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Abstract. Traditional methods for calculating pavement layers elastic moduli from falling 
weight deflectometer (FWD) tests often rely on computationally intensive iterative processes 
and lack struggle to capture complex variable relationships. This article highlights the 
utilization of machine learning (ML) algorithms, which include artificial neural networks 
(ANN), long-short-term memory (LSTM), and random forests (RF), to predict the elastic 
moduli of multi-layered flexible pavement based on FWD test. All ML algorithms were 
developed using synthetic databases derived from the exact stiffness matrix scheme, which 
was employed for the analysis of multi-layered pavements under axisymmetric surface loading. 
The development of ML models involves preprocessing of data, hyperparameter 
optimization, and performance evaluation.  The input variables consist of the FWD surface 
deflections, the magnitude of applied loading, and the layer thicknesses, while the output 
variables represent the predicted layered elastic moduli of the pavement structure. The ANN 
and LSTM models capture complicated relations more effectively than the RF model in the 
backcalculation of the layered elastic modulus based on the FWD test. Among the two, 
LSTM achieves higher accuracy, with the average values across all layer moduli of R2 and 
MAPE being 99.04% and 2.41%, respectively, in the test set. The applicability of LSTM 
model is further demonstrated by comparing with the backcalculated elastic modulus based 
on the FWD field experiments performed on the infrastructure of roads in Thailand. 
Furthermore, a sensitivity analysis reveals that deflections near the center of loading 
predominantly impact the predictions of upper layer moduli, while the moduli of lower layers 
are influenced by deflections across all geophones. 
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1. Introduction 
 

Machine learning (ML), a fundamental component of 
artificial intelligence (AI), plays a pivotal role in terms of 
innovation in technology, profoundly influencing the 
problem-solving and decision-making strategies across 
various disciplines. Fundamentally, machine learning 
enables systems to enhance their performance and learn 
from experience or data autonomously, without the need 
for explicit programming instructions. The influence of 
machine learning extends beyond individual capabilities, 
influencing numerous industries like healthcare, finance, 
education, etc. The capacity of machine learning (ML) to 
process intricate and extensive datasets has brought about 
a paradigm shift in the field, enabling engineers to devise 
solutions for problems with greater accuracy and efficacy. 
In the past, machine learning approaches were 
implemented to address a wide range of civil engineering 
problems [1-6]. 

Significant consideration has been paid to the 
utilization of ML to enhance the capabilities of pavement 
engineering, a critical component of transportation 
infrastructure [7, 8]. The structural integrity of pavement 
systems is contingent upon precise evaluations of material 
properties and performance, as they are essential for the 
preservation of safe and efficient transportation networks 
[9]. Falling weight deflectometer (FWD) assessments of 
roadway structural properties is the once most widely used 
test with regard to the rehabilitation and maintenance of 
multi-layered pavement structures. The accurate appraisal 
of layer properties is essential for cost-effective 
rehabilitation of pavements, which are critical 
infrastructure components. FWD is a non-destructive test 
that measures surface deflections at several points induced 
by the applied surface loading from the FWD device to 
backcalcultate the elastic moduli of layered pavements. 
Backcalculation scheme traditionally involves an iterative 
process, which requires complex analytical procedures and 
optimization algorithms, to deduce the pavement layer 
properties from the surface deflection data. However, 
conventional backcalculation methods are 
computationally intensive and have a limited ability to 
capture the complex relationships between variables.  

In the past thirty years, a number of researchers have 
adopted soft computing techniques to overcome these 
challenges for the specific requirements of pavement 
engineering as a viable and effective substitute 
methodology for backcalculating pavement performance 
from FWD data. For example, Mier and Rix [10, 11] 
developed artificial neural network (ANN) models to 
estimate the elastic modul of flexible pavements. Sharma 
and Das [12] and Gonzalez et al. [13] later proposed ANN 
models to backcalculate elastic moduli of multi-layered 
pavements using synthetic deflection data. An ANN-
based backcalculation model was also devised by Leiva-
Villacorta et al. [14] to predict pavement layer moduli 
under both bonded and interface conditions for a full-slip 
layer. Furthermore, Ghanizadeh and Padash [15] 
developed a hybrid artificial neural network and the 

colliding body optimization algorithms (ANN-CBO) 
method to predict the elastic moduli of pavements using 
FWD dataset obtained from MICHPAVE program. 
Ghanizadeh et al. [16] developed an ANN model for 
estimating the elastic moduli of pavement layers, utilizing 
surface deflection datapoint acquired from FWD devices 
through the implementation of a non-PAS program. 
Ghanizadeh et al. [17] sequentially established a hybrid 
ANN-Jaya optimization algorithm to conduct a 
backcalculation procedure for the flexible pavement 
moduli. Additionally, Han et al. [18] presented a hybrid 
neural network framework for the backcalculation process 
to estimate the elastic moduli from the Long-Term 
Pavement Performance (LTPP) database. 

