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Abstract. This research introduces a novel approach to assess multiple drought risks 
through the development of a comprehensive Drought Risk Index (CRI). This index is 
developed by multiplying a newly formulated Multiple Drought Hazard Index (MDHI) 
with a Combined Vulnerability Index (CVI) and a Combined Exposure Index (CEI). The 
MDHI accounts for the impacts of meteorological, hydrological, and agricultural droughts, 
while the CVI and CEI encompass combined economic and social dimensions. The 
computed drought risk maps delineate various risk levels across the Sukhothai Province 
from 2007 to 2020. Given data limitations, the observed drought damages in the area are 
utilized to estimate vulnerability. The economic analysis predominantly focuses on 
agricultural losses, whereas the social analysis examines the impacts on affected 
populations, households, particularly females, children, those in poverty, and the aging 
population. Economic exposure is assessed based on the values of agricultural products 
while social exposure is based on population density, households and vulnerable social 
contents. Analysis of drought risk maps spanning 2007 to 2020 reveals a consistent 
escalation in drought-affected areas, transitioning from absence of drought to severe 
occurrences over the decades. Evaluating direct impacts in monetary terms and the 
number of affected population and households provides valuable insights into the 
historical and present-day ramifications of droughts. This study pioneers a novel 
methodology for drought risk assessment, aiming to adapt and mitigate potential future 
drought impacts. 
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1. Introduction 
 

Drought is a major natural disaster that affects water 
resources for human and environmental needs [1]. It 
occurs when precipitation is shortage and/or surface and 
groundwater are limited. Many countries face severe 
droughts, especially in South-East Asia, where over 70% 
of the region experienced extreme droughts in 2015-2016 
and 2018-2020 after the 1997-1998 El Niño. These 
droughts exposed about 325 and 210 million people to 
moderate and high drought risk levels [2]. In Thailand, 
drought impacts various economic sectors, mainly 
agriculture. The estimated damage cost was 1.7 billion 
baht in 13 provinces during 2015-2016 [3]. In 2020, crop 
production losses reached 26 billion baht or US dollars 
840 million (1Baht=0.028US dollars), and off-season rice 
production declined by 40% [4]. About 32,000 hectares of 
crops and orchards were damaged by the worst drought in 
40 years [5]. Paddy fields, which cover 18% of the country 
area [6], are the most vulnerable. Rice is a vital export 
product for Thailand, along with tapioca, rubber, and 
canned pineapple [7]. However, drought analysis requires 
more than meteorological conditions (precipitation and 
temperature). Soil, surface, and groundwater storage also 
affect crops and humans. Soil moisture in the root zone 
relates to crop stress [8] or agricultural drought [9], which 
worsens with low precipitation. A long dry period can 
cause water shortage in streamflow, reservoir, and 
groundwater, leading to hydrological drought [10-11]. 

Different drought types require various indicators or 
indices to measure their severity, location, and duration 
[12]. The Standard Precipitation Index (SPI) is a global 
drought monitor that uses precipitation data to 
characterize meteorological drought [13]. It shows the 
period and intensity of precipitation deficit. For 
hydrological drought, surface and subsurface water 
resources are often measured by the Standardized Runoff 
Index (SRI), Standardized Streamflow Index, and 
Standardized Groundwater Index (SGI) from runoff and 
groundwater level data [14-18]. Remote sensing is used to 
analyze vegetation health and soil moisture on land surface 
by the Normalized Difference Vegetation Index (NDVI) 
[19-21]. The Normalized Difference Moisture Index 
(NDMI) indicates the status of soil water content and 
vegetation health for agricultural drought [22]. 
Socioeconomic drought is commonly assessed by surface 
water supply for household and agriculture using the 
Water Supply Index (SWSI) [23-24]. According to WMO 
and GWP [12], no single indicator can present all drought 
types due to different hydro-meteorological conditions in 
each country and region. The best way to determine 
drought indicator is using a multiple or composite index 
that covers all drought types. The multiple drought index 
has been developed in recent decades. For example, a 
previous study developed Multiple Drought Index (CDI) 
from the link between SPI and Streamflow Drought Index 
(SDI) in a sub-basin of Han River, Korea [25-26]. Ali [26] 
assessed a new multivariate multiple drought index for the 
Blue Nile River Basin from SRI, SPI, standardized soil 

moisture index (SSI), and standardized evapotranspiration 
index (SETI) for meteorological, hydrological, and 
agricultural droughts, respectively. A new multiple 
drought hazard index (MDHI) is developed in this study, 
taking into account the standardized precipitation index 
(SPI) for meteorological droughts, the standardized runoff 
index (SRI) for surface hydrological droughts, the 
standardized groundwater index (SGI) for subsurface 
hydrological droughts, and the normalized difference 
moisture index (NDMI) for agricultural droughts.  

Drought risk assessment usually analyzes past and 
present climate data to relate to previous drought 
situations [27]. In Thailand, drought affects many aspects 
of economic and social sectors. However, no research has 
assessed the agricultural damages and the affected people 
in monetary terms for the past and present periods. The 
affected people and households, especially children, 
elderly, and poor, need to be considered to present the 
overall drought impacts [28]. Understanding drought 
hazard, vulnerability, and exposure is the key to drought 
risk assessment, which can identify the potential critical 
areas and damages from drought events.  

The main objective of this study is to assess the risk 
conditions on socio-economic sectors in Sukhothai 
Province, Thailand, utilizing a new approach in estimating 
of hazard, vulnerability, and exposure. The direct impact 
on the economic sector was quantified in monetary terms, 
while social impacts were analyzed mainly based on the 
number of affected people and housing units. However, 
the quantification of social impacts in monetary terms 
poses challenges due to the intricate nature of social 
systems, the prolonged and enduring effects of drought, 
and the incorporation of non-market values into the 
assessment. This study emphasizes the significance of 
integrating both economic and social factors in the 
assessment of drought risk in the past till present. 
 

2. Study Area  
 

The Sukhothai Province is located in the lower 
northern region of Thailand with approximately 440 
kilometers from Bangkok. It has a land cover 
(approximately 6,596.09 square kilometers or 4,122,557 
rai). The upper part is connected to the Phrae and 
Uttaradit Provinces, the lower part is connected to the 
Phitsanulok and Kamphaeng Phet Provinces, and the 
eastern and western parts are connected to the 
Phitsanulok-Uttaradit, and Tak-Lampang Provinces, 
respectively. The administration divides the province area 
into 9 districts, namely Mueang Sukhothai, Khiri Mat, Ban 
Dan Lan Hoi, Kong Krailat, Si Samrong, Sawankhalok, 
Thung Saliam, Si Satchanalai, and Si Nakhon Districts as 
shown in Fig. 1(a). There are 86 sub-districts and 843 
villages in the province. The locations of meteorological, 
hydrological and groundwater stations are shown in Fig. 
1(b). 

In Fig. 1(c), the agricultural land is about 3,913.76 km2 
or 59.33% of total area; forest land is located at the upper 
part of area and 2,087.46 km2 or 31.64% of total area; 



DOI:10.4186/ej.2025.29.5.1 

ENGINEERING JOURNAL Volume 29 Issue 5, ISSN 0125-8281 (https://engj.org/) 3 

habitable land, water body and miscellaneous land area are 
about 351.12, 180.43, 63.32 km2 or 5.32, 2.74 and 0.97% 
of total area, respectively. Paddy field is large proportion 
in agricultural area (approximately 2,237.79 km2 or 57.18% 
of agricultural area). Field crops are sugarcane, cassava, 
maize, etc. Fruit farm land and perennial crop e.g., mango, 
orange, rubber tree and oil palm cover about 1,184.45 and 
463.59 km2 or 30.26 and 11.85% of the agricultural area.  

The other agricultural area (integrated farm/diversified 
farm, horticulture, shifting cultivation, pasture and farm 
house and aquaculture land) is about 27.93 km2 or 0.71% 
of agricultural area.  The Sukhothai Province has a tropical 
climate which divides into 3 seasons: summer (March-
April), rainy (May-October) and winter (October-
February). The average annual rainfall is 1,225.3 mm and 
average temperature is about 27.2 degrees Celsius. 

