small cellular 
structures. 

Training was categorized into three approaches: 
1. Non-parameterized training—The model was trained 

directly using default settings and anchor parameters 
without further customization. 

2. First parameterized training—Anchor parameters and 
other hyperparameters were adjusted to optimize 
detection for blood cell sizes and spatial distributions. 

3. Second parameterized training—Additional tuning 
was performed based on insights from the first model, 
including anchor scaling and anchor ratio refinement. 

 
The expanded training dataset consisted of 

microscope images with a resolution of 1280×960 pixels. 
Within this dataset, subregions were extracted for use in 
feature learning. A filter, or kernel, was applied to these 
image regions to extract features relevant for classification 
and localization. 

Key aspects of the RetinaNet anchor configuration 
include: 

• Strides: Represent the step size of the convolutional 
filter as it slides across the image. Larger strides yield 
coarser but faster feature maps. 

• Ratios: Define the aspect ratio (height to width) of 
anchors. These are used to model objects of varying 
shapes. 

• Scales: Determine the scale of anchor boxes relative 
to the input image size. 

• Anchors: Computed using the combination of scales 
and ratios. For instance, if a feature map has 
dimensions of 128×128 pixels, the number of 
anchors is determined by the product of ratio and 
scale combinations applied at each location. 

In RetinaNet, five levels of feature maps are 
generated from the ResNet50 backbone, each handling 
different object sizes due to downsampling. As an example, 
a feature map of 512×512 allows for fine-grained object 
localization, while lower-resolution feature maps (e.g., 
128×128) focus on larger-scale patterns. 

This anchor-based detection strategy enabled robust 
and scalable cell detection performance across varying cell 
types and sizes in microscope images. Detection outcomes 
using each training approach are evaluated and discussed 
in Section 6, including mAP scores for each cell class.

 

 

 

Fig. 16. Overview of data preparation, model training 
process, and evaluation of cell detection capability. 

 

 

Table 4. The RetinaNet default parameters. 
 

Sizes 32 64 128 256 512 

Strides 8 16 32 64 128 

Ratios 0.5 1 2 3  

Scales 1 1.2 1.6   
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To train the three neural network models, we used a 

standardized command-line interface. The base command 
for training was 
python train.py --weights ./snapshots/blood_model.h5 --config 
config.ini --compute-val-loss --tensorboard-dir ./tensorboard_log --
multi-gpu 2 --multi-gpu-force --batch-size 2 --epochs 50 --steps 1000 
csv annotations.csv classes.csv --val-annotations val_annotations.csv. 

 
For the non-parameterized model (i.e., the default 

training configuration), the --config config.ini argument 
was omitted. 

After training, each model was converted into an 
inference model using the command: 
python convert_model.py –config config.ini   
./snapshots/blood_model_csv_XX.h5  
./snapshots/blood_model_csv_XX_convert.h5, 

 
where XX represents the number of the training epoch 
(ranging from 01 to 50). 

To evaluate the inference model’s performance using 
the validation set, we calculated the mean Average 
Precision (mAP) for all three classes—RBC, WBC, and 
platelets—using the command: 
python evaluate.py csv class.csv  
val_annotations.csv./snapshots/blood_model_csv_XX_convert.h5. 

 
This procedure enabled consistent model evaluation 

and comparison across different parameter configurations 
and training strategies. 

 
5.1. The Model Without Adjusting Parameters 
 

We trained the neural network model without 
parameter adjustments for 50 epochs. The mean Average 
Precision (mAP) values for the three target classes—red 
blood cells (RBC), white blood cells (WBC), and 
platelets—are summarized in Table 5. The highest 
recorded mAP value is 0.7356, while the lowest is 0.6794. 
All three classes yielded mAP values below 0.80 (80%), 
indicating moderate overall performance. 

To further assess the model’s predictive accuracy, we 
compared its cell counts against ground-truth annotations 
derived from human visual inspection over a set of 100 
identical microscope images. Evaluation metrics included 
the mean absolute error (MAE), root mean squared error 

(RMSE), and the coefficient of determination (R-squared). 
The MAE and RMSE values for RBC and WBC 
detections were relatively low, suggesting that the model 
performs well in identifying these two cell types. 
Conversely, platelet detection exhibited significantly 
higher MAE and RMSE values, indicating suboptimal 
performance. 

In terms of R2, RBC and WBC predictions showed 
values close to one, reflecting strong correlation with 
ground-truth counts. However, the platelet class exhibited 
an R-squared value of only 0.1564, implying weak 
predictive capability. The low score can be attributed to 
insufficient overlap between the predicted and actual 
bounding boxes, which hampers accurate class 
identification. Representative results are illustrated in Fig. 
17 for RBCs, and Fig. 18 for WBCs and platelets. While 
the neural network effectively detects RBCs and WBCs, it 
consistently fails to identify platelets. 