The above review suggests that the development of 
data-driven solutions for the backcalculation process from 
FWD test has primarily concentrated on ANN-based 
models. Additionally, the consideration of appropriate 
hyperparameter optimization for ANN model was not 
widely addressed. Recently, an ML model based on 
random forest (RF) algorithm was proposed by Phulsawat 
et al. [19] to predict the modulus of elasticity of pavement 
layers from FWD experiment of the four-layered 
pavement, utilizing synthetic data of surface deflections 
generated from the exact stiffness matrix method [20-23]. 
The comparison between RF and ANN models with 
optimal values of hyperparameters generated by 
Phulsawat et al. [19] reveals that RF model performs better 
in terms of accuracy and computational expense in the 
estimation of the elastic moduli of multi-layered pavement 
based on FWD test data. Since the surface deflections 
measured at various geophones are strongly related [19], 
and the observed deflections are influenced by multiple 
factors, including pavement geometry and applied loading, 
these inherent dependency factors are difficult to capture 
using traditional schemes. Among various ML algorithms, 
Long Short-Term Memory (LSTM) networks have 
emerged as a particularly effective model for analyzing 
highly dependent data. 

The current study utilizes LSTM models to capture 
complex and nonlinear relationships for predicting the 
elastic moduli of flexible multi-layered pavement. 
Additionally, ML models based on ANN and RF are also 
developed for comparison. The development process 
considers variations in layer thickness, the magnitude of 
applied loading, and measured surface deflections to 
improve model performance for preventive pavement 
maintenance in real-world scenarios, ultimately enhancing 
predictive accuracy and reliability. The multi-layered 
flexible pavement under consideration is a four-layer 
pavement structure commonly found in Thailand's road 
infrastructure, consisting of three separate layers of 
asphaltic concrete, base, and subbase over a subgrade 
material, as depicted in Fig. 1. Unlike the previous study 
[19], the thicknesses of the pavement layers and the 
applied loading have also been varied, in addition to the 
layered elastic moduli, in the creation of the synthetic 
database. All ML models are developed utilizing a dataset 
of 20,000 synthetic datapoints obtained from a conceptual 
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framework of FWD based on the exact stiffness matrix 
method [19-23]. The assessment of model performance 
encompasses a variety of statistical metrics. The 
aforementioned metrics comprise the root mean square 
error (RMSE), mean absolute percentage error (MAPE), 
and coefficient of determination (R2), a20_index, ratio of 
root mean square error to observations' standard deviation 
(RSR), and index of scatter (IOS). The applicability of the 
developed model is further demonstrated by comparing 
the output from the LSTM-based model with the 
backcalulated elastic modulus based on the FWD 
experiments carried out on Thailand's road infrastructure. 
Finally, the analysis of sensitivity is performed to present 
the relative significance of the deflections measured at 
each location from FWD test on the estimation of the 
elastic moduli of multi-layered flexible pavements. 

 

 
Fig. 1. Multi-layered pavement structure considered in the 
current study. 
 

2. Soft-Computing Techniques 
 

2.1. Artificial Neural Network (ANN) 
 

The artificial neural network (ANN) was first 
proposed by McCulloch and Pitts [24] and subsequently 
developed by Metropolis et al. [25]. An ANN model is 
made up of three separate parts: each containing several 
neurons. These neurons are tasked with processing and 
transferring information through weighted connections, 
which incorporate the bias terms. The architectural 
framework of the ANN technique employed in this 
investigation is illustrated in Fig. 2. The thirteen neurons, 

identified as the applied loading (f0), the layer thicknesses 

(h1, h2, h3), and the nine surface deflections (D1-D9), 
constitute the input layer of this investigation. The hidden 
layer executes complicated computations and 
transformations on the data, capturing patterns and 
relationships. Each hidden layer consists of multiple layers, 
each of which contains numerous neurons. The predicted 
modulus of elasticity for multi-layered flexible pavement 
is provided by the output layer, which has four neurons. 
The subsequent expression represents the equation of the 
activation function of the feed-forward neural network:  