3. Methodology  
 
The overall methodology involves assessing drought 

hazards and risks in agricultural areas of Sukhothai 

Province as shown in Fig. 2. The research framework 
comprises three paths: Path A for drought hazard 
identification, Path B for vulnerability and exposure 
identification, and Path C for drought risk estimation. 

 
Fig. 1. (a) Sukhothai Province and its districts, (b) Locations of meteorological, hydrological and groundwater stations, 
and (c) Land use map in 2016. 
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Path A involves the development of a multiple drought 
hazard indices through the Multiple Drought Hazard 
Index (MDHI). The workflow in Path A extends from 
Block A.1 to Block A.4, as shown in Fig. 2. The index can 
represent three categories of droughts: meteorological, 
hydrological, and agricultural. The meteorological drought 
from Thai Meteorological Department (TMD) is 
characterized by the SPI, serving as a drought indicator. 
The SRI and SGI are derived from monthly runoff and 
groundwater level data from Royal Irrigation Department 
(RID) and Department of Groundwater Resources (DGR) 
in the study area, while the NDMI is obtained from 
satellite imageries from Landsat 5, 7, and 8 
(https://earthexplorer.usgs.gov/). An approach employs 
the Analytic Hierarchy Process (AHP) technique to 
estimate weighting factors for each drought index (SPI, 
SRI, SGI, and NDMI). Then all drought indices and 
weighting factors are combined to form the multiple 
drought hazard indicator MDHI. 

The workflow in Path B extends from Block B.1 to 
Block B.2. In Block B.1, the vulnerability is examined 
from physical characteristics, encompassing economic and 
social sectors. In the economic sector, the vulnerability 
index (VIeconomic) is determined from the observed 
agricultural production losses and the drought duration-
hazard-damage curves. The vulnerability index (VIsocial) of 
the social sector is determined in relation to the observed 
drought hazard-damage curve. In Block B.2, the economic 
sector analysis focuses on agricultural damages, utilizing 
maps of crop income to define the exposure index 
(EIeconomic). For the social sector, maps of vulnerable 
groups such as population and households, females, 
children under 5 years old, poverty, and aging population 
are used to determine the exposure index (EIsocial).  

The workflow in Path C extends from Block C.1 to 
Block C.2, utilizing input data from Paths A and B. The 
drought risk assessment investigates the estimation of the 
Drought Risk Index (CRI) from the function of hazard, 
vulnerability, and exposure. The study presents the past 
and current drought impacts in monetary terms in the 
economy sector and in numbers of affected people and 
housing units in social sector.  The results of both drought 
hazard and risk maps will be compared with observed 
drought maps using statistical parameters. 
 
3.1. Hazard  

 
To assess drought hazard, this study investigates the 

different causes and parameters of agricultural, 
meteorological, and hydrological drought types. The 
multiple drought hazard index (MDHI) is developed by 
summing the weighted SPI for meteorological drought, 
the SRI and SGI for surface and subsurface hydrological 
drought, and the NDMI for agricultural drought. The 
respective weighting factors of SPI, SRI, SGI and NDMI 
are derived from the AHP technique The paddy field (rice) 
can withstand a rainfall shortage of about one month, 
while field crops (cassava, sugarcane, and corn) can 

withstand a rainfall shortage of about 3 months. For fruit 
crops, they can withstand a rainfall shortage of about 6 
months. This guides us to use the timescales of 1, 3, and 
6-months for paddy, field crop, and fruit/perennial crops, 
respectively. 

The MDHI is calculated as the sum of the product of 
the weighting factor (Wi) and the hazard index (HIi) for 
the three drought types: meteorological, hydrological, and 
agricultural as following:  

 
MDHI = WSPI x HISPI + WSRI x HISRI + WSGI x HISGI + 

WNDMI x HINDMI (1) 
 
where MDHI is Multiple Drought Hazard Index, the sum 
of the weights WSPI+ WSRI+ WSGI+ WNDMI = 1, Wi is the 
weighting factor from AHP, HIi is the hazard index shown 
in Table 1.  

 
* MDHI is classified according to data provided by Land Development 

Department (LDD) and Department of Disaster Prevention and 
Mitigation (DDPM).  

 
 

 
Table 1. Drought hazard components. 
 

No Index Drought Hazard 
Classification 

Drought 
Hazard Level 

HIi Wi 

1 
 

NDMI 
[22] 

 

 
 

NDMI ≥ 0 Canopy Cover 0 0.565 

0 > NDMI ≥ −0.20 Mid-Low 
Canopy Cover, 
High Water 
Stress or Low 

Canopy Cover, 
Low Water 
Stress 

0.20 

−0.20 > NDMI
≥ −0.40 

Low Canopy 
Cover, Dry or 
Very Low 

Canopy Cover, 
Wet 

0.40 

−0.40 > NDMI
≥ −0.60 

Very Low 
Canopy Cover 

0.60 

−0.60 > NDMI
≥ −0.80 

Almost Absent 
Canopy Cover 

0.80 

SRI < −0.80 Bare Soil 1.00 

2 SRI 
[14] 

 
 

SRI ≥ 0 No Drought 0 0.262 

0 > SRI ≥ −1.0 Mild Drought 0.25 

−1.0 > SRI ≥ −1.5 Moderate 
Drought 

0.50 

−1.5 > SRI ≥ −2 Severe Drought 0.75 

SRI < −2 Extreme 
Drought 

1.00 

3  SGI 

[17] 
SGI ≥ 0 No Drought 0 0.118 

0 > SGI ≥ −1.0 Mild Drought 0.25 

−1.0 > SGI ≥ −1.5 Moderate 
Drought 

0.50 

−1.5 > SGI ≥ −2 Severe Drought 0.75 

SGI < −2 Extreme 
Drought 

1.00 

4 SPI 
[13] 

SPI ≥ 0 No Drought 0 0.055 

0 > SPI ≥ −1.0 Mild Drought 0.25 

−1.0 > SPI ≥ −1.5 Moderate 
Drought 

0.50 

−1.5 > SPI ≥ −2 Severe Drought 0.75 

SPI < −2 Extreme 
Drought 

1.00 

5 MDHI* 
 

MDHI≤0 No Hazard   

0<MDHI≤0.20 Very Low 

Hazard 

 

0.20<MDHI≤0.40 Low Hazard  

0.40<MDHI≤0.60 Medium Hazard  

0.60<MDHI≤0.80 High Hazard  

0.80<MDHI≤1.00 Very High 
Hazard 
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Fig. 2. Methodology and computational procedure for the drought hazard, vulnerability, exposure and risk on economic 
and social sectors in Sukhothai Province. 
 

After developing the multiple drought hazard, it is 
classified into six hazard levels. These are: no (MDHI≤0), 
very low hazard (0<MDHI≤0.20), low hazard 
(0.20<MDHI≤0.40), medium hazard 
(0.40<MDHI≤0.60), high hazard (0.60<MDHI≤0.80), 
and very high hazard (0.80<MDHI≤1.00), as shown in 
Table 1.  

This classification is based on repeated drought maps 
from 2006-2015 and 2012-2021 provided by the Land 
Development Department (LDD) 
(http://irw101.ldd.go.th/index.php), and drought-
frequency maps at various locations from 2011-2020 
provided by the Department of Disaster Prevention and 
Mitigation (DDPM) (https://portal.disaster.go.th/). 