 

 
 

Table 5. The model with the first adjusting parameter. 
 

Sizes 16 32 64 128 256 

Strides 8 16 32 64 128 

Ratios 0.5 1 2 3  

Scales 1 1.2 1.6   

 
  

 

Table 6. The model with the second adjusting parameter. 
 

Sizes 8 16 32 64 128 

Strides 4 8 16 32 64 

Ratios 0.5 1 2 3  

Scales 1 1.2 1.6   

 
  

 

Table 7. The result of trained model without adjusting 

parameter. 

 

Class Name RBC WBC Platelets 

MAE 6.09 0.12 58.91 

RMSE 8.4977 0.4899 96.7841 

R-Squared 0.9985 0.9730 0.1564 

mAP 0.7356 

 
  

  

  

  
 

Fig. 17. The actual (left) and predicted (right) red blood 
cells (RBCs) count results of the trained model without 
adjusting parameters. 
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5.2. The Model with the First Adjusting Parameters 

 
In the initial model, where parameters were not 

adjusted, the prediction accuracy for all three classes—red 
blood cells (RBC), white blood cells (WBC), and 
platelets—remained below 0.8000 (80%). This suggests 
that the neural network could effectively detect RBCs and 
WBCs but failed to accurately identify platelets. The mean 
absolute error (MAE) for RBCs and WBCs was 6.09 and 
0.12, respectively, whereas the MAE for platelets reached 
58.91, underscoring the model’s inadequacy in detecting 
platelets. 

To improve the model’s performance across all three 
cell types, we modified the anchor settings to better align 
with the actual object sizes in the annotated images, 
thereby producing feature maps more capable of accurate 
classification. Table 4 presents the default anchor 
parameter values, where the sizes parameter defines the 
image point area used for feature separation, based on the 
number of feature layers. The smallest value, 32, 
corresponds to an area of 32×32 pixels. Objects smaller 
than this threshold are mapped inadequately and therefore 
remain undetected. 

Following the anchor optimization method proposed 
by Zlocha et al. [24], which tailored anchors for small 
object detection in CT scan images, we reconfigured the 
anchor parameters (referred to as type 1) and retrained the 
model. Table 8 summarizes the training process over 50 
epochs. The resulting mAP values for the three classes 
ranged from 0.7305 to 0.8681, representing a substantial 
improvement, with all values now exceeding the 0.8000 
(80%) threshold. These results suggest that the refined 
model performs better in detecting all three cell types. 

To validate the model, we compared its predictions 
against ground-truth counts performed by human 
observers using 100 identical microscope images. The 
revised model produced low MAE and RMSE values for 
all classes, and the R-squared values were close to 1.00, 
indicating high correlation and low variance between 
predicted and actual counts. Fig. 19 and 20 present sample 
predictions of RBCs, WBCs, and platelets. The results 
confirm that the improved neural network model is 
capable of reliably detecting and counting all three cell 
types. 

 
 

 
 

  

  

  
 

Fig. 18. The actual (left) and predicted (right) white blood 
cells (WBCs) and platelets count results of the trained 
model without adjusting parameters. 

 

Table 8. The result of trained model with the first 
adjusting parameter. 

 
Class Name RBC WBC Platelets 

MAE 1.06 0.06 4.23 

RMSE 1.6432 0.2449 9.1011 

R-Squared 0.9998 0.9933 0.9960 

mAP 0.8681 

 
  

  

  

  
Fig. 19. The actual (left) and predicted (right) red blood 
cells (RBCs) count results of the trained model with the 
first adjusting parameter. 
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5.3. The Model with the Second Adjusting 

Parameters 
 
In the second parameter adjustment, the prediction 

accuracy for all three classes declined significantly. This 
configuration employed anchor optimization to reduce 
anchor sizes further, enabling the convolutional (CONV) 
layers to extract more localized features—an essential 
aspect of accurate feature extraction. As shown in Table 
16, the Sizes parameter represents the pixel area assigned 
for each anchor, which must be appropriately scaled to 
allow smaller feature layers to detect fine details. In this 
configuration, the smallest anchor was set to 32×32 pixels, 
as in earlier models. 

For this experiment, the anchor parameter was 
adjusted to type 2 for retraining the neural network. Table 
9 presents training progress across 50 epochs. The 
resulting mean average precision (mAP) values for the 
three classes ranged from a maximum of 0.2293 to a 
minimum of 0.0037. These values indicate substantially 
lower prediction accuracy compared to both the baseline 
model and the first parameter-adjusted model, with all 
mAP values falling below the 0.8000 (80%) threshold. 

The model was further evaluated by comparing its 
predictions on a test set of 100 identical microscope 
images to human-counted ground truth values. The 
resulting mean absolute error (MAE) and root mean 
squared error (RMSE) values were high for all three cell 
types, confirming the model’s poor performance. While 
the R-squared value for red blood cells approached 1.0, 
suggesting some correlation between predicted and actual 
values, the white blood cell count was low, and platelet 
detection failed entirely—with no correct predictions 
recorded. 