( )1

1

Ll l l l

i ji j ij
a f w a b−

=
= +

 
(1) 

where 
l

ia  represents the output value resulting from 

passing their connection weight through a transfer 
function as an input; L represents the quantity of 

connections to the preceding layer; 
l

jiw denotes to the 

weights parameter of the connection between layer; 
l

ib  is 

constant of the bias term; and f is a transfer function 
(activation function).  

Each neuron in a hidden layer computes a 
weighted sum of its inputs, incorporates a bias, and 
implements the result through a transfer function by using 
Eq. (1). As transfer functions, the rectified linear units 
(ReLU) and hyperbolic tan (tanh) functions are trialed in 
this article to obtain an optimal function with the highest 
predictive accuracy. Furthermore, the transfer function in 
the output layer is governed by a linear function. Besides, 
the algorithm iteratively adjusts the link weights of the 
network and utilizes the Adam optimizer [26] in an effort 
to minimize the loss function of the neural network. 
 

 
 

Fig. 2. Architectural framework of ANN. 
 
2.2. Long Short-Term Memory (LSTM) 
 

Hochreiter and Schmidhuber [27] introduced the 
Long Short-Term Memory (LSTM) neural network as an 
expansion of the recursive neural network architecture. Its 
primary purpose is to address gradient issues that may 
arise during reverse error training and to accommodate 
long-range data dependencies. A neuron and three gates—
forget gates, input gates, and output gates—comprise the 
LSTM unit. The unit of the LSTM model is in neural 

network depicted in Fig. 3. The distinct input (xt), long-

term state (ct), and short-term state (ht) are presented in 

each time step t, respectively. The three gate formulations 
and the LSTM architecture are shown in the following 
equations:  

( )1t xf t hf t ff W x W h b −=  +  +  (2) 
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where , , ,xf xi xo xgW W W W are the connection weights with 

input ( )t
x ; , , ,hf hi ho hgW W W W are the connection weights with 

the previous short-term state ( )1t
h

− ; , , ,f i o gb b b b are the bias 

terms; and is sigmoid function. 

The forget gate ft, input gate it, and output gate ot, 

based on the present input xt and the previous short-term 

state ht-1 are evaluated using Eqs. (2) – (4), respectively. 

Additionally, the new candidate value gt is appended to the 
cell state of the current time as presented in Eq. (5), and 

the past cell state ct-1 and previous short-term state ht-1 are 
updated by using Eqs. (6) – (7), respectively. The network 

generates predictions based on short-term state ht, 
undergoes backpropagation to determine the discrepancy 

between the actual yt and the predicted �̂�𝑡  values, 
computes gradients, and iteratively updates parameters 
utilizing Adam optimization algorithms [26] until 
convergence is attained. 

 

 
 
Fig. 3. Basic unit of LSTM. 

 
2.3. Random Forest (RF) 

 
Random Forest (RF) is a technique that combines 

numerous decision trees in order to generate greater 
accuracy and reliable prediction. RF, which was developed 
by Breiman [28] and Cutler et al. [29], is particularly 
advantageous when attempting to analyze complicated 
datasets with an abundance of variables. This is a result of 
its capacity to precisely model non-linear relationships 
between input and output, resulting in more accurate 
predictions. By constructing a multiplicity of decision 
trees, the RF approach attempts to separate the set used 
for training to minimize the mean squared error (MSE), 
and the output is the mean predicted outcome of the 
individual trees. Figure 4 illustrates the architectural 
framework of the RF model, which comprises of three 
primary components and steps: the construction of 
multiple decision trees, the selection of features, and the 
aggregation of predictions. 

Step 1: The RF model utilizes the bootstrapping 
method to generate numerous decision trees, randomly 
selecting different subsets of the training data and 
replacing them with new data for ensuring that each tree 
is trained on a diverse portion of the dataset.  