To measure the performance of the hazard simulation, 
four performance indicators were used: the coefficient of 
determination (R2), Nash-Sutcliffe Efficiency (NSE), 
Mean Absolute Error (MAE), and Percent Bias (PBIAS). 
These indicators were used to verify the correlation 
between observed and computed hazard maps. The data 
observed consists of drought frequency maps, which were 
collected from DDPM. These maps include 827 surveying 
points gathered between 2012 and 2014, and 586 
surveying points collected from 2015 to 2020. This data 
was used for calibration and validation purposes. 
3.2. Vulnerability 

 

 

 a h  :  Hazard  s ima ion 

 .1  s ima ing   andardized  re i i a ion Inde  
(  I),   andardized  uno   Inde  (  I), 
  andardized  roundwa er Inde  (  I), and 
 ormalized Di  eren e Mois ure Inde  ( DMI) 
 rom mon hly  re i i a ion, runo  , groundwa er 
and sa elli e images. ( ee Ta les 1  2) 

 .2  om u a ion o  weigh ing  a  ors using  he 
 naly i  Hierar hy  ro ess ( H )  e hni ue  

 .  Develo ing Mul i le Drough  Hazard Inde  
(MDHI)  rom drough  indi es and weigh ing 
 a  ors using   . (1). ( ee Ta les 1 2) 

 .4  ali ra ion and valida ion o  MDHI wi h 
o served drough  ris s a  various lo a ions using 

 
2
,    , M  , and   I  . ( igs.    4)) 

 a h  :   ulnera ili y and    osure  s ima ion 

 .  ulnera ili y and e  osure on e onomi  and so ial se  ors 

 .1 - s ima ing vulnera ili y o  e onomi  se  or  ased 
on agri ul ural damages using  he drough  dura ion-
hazard-damage  urve in  ig.  .  
- s ima ing vulnera ili y o  so ial se  or using  he 
drough  hazard-damage  urve in  ig. 6. 
( ee resul s in  ig.  ). 

 .2  s ima ing e  osure on e onomi  se  or  rom  ro  
in omes and on so ial se  or  ased on ma s o  
 o ula ion, households,  emales,  hildren under   years 
old,  over y, and  o ula ion aging) as shown in Ta le 
4. ( ee resul s in  ig. 8). 

 .2  er orman e evalua ion o   om u a ion o  drough  ris  on e onomi  se  or and so io-e onomi  se  or  or 

 he  eriod 2011-2020 wi h o served drough  ris s a  various lo a ions in  he s udy area using  
2
,    , M  , and 

  I  . ( ee  ig. 12) 

 .1  om u a ion o   is  Inde  (  I)  rom MDHI,   I and   I and illus ra ion o  ris  ma s o  e onomi  se  or 
and so io-e onomi  se  ors using  is    Hazard    ulnera ili y      osure    s. (6,  , 8). ( ee  igs.  , 10, 11). 

 a h  :  s ima ion o   is  
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Vulnerability is the condition of susceptibility to 
drought hazard of economic, social and environmental 
sectors [29]. In this study, the vulnerability is basically 
divided into two sectors: economic and social. The 
economic impact, which constitutes a large proportion of 
drought impacts, is the crop damage. Due to large 
variations of vulnerability over the large study area (6,596 
km2) from one location to another location, and lack of 
sufficient data, the vulnerability is estimated indirectly 
from the observed damages in the study area. The 
Vulnerability Index (VIeconomic) is determined from the 
observed crop damage in relation to, drought duration and 
drought hazard, [30-32]. The Vulnerability Index (VIsocial) 
of social sector is determined from the observed social 
impact or damage in relation to the drought hazard   The 
Combined Vulnerability Index (CVI) for socio-economic 
sectors was analyzed from VI values of economic and 
social sectors as shown in Eq. (2). 

 
CVI = Weconomic  × VIeconomic+ Wsocial  × VIsocial  (2) 

 
where Combined Vulnerability Index is CVI value of 
economic and social sectors, Weconomic+ Wsocial = 1, Wi is 
the weighting factor from AHP. 
 
3.3. Exposure 

 
The exposure is estimated from the conditions of the 

economic and social sectors. The exposure to droughts 
can be classified into two sectors: economic and social. 
The economic sector pertains to the agricultural part, 
which incurs a significant percentage of damages and 
losses in Sukhothai Province. The agricultural land 
comprises various crops including rice, cassava, maize, 
pineapple, sugar cane, orange, mango, and coconut. This 
sector is defined based on crop yield and market prices of 
rice, cassava, maize, and sugarcane using the following Eq. 
(3): 

Crop Income = Crop Yield x Crop Price (3) 
 
where Crop Yield is the crop productivity in unite 
(kilogram per rai), Crop Price is the commodity prices of 
each crop in unite (Baht per kilogram), Crop Income is the 
total financial return from each crop, measured in units 
(Baht per rai).  

On the other hand, the social aspect focuses on 
vulnerable groups. These include the number of people, 
households, females, children under 5 years old, poverty, 
and population aging. These groups represent new 
challenges in the context of global social issues. 

The Combined Exposure Index (CEI) for economic 
and social sectors was derived by analyzing the Exposure 
Index (EI) values of both economic and social sectors, as 
shown in Eq. (4) 

 
CEI = Weconomic  × EIeconomic+ Wsocial  × EIsocial  (4) 

where Combined Exposure Index is CEI value of 
economic and social sectors, Weconomic+ Wsocial = 1, Wi is 
the weighting factor from AHP. 

Moreover, vulnerability within the social sector, 
utilized to define CEI, was analyzed through major 
vulnerability groups: the population and households. The 
computation of the exposure index on social sector was 
assessed from EI values of population and household with 
weighting factors.  

 
EIsocial = Wpopulation× EIpopulation+ Whousehold× EIhousehold  (5) 
 
where Wpopulation+ Whousehold = 1, Wi is the weighting factor 
from AHP. 

 
3.4. Risk 
 

The Sendai Framework [33] broadly defines drought 
risk as the potential loss of life, injury, or destruction or 
damage to assets that could occur to a system, society, or 
community over a specific period of time. This is 
determined probabilistically as a function of drought 
hazard, exposure, and vulnerability. In the general 
approach to drought risk assessment, the indices of 
exposure and vulnerability are multiplied by the hazard, 
index which is assessed from the physical characteristics 
of the droughts [29]. Following the Sendai Framework and 
the World Bank, the drought risk formula is defined as 
shown in Eq. (6). The application in this study for 
economic sector and for social sector involves hazard, 
vulnerability, and exposure, represented by MDHI, VI, 
and EI respectively, as shown in Eq. (7).  

 
Risk = Hazard × Vulnerability × Exposure       (6) 

 
RI = MDHI × VI × EI                                 (7) 

 
where MDHI is Multiple Drought Hazard Index, VI is 
Vulnerability Index, EI is Exposure Index, and RI is Risk 
Index.  

For combined economic and social sectors, the 
Combined Drought Risk (CRI) is computed from the 
product of MDHI, CVI, and CEI respectively, as shown 
in Eq. (8). 

 
       CRI = MDHI × CVI × CEI       (8) 

 
The results of risk assessment are presented in terms 

of potential direct impacts based on biophysical-agro 
economic models, quantified economically or monetarily, 
through the crop yield and price data [34]. 
 

4. Results  
 

4.1. Hazard 
 

4.1.1.  Standardized precipitation index (SPI) 
 

The SPI technique was estimated using monthly time 
series data on precipitation. SPI1, SPI3, and SPI6 were 
utilized to assess damage to agricultural areas [7]. Monthly 
precipitation data from meteorological stations were 



DOI:10.4186/ej.2025.29.5.1 

ENGINEERING JOURNAL Volume 29 Issue 5, ISSN 0125-8281 (https://engj.org/) 7 

gathered and analyzed to calculate SPI1, SPI3, and SPI6 
from 1950 to 2021. Table 2 presents the average SPI 
values from all meteorological stations, including three 
timescales of drought events: 1, 3, and 6 months. These 
are divided into four-time steps: 2005s (2005-2009), 2010s 
(2010-2014), 2015s (2015-2019), and 2020s (2020-2021). 
The SPI1 values for 2005s and 2010s were positive, 
indicating wet conditions. Negative values were observed 
in 2015s and 2020s for stations 373201 and 380201. For 
SPI3, stations 328202, 373201, 373301, 378201, and 
380201 showed negative values in 2015s and 2020s, while 
stations 376201 and 376203 exhibited positive SPI3 values. 
Most SPI6 values in 2015s and 2020s were negative, 
indicating dry or drought conditions. 

 
4.1.2. Standardized runoff index (SRI) 
 

Monthly runoff data was utilized to compute SRI 
values using the SPI technique. This involved analyzing 
the monthly runoff data from a gamma distribution to 
form a probability density function. Approximately nine 
hydrological stations at Yom River and its sub-rivers in 
Sukhothai Province were used to calculate the SRI value, 
as shown in Table 2. The majority of average SRI1, SRI3, 
and SRI6 values were positive in the 2005s and 2010s, 
indicating wet conditions. In the 2015s and 2020s, more 

than half of the hydrological stations recorded negative 
values, with a twofold increase from the 2015s to the 
2020s. All stations presented a trend of SRI values 
changing from positive to negative, or from wet to dry 
conditions. This change to negative values in SPI6 during 
the 2020s was particularly noticeable. However, station 
Y.26 was closed in December 2017. 
 