 

 

 
 

 
 

  

  
Fig. 20. The actual (left) and predicted (right) white blood 
cells (WBCs) and platelets count results of the trained 
model with the first adjusting parameter. 

Table 9. The result of trained model with the second 
adjusting parameter. 
 

Class Name RBC WBC Platelets 

MAE 48.9 1.36 59.36 

RMSE 61.0210 2.5287 97.3676 

R-Squared 0.9710 0.3294 Negative 

mAP 0.0037 to 0.2239 

 
  

  

  

  
Fig. 21. The actual (left) and predicted (right) red blood 
cells (RBCs) count results of the trained model with the 
second adjusting parameter. 

 
 

 
 

  
Fig. 22. The actual (left) and predicted (right) white blood 
cells (WBCs) and platelets count results of the trained 
model with the second adjusting parameter. 
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6. Conclusion and Discussion 
 
This study presents the development of an intelligent 

camera kit capable of automatically detecting and counting 
blood cells from peripheral blood smear (PBS) images. 
The system integrates RetinaNet with auto-anchor 
optimization to enhance detection performance and 
accelerate the blood cell counting process for diagnostic 
applications. The resulting device, named MicrosisDCN, 
is an embedded smart camera that operates alongside a 
compound microscope to classify and quantify blood cells 
in real time using a neural network model. 

The MicrosisDCN camera attaches directly to the 
eyepiece lens tube of a microscope. By multiplying the 
standard FoV area by a factor of 14.4 40× “field images” 
to equal standard area, the system can display blood cell 
counts in a standardized format—matching the mitotic 
count unit observed under a 40X objective lens. This 
approach effectively emulates the conventional high-
power field (HPF) count but automates the detection 
process, reducing manual effort and interpretation 
variability. 

Unlike commercial microscope cameras that serve 
only as imaging interfaces and require specific trinocular 
models and proprietary software, MicrosisDCN is 
designed for versatility and independence. It supports 
eyepiece diameters of 23.2 mm, 30.0 mm, and 30.2 mm, 
and comes equipped with a fully functional embedded 
system that includes screen, keyboard, and mouse 
connectivity, eliminating the need for an external 
computer. 

The device runs a pre-installed neural network model 
but can also be reprogrammed for custom detection tasks. 
Users can retrain or fine-tune the detection algorithm for 
specific applications—such as identifying parasites, 
protozoa, or novel pathogens—by transferring the model 
to a Linux or Windows computer, retraining with new 
image datasets, and then redeploying to the MicrosisDCN 
device. 

To support this adaptability, the researcher created an 
expanded image dataset by capturing and annotating 
blood cell images under the microscope. A custom script 
was developed to streamline the annotation process and 
convert bounding box data into a scalable format that is 
more efficient than traditional XML as the dataset grew. 
This dataset was then used to train neural networks using 
TensorFlow, forming the basis for the models embedded 
in the MicrosisDCN system. 
 
Three types of model training strategies were tested: 

• Non-parameterized model training achieved the 
highest mAP of 0.7356, successfully detecting red 
and white blood cells but failing to identify platelets. 

• Parameterized model 1 training reached the highest 
performance with a mAP of 0.8681, accurately 
detecting red blood cells (RBCs), white blood cells 
(WBCs), and platelets. 

• Parameterized model 2 training resulted in a 
significantly lower mAP of 0.2239, failing to reliably 
locate small cells. 

Based on these findings, parameterized model 1 is 
recommended for deployment on the MicrosisDCN 
system. Users can initiate model inference or training 
directly on the embedded Raspberry Pi Compute Module 
3+ using the OV5647 image sensor (5 MP resolution). 

In conclusion, AI-powered tools have revolutionized 
blood cell counting, enhancing accuracy and time 
efficiency. Utilizing techniques like CNNs, image 
segmentation algorithms, and deep learning classification 
models, these tools reduce manual labor and detect blood 
cell types from microscopic images. However, these 
solutions are often costly and require specialized hardware, 
making them less accessible in low-resource settings or 
smaller clinics. Our proposed method offers affordability, 
simplicity, and adaptability, making it suitable for broader 
clinical implementation in under-resourced healthcare 
environments. MicrosisDCN offers a compact, cost-
effective, and highly adaptable solution for automated 
blood cell analysis in diagnostic and research settings. Its 
flexibility and self-contained design make it ideal for 
fieldwork, education, and laboratory automation—
bridging the gap between traditional microscopy and 
intelligent vision systems.  
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Fig. 23. MicrosisDCN received a gold medal at the 48th 
International Exhibition of Inventions Geneva, the Swiss 
Confederation. 
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