Step 2: Diversity among trees is introduced by 
selecting a random subset of features to evaluate divides 
at each node during each decision tree construction. This 
prevents the model from being dominated by a single 
feature and improves its capacity to capture complicated 
data patterns. 

Step 3: The average value of each individual tree's 
prediction is used to calculate the predicted result. 
 

 
 
Fig. 4. Architectural framework of RF. 
 

3. Methodology   
 
The methodology employed in the development of 

machine learning models is outlined in this section. Figure 
5 illustrates the process of constructing the ML model for 
backcalculating layered modulus of elasticity for the four-
layered flexible pavement from FWD test data. 

 
3.1. Synthetic Dataset 

 
In the construction of a synthetic database for the 

machine learning model development, an analytical model 
of FWD test where a multi-layered elastic medium under 
a uniform load applied vertically over a circular area on its 
surface is considered as shown in Fig. 1. The multilayered 
elastic depicted in Fig. 1 is a system of four-layered flexible 
pavement found commonly in Thailand's road 
infrastructure. The pavement structure encompasses three 
finite layers of asphaltic concrete, base, and subbase, laying 
over an infinite subgrade medium. The deflections on the 
pavement surface in various radial directions under 
vertical loading are the necessary information for the 
construction of a synthetic database. The exact stiffness 
matrix (ESM) scheme is adopted in this study. The ESM 
scheme is based on the assembly of the layer stiffness 
matrices containing the analytical general solutions in the 
Hankel transform domain for each layer. The inversion of 
the global stiffness matrix of the multi-layered medium 
together with an appropriate numerical integration yields 
the surface deflections on the multi-layered pavements. 
More details on ESM technique are given elsewhere [19-
23].    

To generate the synthetic database, the appropriate 
ranges for input variables, which include the layer 

thicknesses (h1, h2, h3), elastic moduli (E1, E2, E3, E4), and 

the magnitude of applied loading (f0) are chosen according 
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to the data during prior FWD experiments conducted in 
Thailand to assess the pavement conditions. Maximum 
and minimum values observed from the preceding FWD 
experiments are included in the selected ranges. A total of 
20,000 datapoints are generated using the randomly 
generated uniform distribution [30]. Each of these 
datapoints contains all four layers elastic modulus, the 
layered thicknesses, and the magnitude of applied loading. 
The statistics pertaining to the input parameters simulated 
using the uniform distribution are presented in Table 1. 
The ESM scheme is then applied, using the generated 
20,000 datapoints as the input parameters, to determine 
surface deflections at nine radial distances on pavement 
surface (0, 200, 300, 450, 600, 900, 1200, 1500, and 1800 
mm). Note that the loading radius of a = 150 mm is 
considered in the ESM scheme. The summary statistics for 
the obtained deflections are shown in Table 2.  

To ensure the practical acceptance of the ESM 
scheme, a comparison is made between the surface 

deflections obtained from the ESM scheme and the past 
FWD field tests conducted on road pavement structures 
in Thailand. The required parameters from the FWD test 
data are shown in Table 3, which are used as input 
parameters in the ESM algorithm to calculate the surface 
deflections of the four-layered pavement in Fig. 1 under 
uniform loading of 150 mm radius. Figure 6 provides a 
comparison between the surface deflections computed 
using ESM and those obtained from the recorded FWD 
field tests at nine radial distances from the center of 
uniform loading (0, 200, 300, 450, 600, 900, 1200, 1500, 
and 1800 mm). The field-measured data displays a 
significant correlation with the ESM deflections as shown 
in Fig. 6. This close agreement demonstrates the reliability 
and accuracy of the ESM in modeling pavement behavior, 
further validating its applicability for the development of 
ML models to backcalculate the pavement moduli from 
FWD test. 

 

 
 

Fig. 5. Establishment of machine learning models. 
 
Table 1. Descriptive statistics of input variables utilized in the construction of database. 
 

Symbol Description Minimum Maximum Median Average 
Standard 
deviation 

f0 (kPa) Uniformly distributed applied loading 700.004 799.998 750.587 750.294 28.854 

E1 (MPa) Asphaltic concrete elastic modulus 1250.363 4999.826 3122.951 3125.29 1080.124 

E2 (MPa) Base elastic modulus 175.007 699.978 435.072 435.737 151.494 

E3 (MPa) Subbase elastic modulus 75.017 299.998 187.056 187.576 65.037 

E4 (MPa) Subgrade elastic modulus 20.002 79.989 50.144 50.097 17.395 

h1 (mm) Asphaltic concrete thickness 50.012 249.999 149.238 149.28 57.725 

h2 (mm) Base thickness 100.009 299.994 200.103 200.081 57.882 

h3 (mm) Subbase thickness 100.054 499.964 301.155 300.936 115.322 
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Table 2. Descriptive statistics of generated deflections from ESM scheme at various locations. 
 