4.1.3. Standardized groundwater index (SGI) 
 

The SGI was calculated by analyzing the monthly 
groundwater level data measured from groundwater wells 
in Sukhothai Province. Approximately nine groundwater 
wells, namely 5307C023, 5307D024, 5307F023, 5407A028, 
5407D027, GWA137, GWA139, GWA141, and MB969, 
were used to calculate the SGI value for 1, 3, and 6 month 
timescales. For Table 2, the groundwater level data for 
stations 5307C023, 5307D024, 5307F023, 5407A028, and 
5407D027 began in January 2014, and the SGI values 
range from January 2014 to December 2021. Most 
groundwater stations exhibit a similar trend, transitioning 
from positive to negative values, with a clear shift to dry 
conditions in the 2020s. However, the SGI value for 
GWA137 showed negative values in both the 2005s and 
2020s

 

 
4.1.4. Multiple drought hazard index (MDHI) 

 
The MDHI is calculated by summing the product of 

the weighting factor (Wi) and the hazard index (HIi) for 
three types of droughts, as shown in Eq. (1). The 

weighting factors, derived from the AHP technique, were 
computed in a previous section and are as follows: WNDMI 
= 0.565, WSRI = 0.262, WSGI = 0.118, and WSPI = 0.055. 
These factors were analyzed from a questionnaire survey 
with 500 samples. From the survey, NDMI (agricultural 
drought) was found to have the greatest impact on 

Table 2. The average SPI, SRI and SGI values with different timescales (1, 3 and 6 months) in 2005s (2005-2009), 
2010s (2010-2014), 2015s (2015-2019) and 2020s (2020-2021). 
 

No Drought Timescale 1-Month 3-Month 6-Month 

Code 2005s 2010s 2015s 2020s 2005s 2010s 2015s 2020s 2005s 2010s 2015s 2020s 

Standardized Precipitation Index (SPI) 
1 328202 0.14 0.20 0.15 0.10 -0.03 0.13 0.04 -0.02 0.02 0.10 -0.01 -0.03 
2 373201 0.13 0.26 -0.10 -0.13 0.02 0.28 -0.30 -0.32 0.13 0.36 -0.49 -0.42 
3 373301 0.16 0.19 0.01 0.04 -0.02 0.12 -0.17 -0.08 -0.05 0.12 -0.29 -0.08 
4 376201 0.16 0.29 0.16 0.26 0.08 0.21 0.07 0.26 0.17 0.18 -0.09 0.34 
5 376203 0.28 0.14 0.13 0.19 0.23 0.01 0.03 0.18 0.34 -0.07 -0.10 0.18 
6 378201 0.24 0.26 0.04 0.01 0.17 0.28 -0.16 -0.13 0.21 0.30 -0.30 -0.28 
7 380201 0.14 0.30 0.03 -0.03 0.05 0.33 -0.10 -0.20 0.10 0.39 -0.20 -0.38 

Standardized Runoff Index (SRI) 
1 Y.3A 0.45 0.12 -0.78 -1.43 0.54 0.22 -0.85 -1.64 0.70 0.36 -0.79 -1.89 
2 Y.4 0.72 0.87 0.08 -0.12 0.89 0.99 0.03 -0.22 1.01 1.04 0.02 -0.27 
3 Y.6 0.81 0.46 -0.19 -1.41 0.91 0.66 -0.13 -1.59 0.89 0.84 -0.12 -1.64 
4 Y.14 0.62 0.73 -0.23 -1.09 0.68 0.80 -0.27 -1.10 0.75 0.89 -0.29 -1.02 
5 Y.16 0.43 0.32 -0.34 -0.85 0.50 0.35 -0.51 -1.12 0.61 0.42 -0.61 -1.42 
6 Y.21 0.78 0.62 0.21 0.15 0.76 0.62 -0.02 -0.07 0.70 0.63 -0.22 -0.29 
7 Y.26 0.72 0.53 -0.31 - 0.74 0.51 -0.58 - 0.75 0.54 -0.72 - 
8 Y.29 1.21 0.95 0.81 0.81 1.29 0.62 0.42 0.38 1.24 0.32 0.00 -0.02 
9 Y.33 0.61 0.17 -0.33 -0.90 0.67 0.23 -0.39 -1.12 0.74 0.42 -0.40 -1.31 

Standardized Groundwater Index (SGI) 
1 5307C023 - 0.63 0.02 -1.36 - 0.65 0.04 -1.39 - 0.67 0.07 -1.43 
2 5307D024 - 0.61 0.06 -1.41 - 0.62 0.08 -1.45 - 0.64 0.12 -1.49 
3 5307F023 - 0.97 -0.18 -1.56 - 1.01 -0.19 -1.55 - 1.06 -0.19 -1.50 
4 5407A028 - 0.24 0.33 -1.00 - 0.21 0.35 -1.03 - 0.21 0.35 -1.02 
5 5407D027 - 1.16 0.24 -1.25 - 1.23 0.30 -1.35 - 1.26 0.38 -1.40 
6 GWA137 -0.84 0.80 0.27 -1.51 -0.92 0.79 0.28 -1.48 -1.00 0.74 0.29 -1.41 
7 GWA139 1.17 0.32 -0.42 -1.58 1.19 0.35 -0.41 -1.62 1.22 0.40 -0.39 -1.68 
8 GWA141 1.17 0.31 -0.42 -1.57 1.22 0.32 -0.40 -1.60 1.28 0.33 -0.38 -1.62 
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agricultural areas, particularly non-irrigated paddy fields, 
compared to SRI and SGI (hydrological drought), and SPI 
(meteorological drought). SPI is considered less important 
than both SRI and SGI which directly reflect surface water 
and groundwater resources for both in agricultural and 
community sectors during water scarcity situations 

A sensitivity analysis is carried out to determine the 
effects of the four weighting factors of NDMI, SRI, SGI, 
and SPI by changing each of them one by one by ±10% 
keeping the other three weighting factors unchanged. In 
this analysis, the weighting factor of NDMI is varied by 
±10%. The results as shown in the following Table 3 
indicate that when the mean of MDHI determined by 
AHP, is changed by+10% and -10%, MDHI is changed 
from 2.71 to 2.64 and 2.75 (or in percentages -2.58% and 
+1.48%) respectively. Accordingly, the standard deviation 
SD of MDHI of 0.49, it is changed to 0.43 and 0.48 (or -
12.24% and -2.04%) respectively. For the weight change 
of SRI by +10% and -10%: the results show a change of 
the mean of MDHI by AHP from 2.71 to 2.54 and 2.80 
(or -6.27% and +3.32%) respectively; while the standard 
deviation is changed from 0.49 to 0.40 and 0.50 (or -18.37% 
and +2.04%) respectively. For SGI, the mean of MDHI 
of 2.71 by AHP is changed to 2.65 and 2.76 (or -2.21% 
and +1.85%) respectively; while the standard deviation of 
0.49 is changed to 0.43 and 0.48 (or -12.24% and -2.04%). 
For SPI, the mean of MDHI of 2.71 is changed to 2.69 
and 2.71 (or -0.74% and 0.00%); and the standard 
deviation changes from 0.49 to 0.45 and 0.46 (or -8.16% 
and -6.12%) respectively.” The sensitivity analysis shows 
that the effects of ±10 % variations of the individual 
weighting factors of NDMI, SRI, SGI, and SPI do not 
have signi i an  e  e  s on  he MDHI in  he s udy area.” 

 

 
 
The MDHI is divided into six hazard levels: no, very 

low, low, medium, high, and very high, as recommended 
by the LDD of Thailand. Due to lack of data on hazard 
levels, the computed multiple drought hazard maps are 
compared to the observed numbers of drought events at 
various locations from 2012-2014 (for calibration) and 
2015-2020 (for validation), as shown in Fig. 3. 