Symbol Description Surface Deflections (µm) 

  Minimum Maximum Median Average 
Standard 
deviation 

D1 Center 333.122 3958.541 844.791 974.276 473.685 

D2 Center offset 200 mm 294.183 3134.122 726.249 817.859 377.961 

D3 Center offset 300 mm 272.666 2594.811 649.737 722.752 317.475 

D4 Center offset 450 mm 244.909 1949.861 539.715 607.43 251.906 

D5 Center offset 600 mm 221.774 1489.322 457.754 517.43 208.02 

D6 Center offset 900 mm 184.076 980.429 341.312 389.633 155.481 

D7 Center offset 1200 mm 149.914 741.26 266.86 305.9 124.862 

D8 Center offset 1500 mm 119.045 593.306 214.664 248.293 103.888 

D9 Center offset 1800 mm 99.04 494.713 178.087 207.004 88.204 

  
Table 3. Input parameters for the exact stiffness matrix method (ESM) for the comparisons shown in Fig. 6.  
 

Field Results 
 Asphaltic concrete Base Subbase Subgrade 

f0 (kPa) h1 (mm) E1 (MPa) h2 (mm) E2 (MPa) h3 (mm) E3 (MPa) E4 (MPa) 

Section A 701 140 3714.3 150 355.73 250 161.99 42.06 

Section B 711 50 3804.83 200 537.82 350 96.76 75.72 

Section C 768 100 1660.19 230 498.51 200 295.91 29.53 

Section D 786 90 2781.16 150 683.48 450 148.42 24.70 

 
 
 

 
Fig. 6. Comparison between surface deflections at nine locations measured from the FWD test results and those 
computed from the exact stiffness matrix method (ESM). 
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3.2. Train-Test Split 
 
The train-test split is an essential procedure in 

machine learning for assessing the effectiveness of a 
model. The generated database is branched into two 
portions, one designated for model training and the other 
specifically arranged for model’s performance evaluation. 
The train set comprises 80% of the database (16,000 
datapoints) and is employed for learning the model 
patterns and relationships within the data. In contrast, the 
test set, comprising 20% of the database (4,000 
datapoints), is designated for the purpose of evaluating the 
model's capability to generalize the unobserved data. This 
approach guarantees that the model has undergone 
sufficient training with a substantial dataset, thereby 
facilitating its effective application to new FWD test data. 

 
3.3. Data Scaling 

 
Data scaling is a fundamental procedure in machine 

learning that simplifies the process of reducing the impact 
of anomalies and guaranteeing that all input and output 
variables are on a uniform scale. This stage is of crucial 
significance in order to reduce dimensional effects, 
enhance the models' precision, and accelerate convergence. 
To achieve this, the input and output variables are 
standardized to yield a zero mean and unit root mean 
square deviation, indicating that the data is centered on 
zero and has a variance of one. The procedure of 
standardization or Z-Score normalization is executed 
utilizing the following formula: 

 

X X
X

S

−
 =

 
(8) 

where X ' denotes the standardized value resulting from 

scaling, X represents the original value, X  is the average 

of the dataset, and S is the root mean square deviation of 
the dataset. 
 
3.4. Hyperparameter Tuning and Cross-Validation 

 
A crucial stage in the construction of machine learning 

models involves hyperparameter tuning along with cross-
validation, which has significant impacts on the model 
performance. Hyperparameter optimization refers to the 
procedure of improving the ML model parameters that are 
selected prior to the initiation of the training process. 