In calibration, the observed surveying points indicated 
that 12, 213, and 602 samples experienced once, 2, and 3 

events per 3 years, respectively. The model performance 
was found to be satisfactory, with R² = 0.78, NSE = 0.76, 
MAE = 0.06, and PBIAS = -3.1%. For validation, the 
observed surveying points showed that 291, 244, 39, and 
12 samples experienced one, two, three, and four events 
per six years, respectively. The model’s  er orman e was 
again satisfactory, with R² = 0.77, NSE = 0.76, MAE = 
0.11, and PBIAS = 0.2%. The comparison revealed a very 
satisfactory or very good agreement between the 
computed and observed numbers of drought events at all 
781 and 520 locations for calibration and validation, 
respectively. All statistics indicate that the computed 
hazard maps strongly agree with the definition of drought 
hazard in Sukhothai Province. 

The computed drought hazard maps during 2007-
2020 are shown in Fig. 4. The current hazard maps from 
November-2019 to March-2020 which covered paddy 
field land, field crop land, orchard and perennial crop 
lands of 2,059, 1,241, 306 and 224 km2, respectively. The 
high hazard areas were in Si Satchanalai District in the 
upper parts of the study area and another hazard areas are 
Thung Saliam, Sawankhalok and Ban Dan Lan Hoi 
Districts in the middle parts of the study area. 

 

 
Fig. 3. The computed and observed numbers of drought 
events in the study area: (a) calibration from 2012 to 2014, 
and (b) validation from 2015 to 2020 with indications of 
matching and unmatching agreement. 

 

Table 3. Results of the sensitivity analysis of ±10% 
variation in the weights of NDMI, SRI, SGI and SPI 
indices. 
 

Variation % 
Changing 
in weight 

Mean SD 
  

% Change w.r.t. AHP 

Mean SD 

AHP (Base case) 2.71 0.49  

NDMI +10 2.75 0.43 1.48 -12.24 
-10 2.64 0.48 -2.58 -2.04 

SRI +10 2.54 0.50 -6.27 2.04 
-10 2.80 0.40 3.32 -18.37 

SGI +10 2.65 0.48 -2.21 -2.04 
-10 2.76 0.43 1.85 -12.24 

SPI +10 2.71 0.45 0.00 -8.16 
-10 2.69 0.46 -0.74 -6.12 
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Fig. 4. Computed drought hazard maps from Multiple Drought Hazard Index (MDHI) during 2007-2020. 
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4.2. Vulnerability Index 
 

Vulnerability primarily refers to the likelihood of 
individuals or groups being affected by natural disaster 
damages and losses, considering social, physical, economic, 
and infrastructural aspects [35-38]. The quantification of 
vulnerability is based on potential damages, and it is linked 
to social and agricultural product damages.  

The hazard assessment in this study is categorized into 
six levels: no hazard, very low, low, medium, high, and 
very high. In terms of drought damages, the drought 
duration-hazard-damage curve (Fig. 5) was developed 
based on an analysis of questionnaire surveys that 
examined crop damages due to drought conditions. The 
survey results indicated that the impact of drought varies 
with duration: rice is affected after 1 month; Maize, Black 
and Green Mung Bean after 2 months; Black and Red 
Sesame, Soybean, Durian after 3 months; Marian Plum, 
Mango, Sapodilla, Tangerine after 4 months; Banana, 
Longkong after 5 months; and Cassava, Sugarcane, Acacia 
after 7 months.  

 
The magnitude of crop damage depends on the 

vulnerability (VI); due to limited data, it is assumed that 
their relationship is linearly proportion. As shown in Fig. 
5 for rice which can stand droughts of not more than one 
month, a zero percent of crop damage is set equivalent to 
VI = 0.  The 1- 20 and 21-40 percent of crop damages for 
very low and low hazards are set equivalent to VI = 0.2 
and 0.4, respectively. For the medium and high hazards, 
corresponding to 41-60 and 61-80 percent of crop 
damages, the damages are set to VI = 0.6 and 0.8, 
respectively.  Lastly, for a very high hazard which 
corresponds to 81-100 percent of crop damages, it sets to 
VI of 1.0. 

For the social sector, the observed relationship 
between hazard level and percent damage of affected 
population from no hazard to very high hazard levels, is 
shown in Fig. 6. The relationship was established based on 
observed drought hazard and number of affected 
populations from 2007 to 2016. This was achieved by 
categorizing hazards into low (1-12 months), medium (13-
24 months), and high (over 24 months) durations, and 
then the percentage of affected population relative to the 
total population [39] was estimated. The same relationship 
is applied to household units as each household unit has 
approximately on average a constant number of occupants. 

 
For no hazard, the VI would be zero, indicating zero 

percent of affected people (no vulnerability). The very low 
and low hazard levels have VI values of 0.20 and 0.40 
respectively, representing 1-12% and 13-24% of affected 
people. Medium and high hazards correspond to VI values 
of 0.60 and 0.80, indicating 25-53% and 54-100% of 
affected people. Finally, a very high hazard level can 
correspond to a VI of 1.00, indicating 100% of affected 
people. The affected housing units are found to vary 
proportionally with the residing population at about 2.84 
people per a housing unit. 

The vulnerability maps of economic and social sectors 
on November, 2019 are shown in Fig. 7(a) and (b). In Fig. 
7(a), the map covers the most area with very high 
vulnerability level, particularly in the paddy field regions in 
the middle and lower parts of Sukhothai Province. Areas 
with low and medium vulnerable levels are in Sawankhalok 
and Si Samrong Districts in the middle parts of the study 
area. Figure 7(b) shows highly vulnerable areas primarily 
located in Si Satchanalai District in the upper parts of the 
study area, with Thung Saliam, Sawankhalok, and Ban 
Dan Lan Hoi Districts in the middle areas of the study 
zone. The very low vulnerability area is shown in Mueang 
Sukhothai and Kong Krailat Districts.

 

 
Fig. 5. Drought duration-hazard-damage curve for rice. 
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Fig. 6. Drought hazard-damage curve for social sector. 
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4.3. Exposure Index 
 

Exposure is typically assessed by evaluating the 
quantities of surrounding people, infrastructure, housing, 
production capacities, and other human assets situated in 
areas prone to hazards [29, 33]. In this study, exposure 
index (EI) is divided into two sectors: economic and social 
sectors. For the economic sector, agricultural products 
significantly influence the economy of Sukhothai Province. 
In this study, the primary inputs for assessing 
compensation based on crop damages from droughts are 
crop yield and price data. Both types of data were collected 
by the Office of Agricultural Economics (OAE) of 
Sukhothai Province from 2009 to 2022 
(https://www.oae.go.th/), expressed in terms of 
kilograms per rai (kg/rai) and Baht per kilogram (Baht/kg) 
in which 1 rai = 0.0016 km2 and 1 Baht = 0.028US dollars. 
Agricultural production in Sukhothai Province is divided 
into 77 crop types, including abandoned paddy fields, 
active paddy fields, abandoned field crops, mixed field 
crops, corn, sugarcane, cassava, pineapple, etc. 
Agricultural maps from 2013, 2016, 2018, and 2021 were 
collected by LDD. The combination of crop yield and 
price data facilitates the calculation of crop income in 
terms of units (Baht/rai), as shown in Eq. (3), and is 
employed to analyze the Exposure Index (EI) as shown in 
Table 4. The paddy fields were categorized based on EI 
values of 0.00, 0.20, 0.40, 0.60, and 0.80. These values 
correspond to different crop income ranges as shown in 
Table 4. For field crops and orchard/perennial lands, the 
EI values were estimated as shown in Table 4. These data 
are used to assess the compensation required to mitigate 

the impact on crops by DDPM when droughts occur. The 
exposure map of the economic sector for November 2019 
indicates very low to very high levels of exposure across 
the agricultural areas, with Sawankhalok and Si Samrong 
Districts exhibiting very high exposure levels. 