  Optuna, a framework for Bayesian optimization, 
demonstrates itself as a dependable mechanism for 
automating hyperparameter improvements and enhancing 
model performance. By minimizing the average root mean 
square error (RMSE) in the set of validation the ML model, 
the Optuna approach facilitates the determination of the 
most effective hyperparameters [19, 31]. The Optuna 
technique is used to discover the most effective 
combination of hyperparameter values for machine 
learning models, allowing for various parameter selections 
within an appropriate space. This space is explored using 

five-fold cross-validation, which is employed to examine 
the ML model's robustness and generalizability. This is 
done by partitioning the training set, containing 80% of 
the database (16,000 datapoints), into five subsets. Four of 
these subsets (12,800 datapoints) are designated as the 
training model set, while the remaining subset (3,200 
datapoints) is used to validate the model. By utilizing an 
iterative process, the model is able to effectively evaluate 
unseen data and prevent overfitting. Through combining 
hyperparameter optimization process with cross-
validation, the predictive accuracy and reliability of the 
model are significantly enhanced during the development 
procedure. Table 4 represents the hyperparameters' 
optimal values for the construction of ANN, LSTM and 
RF models. 
 
3.5. Model Performance Evaluation 

 
The present investigation assesses machine learning 

models by employing various performance indicators, 
which includes root mean square error (RMSE), mean 
absolute percentage error (MAPE), and coefficient of 
determination (R2), ratio of root mean square error to 
observations' standard deviation (RSR), index of scatter 
(IOS), and a20_index.  

The squared average deviation among the predicted 
and actual values is denoted by RMSE; a lower RMSE 
indicates a more accurate prediction. MAPE measures the 
mean percentage discrepancy across the actual and 
predicted values, and a lesser MAPE indicates a more 
precise prediction. The value of R2 indicates the level of 
precision with which the independent variables reflect the 
variability observed in the dependent variable. An R2 value 
closer to 1 indicates the better performance of the model. 
The RSR varies between a large positive number and zero, 
which is the ideal value, representing the proportion 
between the RMSE and standard deviation of actual values. 
The effectiveness of the model is indicated by a lower 
value of RSR. In general, the IOS ranges from zero to 
infinity and represents the proportion between the RMSE 
and the mean of actual values. A lower IOS corresponds 
to a more accurate prediction. The a20_index, an indicator 
that varies from 0 to 100%, denotes the percentage of 
samples in which the variation among the predicted and 
actual values is greater than or equal to 20%. The above 
performance indicators are defined as follows: 
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where n represents the amount of data; the actual and 

predicted values for the ith datapoint are denoted by
iy  

and ˆ
iy  respectively; M20 represents the quantity of 

samples in which the proportion of predicted to actual 
values lies within the interval of 0.8 to 1.2. 
 

4. Data-Driven Solutions 
 

The Python programming language [32] is utilized to 
construct the models of machine learning for data-driven 
solutions of the modulus of elasticity for the four-layered 
pavement structures based on the FWD experiment. 
Inside the models, the matrix of dependent variable y 

comprises the four elastic moduli, i.e., y = [E1- E4], 
whereas for the independent variables X, it contains the 

13 input variables, i.e., X = [ f0; h1-h3; D1-D9]. 
 
4.1. Model Performance 
 

Table 4 shows the optimal values of hyperparameters 
for the development of ML models. The ANN model 
contains five hidden layers, each containing an ideal 
number of neurons: 39, 45, 46, 35, and 50, with the 
learning rate of the model being 0.0022908. Furthermore, 
by setting the L2 penalty parameter to 0.0004392, a 
regularization is proposed to penalize significant weights 
in order to avoid overfitting problem. Nonlinear learning 
is produced by the tanh activation function. The batch size 
contains 150 samples before updating the model's 
parameters. The training procedure encompasses a 
duration of 200 epochs, each of which represents an 
extensive iteration over the training dataset. Conversely, 
the LSTM model consists of four LSTM layers, each of 
which contains the following distribution of neurons: 80, 
50, 59, and 42. The LSTM exhibits a slightly higher 
learning rate of 0.0027039 and a significantly lower L2 
penalty parameter of 0.0003511, which could reflect a 
balance between the model's complexity and the need to 
generalize well to new data. The activation functions 
employed through this network are tanh and sigmoid. 
Sigmoid may be utilized in the recurrent steps, while tanh 
is implemented within the LSTM gates in order to 
facilitate regulation of information flow within the 
network. The batch size in LSTM is 100, and similar to the 
ANN, the LSTM is also trained for 200 epochs.  

 
Table 4. Hyperparameter optimization for the development of three ML models. 
 