In the social sector, the number of people affected in 
drought-prone areas is a major factor in determining 
exposure. This study collected data on various 
demographic densities, including overall population, 
females, children under 5 years, people over 60 years, 
poverty people, households, and poverty households from 
Department of Provincial Administration (DOPA) 
(https://stat.bora.dopa.go.th/stat/statnew/statMenu/ne
wStat/stat/). This data was used to show the social impact 
of drought, taking into account different population 
characteristics. This study proposes a categorization based 
on the number of people and housing units per km2. For 
the overall population, exposure index is delineated as 
shown in Table 4. Similarly, for categories related to 
females and households, exposure levels are classified as 
shown in Table 4. For categories of children under 5 years, 
population aging, poverty households and poverty 
population, the EI is classified as shown in Table 4. These 
categorizations provide a comprehensive framework for 
assessing risk levels across different demographic groups 
and housing situations, contributing to a more nuanced 
understanding of exposure in the context of subdistrict-
level planning and policy-making. The exposure map of 
the social sector, analyzed from a population density map 
for November 2019, is shown in Fig. 8(b), varying 
exposure levels across different areas.  The Mueang 

 
Fig. 7. The vulnerability maps of (a) economic and (b) social sectors on November, 2019. 
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Sukhothai and Mueang Kao subdistricts have very high 
exposure levels. 

For socio-economic sectors, the Combined 
Vulnerability Index (CVI) is computed by Eq. (2) and 
Combined Exposure Index (CEI) is computed by Eq. (4). 
The weighting factors in Eqs. (2) and (4), determined by 
AHP technique, in which Weconomic = 0.75, and Wsocial = 
0.25. These factors were derived from an analysis of the 
major impacts, which indicated a greater influence of the 
economic sector compared to the social sector. 

In terms of the social sector for CEI, the exposure 
index (EI) values were computed from the population and 
households, identified as major vulnerable groups pivotal 
in assessing socio-economic vulnerability to drought, as 
demonstrated in Eq. (5). The weighting factors, 
determined through AHP technique, are specified as 
follows: Wpopulation = 0.50, and Whousehold = 0.50. These 
weights reflect the equal significance of the population and 
household components within the social sector. 

 

 

 
Table 4. Classification of drought exposure index (EI) and asset values or properties of economic and social sectors. 
 

Exposure 
Level 

Exposure 
Index (EI) 

Economic Sector  
(Crop Income: Baht per rai)* 

Social Sector  
(people/housing units per km2) 

Paddy 
Field 

Field 
Crop 

Orchard/ 
Perennial 

Land 

Population 
 

House
hold 

Female  Children 
under 5 

years 

Population 
Ageing 

Poverty 
Population 

Poverty 
Household 

No 
Exposure* 

0 0 0 0 0 0 0 0 0 0 0 

Very low 0.20 1-1,113 1-1,148 1-1,690 1-1,000 1-500 1-500 1-100 1-100 1-100 1-100 

Low 0.40 
1,114-
2,226 

1,149-
2,296 

1,691-
3,380 

1,001-2,000  
501-
1,000  

501-
1,000  

101-200  101-200  101-200  101-200  

Medium 0.60 
2,227-
3,339 

2,297-
3,444 

3,381-
5,070 

2,001-3,000  
1,001-
1,500  

1,001-
1,500  

201-300  201-300  201-300  201-300  

High 0.80 
3,340-
4,452 

3,445-
4,592 

5,071-
6,760 

3,001-4,000  
1,501-
2,000 

1,501-
2,000 

301-400  301-400  301-400  301-400  

Very High 1.00 
Over 
4,453 

Over 
4,593 

Over 
6,761 

Over 4,001  
Over 
2,001  

Over 
2,001  

Over 401  Over 401  Over 401  Over 401  

(Source: Modified financial compensation required rate following major emergencies or disasters of Thailand Government and 
cost of agricultural production). There is no exposure in non-agricultural areas.  
* 1 rai = 0.0016 km2 and 1 Baht = 0.028USD.  
 
 
 
  

 
Fig. 8. The exposure maps of (a) economic and (b)social sectors of November, 2019. 
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Fig. 9. Computed drought risk maps on economic sector during 2007-2020. 
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Fig. 10. Computed drought risk maps of affected people on social sector during 2007-2020. 
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Fig. 11. Computed combined drought risk maps on economic sector and social sector during 2007-2020. 
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4.4. Risk 
 

Drought risk was probabilistically determined as a 
function of drought hazard, exposure, and vulnerability,  
according to Eqs.(6) and (7) [29, 33]. In this study, the 
hazard was quantified using MDHI according to Eq. (1). 

The vulnerability and exposure were derived from the 
Vulnerability Index (VI) and Exposure Index (EI) 
respectively, employing the drought duration-hazard-
damage curve for the economic sector, which includes 
crop income considerations, and the drought hazard-

 
Fig. 12. (a1) Locations and observed risks of economic sector from 2011-2020; (a2) locations of matching and 
unmatching results of computed and observed risks; (b1) locations and observed risks of socio-economic sector and 
(b2) locations of matching and unmatching results of computed and observed risks. 
 

Economic Sector 

Socio-economic sector 
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damage curve for the social sector, where population and 
households are the key exposure factors.  

The drought risk on economic and social sectors are 
divided into six levels: none ( I≤0), very low ris  
(0< I≤0.20), low ris  (0.20< I≤0.40), medium ris  
(0.40< I≤0.60), high ris  (0.60< I≤0.80), and very high 
ris  (0.80< I≤1.00).  

Figures 9, 10 and 11 show the computed overall 
drought risk maps of 12 drought events on economic and 
social sectors from 2007 to 2020. The events are: 
November 2007 – June 2008 (event 1), November 2008 – 
March 2009 (event 2), December 2009 – May 2010 (event 
3), December 2010 – January 2011 (event 4), November 
2011 – February 2012 (event 5), November 2012 – May 
2013 (event 6), January 2014 – June 2014 (event 7), 
December 2014 – August 2015 (event 8), December 2015 
– May 2016 (event 9), April 2019 – June 2019 (event 10), 
July 2019 – September 2019 (event 11), and November 
2019 – March 2020 (event 12). For economic sector, as 
shown in Fig. 9, the drought risk maps from 2007 to 2020 
show the areas with no risk to very high risk of drought.  
For example, in Table 5, event 12 spanning from 
November 2019 to March 2020, encompasses the areas 
with very low drought risk (127 km2), low (484 km2), 
medium (1,248 km2), and high (1,977 km2) risk levels. The 
risk trend has increased from no risk to higher levels over 
time, with changing hazard status from none to very low, 
very low to low, low to medium, medium to high, and high 
to very high, respectively. In 2019-2020 or events 10-12, 
the risk level was similar from April 2019 to March 2020, 
covering the whole area with very low, low, medium, high, 
and very high-risk levels. This indicates that this area has 
faced a long-term drought risk. In term of social sector, 
the population, female, children, old people and 
household have similar trends that change from very low 
to high risk levels for 2007 to 2013. During November 
2007-May 2013, the areas have very low, low and medium 
levels that also have very high risk at Mueang Kao, Pak 
Kwai, Thani and Ban Kluai sub-Districts at Mueang 
Sukhothai District and Taling Chan and Na Khun Krai 
sub-Districts at Si Samrong and Thung Saliam Districts, 
respectively.  

In 2014 and onward, DDPM changed its policy and 
criteria in accounting for the numbers of affected people 
and households in the social sector. By comparing the 
available observed drought damages of event 8 (January 
2014 –June 2014) and event 9 (December 2015 – May 
2016) with the computed drought damages of the same 
two events shown in Table 5, it is found that the numbers 
of affected people and households under the new policy 
and criteria introduced in 2014 are only 15% of the 
computed numbers of affected people and households 
under the previous policy and criteria before 2014. 

On the drought risk of social sector under the new 
policy and criteria introduced in 2014, it was found that 
the drought risk was much reduced to only 0.15 times of 
the drought risk calculated by Eq. (7) and the drought 
hazard-damage relationship in Fig. 6. As shown in Fig. 10, 
during November 2007 to March 2013, the social drought 

risk levels are mainly classified as very low level and low 
level except in the sub-districts nearby Yom River and 
Kong Krailat District. From January 2014 to March 2020 
under the new policy, the social drought risk level was 
reported to decrease mostly from low to very low drought 
risk level almost everywhere. Hence much less 
compensation on the affected people and households was 
reported from 2014 onward.  

The statistical parameters used for risk assessment 
showed that the computed data were highly acceptable 
and accurate. The observed data in economic sector from 
DDPM collected from 2011 to 2020, comprised 866 
points are shown in Fig. 12(a1 and a2). The coefficient of 
determination (R2) value was 0.75, indicating a very good 
performance; the Nash-Sutcliffe Efficiency (NSE) was 
0.73, indicating a good performance; Mean Absolute 
Error (MAE) was 0.32; and Percent Bias (PBIAS) was 
2.80%, indicating a very good accuracy. The comparison 
shows a very good agreement between the computed and 
observed numbers of drought events at 670 locations. The 
verification of the observed and computed data on the 
social sector employed the percentage difference 
technique. The observed data were divided into two 
groups: affected population and household from 2007 to 
2016 or events 1-9. The results showed that the computed 
affected people and households for events 2, 3, 5, 6, 8, and 
9 were similar to the observed data, with less than 10% 
discrepancy. However, observed data of economic 
damages for past decades are unavailable. The model 
performance shows high accuracy for both the economic 
and social sectors.  

For the socio-economic sectors, the validation of the 
drought risk map was conducted using observed data 
obtained from DDPM during 2011 to 2020, comprising 
413 data points, as depicted in Fig. 12(b1 and b2). The 
resulting statistical indicators revealed a robust 
performance with R2 value of 0.87, signifying a high level 
of accuracy; NSE value of 0.86, indicating good 
performance; MAE of 0.13; and PBIAS of 9.50%, 
reflecting very good accuracy. This comparison 
demonstrates a highly satisfactory agreement between the 
computed and observed numbers of drought events at 361 
locations.  

The major effect of a drought event is the reduction 
of water availability and quality for agricultural areas, 
which led to losses in crop productivity in drought-prone 
areas. The results show that the computed direct damages 
were up to a maximum of 10,545 million Baht in event 5 
(November 2011 to February 2012) and a minimum of 
8,107 million Baht in event 10 (April 2019 to June 2019) 
as shown in Table 5. 

For the social sector, the drought risk on population, 
female, children, people over 60 years, and household are 
shown in Table 5. Event 6, which occurred from 
November 2012 to May 2013, had the highest value and 
its impact was similar to observed data. Specifically, the 
drought affected to approximately 223,660 to 245,975 
people and 74,552 to 81,753 housing units. Furthermore, 
the droughts impacted around 155,818 females, 23,516 
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children, and 43,517 individuals aged 60 years and above. 
Similarly, Event 9, which spanned from December 2015 
to May 2016, also had a comparable impact in terms of 
observed and computed data, affecting approximately 

51,705 to 51,679 people and 19,335 to 20,766 housing 
units. This event affected about 25,937 females, 3,652 
children, and 7,870 individuals aged 60 years and above. 

 
5. Discussions 

 
Comparative analysis: No study that has ever been 

made on drought risk assessment in Sukhothai Province. 
By referring to previous studies in other river basins in 
Thailand, Mekong region and worldwide.   

In this study, the drought hazard maps computed for 
the period 2007-2020 show the historical trend of hazard 
areas transitioning from no hazard to very low, very low 
to low, low to medium, medium to high and, high to very 
high levels. This result is the same as the results of 
previous studies related to past and future trends of 
drought hazards in agricultural areas such in Upper Nan 
River Basin [4] and Wang River Basin [40] in northern 
Thailand, and in Upper Mun River Basin [41] and 
Songkhram River Basin [7], both the subbasins of the 
Mekong River Basin in northeastern Thailand [7]. 

The results of drought risk assessment in this study 
align with trends observed and computed in the subbasins 
of the Mekong River, e.g., Upper Mun River Basin, 
Thailand [41-43] and in the Songkhram River Basin, [7], 
where agricultural drought risk has similarly transitioned 
respectively from no risk to low, low to medium, and 
medium to high levels over time, in terms of agricultural 
and socio-economic impacts. This is also consistent with 
a broader pattern of increasing drought risks, leading to 
water shortages and conflicts on water allocation. 
European Commission: Joint Research Centre [44] 
presented World Drought Atlas which shows that drought 
is a global threat, and its risks are increasing every day. 
Without urgent actions and international cooperation, its 
cascading impacts may ripple across economies, financial 

systems, populations, and ecosystems, increasing the risk 
of triggering shocks and long-term effects.  The World 
Drought Atlas provides policymakers and governments at 
multiple levels, drought impacts on various critical systems, 
worldwide and examples of drought risk management and 
adaptation.  

Moreover, the study on global drought risk trends 
indicates an increase worldwide, from the past (1991–2014) 
to the future, including near-term (2021–2040), mid-term 
(2061–2080), and long-term (2081–2100) projections [45]. 

A risk assessment based on drought hazard, 
vulnerability, and exposure in the Sukhothai Province 
from 2007 to 2021 was made using the new multiple 
indices of drought hazard (MDHI), vulnerability (CVI) 
and exposure (CEI). The new multiple indices open a new 
approach in understanding on the overall impact of 
complicated drought phenomena leading to effective 
integrated drought management strategies. 

The results of the multiple hazard index in this study 
indicated a similar trend in the values of SPI, SRI, and SGI, 
transitioning from positive (no drought) to negative 
(drought) through meteorological, hydrological, and 
groundwater observation stations. The SPI values, which 
represent slight dry conditions or near-normal levels, 
ranged from 0.34 to -0.42. These were compared with the 
SRI (ranging from 0.81 to -1.89) and SGI (ranging from -
1.00 to -2.15) for all cases of 1, 3, and 6-month drought 
timescales during the 2020s (2020-2021) period. All these 
individual parameters clearly changed from positive (wet) 
to negative (dry or drought) conditions. 

The MDHI results were calculated by summing the 
weighted SPI, SRI, SGI, and NDMI values. These 

 
Table 5. The computed damages on economic and social sectors of drought events during 2007-2020.  
 

Events Economic Sector Social Sector 

Risk 
Area 
(km2) 

Damages 
(Million Baht) 

Population 
(persons) 

Household 
(homes) 

Female 
(persons) 

Children 
under 5 

years 
(persons) 

Population 
Aging 
(persons) 

Poverty 
Population 
(persons) 

Poverty 
Household 
(homes) 

1 2,623 10,298 233,865 73,204 148,299 22,271 41,398   
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  

2 2,230 8,979 193,027* 60,574* 123,180 18,110 34,930 
3 2,290 9,246 185,528* 57,965* 118,019 17,244 33,221 

4 2,327 9,255 145,875 44,871 59,707 14,101 23,033 

5 2,441 10,545 211,797* 63,824* 91,342 20,052 37,542 
6 2,803 9,475 245,975* 81,753* 155,818 23,516 43,517 

7+ 2,692 8,232 34,299 13,605 17,450 2,601 5,045 

8 2,739 8,317 37,170* 14,658* 18,682 2,753 5,483 
9 2,800 8,231 51,679* 20,766* 25,937 3,652 7,870 

10 2,535 8,107 34,749 14,266 17,544 2,330 5,619 2,793 2,232 
11 2,583 8,438 40,423 16,523 20,391 2,748 6,529 3,307 2,645 

12 2,672 8,788 41,814 17,127 21,188 2,778 6,814 3,358 2,691 

* Observed data are available, computed values are less than 10% discrepancy compared to observed data 
+ From event 7 and onward, DDPM changes its criteria in accounting affected population, households and other social 
components 
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weighting factors for all drought indicators were estimated 
using the AHP technique. The results showed that the 
weighting factors for WNDMI, WSRI, WSGI, and WSPI are 
0.565, 0.262, 0.118, and 0.055, respectively. The areas with 
the highest hazard levels are situated in the Si Satchanalai 
District, which is in the upper part of the study area. Other 
areas of concern include the Thung Saliam, Sawankhalok, 
and Ban Dan Lan Hoi Districts, located in the middle 
parts of the study area.  Approximately 2,059 km2 of paddy 
field area, 1,241 km2 of field crop area, 306 km2 of orchard 
area, and 224 km2 of perennial crop area faced varying 
levels of drought hazard from very low to high between 
November 2019 and March 2020.  

The drought hazard maps computed for the period 
2007-2020 show the increasing trend of drought hazard 
levels from no hazard to low, low to medium, and medium 
to high levels. This increasing trend is in line with the 
results of other previous studies on the trends of drought 
hazards for agricultural areas in Upper Nan River Basin [4] 
and Wang River Basin [40] in the northern region of 
Thailand and in Songkhram River Basin, a subbasin of the 
Mekong River in the northeastern region of Thailand [7]. 

Validation of risk indices: The discrepancies between 
the observed and computed numbers of drought events in 
the Sukhothai Province are shown in Fig. 12. The 
discrepancies are found at some locations sparsely 
distributed over the study area and do not mainly 
represent the overall performance of drought risk 
assessment of the whole study area. Though these 
discrepancies are visible at some locations, the policy 
recommendations on drought mitigation and adaptation 
are made for the whole study area according to the 
majority of the observed and computed numbers of 
drought events. These policy recommendations are given 
at large on improving water management, changing of 
crop varieties and crop patterns in the study area.   

For agricultural economic sector, the results in Table 
5 revealed that the highest impact on economic sector 
amounted to approximately 10,545 million Baht and a 
maximum affected area of 2,441 km2 in event 5, which 
occurred from November 2011 to February 2012. In the 
social sector, the drought risk was assessed on different 
demographics including the general population, females, 
children, people and households. The results showed that 
in event 9, in which data were available from December 
2015 to May 2016, a close agreement between the 
observed and computed impacts was obtained, i.e., 51,705 
and 51,679 affected people; 19,335 and 20,766 and 
affected household units, respectively. Moreover, about 
25,937 females, 3,652 children, and 7,870 people aged 60 
years and above were affected. In event 12 from 
November 2019 to March 2020, the affected an area 
covered agricultural losses of 2,672 km2 and 8,788 million 
Baht, respectively. It also impacted approximately 41,814 
persons and 17,127 households. The combined 
agricultural economic and socio-economic drought risk 
maps from 2007 to 2020 in Fig. 11 shows increases in risk 
in the direction from the northern part to the southern 

part of the province with higher risks in the southeast part 
of the study area. 

On socio-economic losses, Edwards, et al (2018) [46] 
described the impacts of droughts on farmers and 
employees in agricultural sectors in Australia in 2007, such 
as reduced income, job instability and health impacts. 
While the agricultural sector was most directly affected. 
Same as found in this study, the drought risk assessment 
of the agricultural economic sector and social sector 
involves the interconnected impacts on both sectors. In 
Table 5, drought event 1 to event 6 were before the change 
in policy of DDPM in 2014. The drought event 7 to event 
12 were after the change in DDPM policy from 2014 
onward. The computed data in Table 5 show a trend of 
positive relationship of risk areas and monetary 
agricultural losses in the economic sector. In the social 
sector, the positive relationship of affected people and 
households including other people social characteristics 
such as sex, age and poverty is also found. These positive 
relationships were in line with the observed data in the 
events 2, 3, 5, 6, 8, and 9. For example, from drought event 
9 (December 2015 to May 2016) to event 12 (November 
2019 to March 2020), the evolving trends of agricultural 
economic impact of all drought events show a positive 
relationship in risk areas and agricultural monetary losses; 
while  in the social sectors, a positive relationship in 
numbers of affected people and affected households does 
exist. Therefore, in all, this implies that there is a positive 
relationship between the impacts on the agricultural 
economic sector and the impacts on the socio-economic 
sector. 

Linking recommendations to findings: The proposed 
methodology estimates the combined drought risk by 
considering various components of hazard, vulnerability, 
and exposure. This study focuses on mitigation and 
adaptation strategies specific to the study area (Sukhothai 
Province). It is well known that seventy percent of the 
Sukhothai Province area is mainly utilized for rice 
cultivation in which fifty percent of the provincial area is 
non-irrigated (rainfed) and twenty percent is irrigated. In 
the irrigated areas where water supply is available, water 
management strategies are possible for drought risk 
reduction. This water management includes increasing 
storage capacities of existing reservoirs and ponds, or 
constructing new reservoirs in the Mae Yom, Sukhothai, 
and Tho Thong Daeng operation and maintenance 
projects. Lining irrigation canals is also an effective 
measure in reducing seepage water losses along irrigation 
canals and hence reducing drought risks. By overlaying the 
risk maps (Fig. 9) over the irrigated areas for the 2007–
2019 period, it is found that for paddy fields the 
recommended mitigation measures can potentially reduce 
drought-affected areas and monetary losses on average as 
much as 22% and 13.51%, respectively; field crops 8.38% 
and 2.26%; orchards and perennial crops1.28% and 0.18%. 
Additionally, for the 2007–2019 period, the utilization of 
alternative water resources, such as groundwater to 
supplement water demand, for field crops, can potentially 
reduce drought-affected areas and monetary losses by 
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approximately 4.22% and 1.14% for irrigated areas, and 
4.92% and 1.33% for non-irrigated areas. For orchards 
and perennial crops, drought-affected areas and monetary 
losses can be reduced by approximately 0.59% and 0.08% 
for irrigated areas, and 2.36% and 0.32% for non-irrigated 
areas.  

In the non-irrigated areas, where water resources are 
limited and effective water management strategy is 
difficult, crop management should be exploited. Adopting 
drought-resistant varieties such as the Hom Siam rice [47-
48] to replace the prevailing RD 85 rice mostly grown in 
the areas could provide a feasible solution in reducing 
drought problems. The Hom Siam rice is more superior 
than the RD 85 rice as it offers significant improvement 
in both yield and drought resilience. Under optimal 
growth conditions, the Hom Siam exhibits a yield increase 
of over 50%. Under drought conditions, Hom Siam 
features a root system that is 20% more extensive, with a 
higher proportion of deep roots. This unique root 
structure is critical for main aining  he  lan ’s wa er s a us 
and contributes to sustained biomass production under 
water-limited conditions.  

According to field surveys, in the non-irrigated areas, 
planting of Hom Siam drought-resilient rice to replace the 
prevailing RD 85 rice would potentially reduce current 
drought impacts and drought risks by about 50%. In the 
irrigated areas where water supply shortage is not critical, 
increasing reservoir storages or building new reservoirs 
would potentially reduce drought impacts as much as 22%. 
Due to its sustainability, replacing the prevailing RD 85 
rice variety by Hom Siam rice is not required in the 
irrigated areas. These measures would help alleviate the 
impacts of droughts, which are particularly severe in the 
middle and lower parts of Sukhothai Province. 

 

6. Conclusions 
 

A risk assessment based on drought hazard, 
vulnerability, exposure in the Sukhothai Province from 
2007 to 2021 was done using the new multiple indices of 
drought hazard (MDHI), vulnerability (CVI) and exposure 
(CEI). The new multiple indices open up a new approach 
in understanding the overall impact of complicated 
drought phenomena leading to effective integrated 
drought management strategies. 

The study contributes a new method in drought risk 
assessment for agricultural and socio-economic sectors 
which can be used as a guide for actionable strategies for 
government, policymakers, planners and researchers. The 
proposed methodology estimates multiple or combined 
drought risk considering various components of hazard, 
vulnerability and exposure. This study provides mitigation 
and adaptation strategies in Sukhothai Province in 
reducing drought risks in irrigated and non-irrigated areas. 
These include 1) water resources management in irrigated 
areas by increasing water supply through increasing 
reservoir capacities, groundwater utilization as a 
supplementary resource, irrigation canal lining to reduce 
seepage and increasing water use efficiency; 2) crop 

management by modifying cropping patterns in non-
irrigated areas by introducing drought-resistant crop 
varieties, particularly for rice to replace the existing crop 
varieties.  

The results of this study on drought risk assessment 
are in line with the results of other previous studies which 
indicate a considerable increasing trend in agricultural 
drought risks from no risk to low, low to medium, and 
medium to high levels over time in the northern region 
and the northeastern region of Thailand (a part of the 
Mekong River Basin), [7, 41-43] and worldwide [44, 45]. 
These mitigation and adaptation measures would help 
alleviating the impacts of droughts, which are particularly 
severe in the middle and lower parts of the Sukhothai 
Province. 
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