Model Hyperparameter Optimal Value 

ANN Hidden layer 5 

 Node in each hidden layer 39-45-46-35-50 

 Learning rate 0.0022908 

 L2 penalty parameter 0.0004392 

 Hidden layer activation function tanh 

 Output layer activation function linear 

 Batch Size 150 

 Epochs 200 

LSTM Hidden layer of LSTM  4 

 Node in each LSTM layer 80-50-59-42 

 Learning rate 0.0027039 

 L2 penalty parameter 0.0003511 

 Hidden layer activation and recurrent functions tanh, sigmoid 

 Output layer activation function linear 

 Batch Size 100 

 Epochs 200 

RF Number of trees 348 

 Maximum depth  11 

 Maximum features for the split 12 

 Minimum samples split of internal node 6 

 Minimum leaf node samples 4 
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The hyperparameter optimal value for the RF model 
is determined to reduce the discrepancy between the actual 
and predicted layered elastic modulus of the pavement, as 
demonstrated in Table 4. The hyperparameter's optimal 
value is obtained as follows: the number of estimators 
(348); the maximum depth (11); the maximum features for 
the split (12); the minimal internal node sample split 
allowed to divide (6); and the quantity of samples 
necessary for a leaf node (4). In order to propose a 
preliminary comparison of the performance from each 
ML model, a graphical illustration of the indicator of 
performance (R2) for the estimation of layered elastic 
modulus by employing ANN, LSTM, and RF is illustrated 
in Figs. 7(a) and 7(b), according to the train set and test 
set, respectively. The evidence is apparent in Fig. 7 that the 
ANN and LSTM models clearly outperform the RF model 
for the prediction of the pavement layer elastic modulus. 

The R2 values for the asphaltic concrete (E1), base (E2), 

and subbase (E3) from the RF model are all lower than 

60%, with only the R2 value for the subgrade (E4) being 
98%. This indicates that the RF model is capable of 
successfully representing only the modulus of subgrade 
layer. In Phulsawat et al. [19], the RF model outperforms 
ANN in the prediction of all layer moduli. Note that only 
the measured surface deflections (D1-D9) are considered 
as the input variables in their study [19]. Thus, the 
increasing complexity of the relationships between the 

input variables (f0; h1-h3; D1-D9) and the output variables 
(E1-E4) could be the reason why the RF model is unable 
to accurately predict the elastic moduli of all layers as more 
variables are introduced in the current analysis. Thus, only 
the results obtained from the ANN and LSTM models are 
considered in the subsequent analysis, interpretation, and 
discussion.  

 

 
 

(a) 

 

 

 
 

(b) 

 
Fig. 7. Performance indicator (R2) for ANN, LSTM, and RF models based on (a) train set; and (b) test set. 
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Figure 8 shows scatter plots that represent the 
correlation between the input moduli of the ESM scheme 
to generate the synthetic database and the ANN model's 
prediction values both during the training and testing 
phases. With regard to the assessment of the model's 
performance, statistical tests, R2, and MAPE values are 
shown. R2 exceeds 96.5% for both datasets in the four-
layered structure, and MAPE is lower than 4.8%, 
indicating an excellent level of accuracy. A considerable 
number of datapoints in each plot appear to be 
concentrated along the line of perfect agreement, 
indicating that the ANN model has achieved a precise 
assessment of all layered elastic modulus based on the 
FWD test. The close correspondence between the 
predicted moduli of elasticity obtained from ANN and the 
input moduli of elasticity in the exact stiffness matrix 

program indicates the predictive model has undergone 
adequate training, and it operates effectively. 

The LSTM model's predicted modulus of elasticity for 
all layer pavement, utilizing optimal hyperparameters, is 
illustrated by the scatter plots for both the training and 
testing datasets as shown in Fig. 9. From a preliminary 
visual inspection, the LSTM model exhibits a scatter of 
points nearer to the diagonal line compared to what 
observed from the ANN model in Fig. 8. This implies that 
the LSTM model has a better capacity for accurate 
prediction than the ANN model. For the purpose of 
measuring the performance of the model, statistical tests, 
LSTM models exhibit extraordinary predictive ability (R2 > 
98.5% and MAPE < 3.2%) during both the training and 
testing stages, underscoring their exceptional accuracy in 
prediction the elastic moduli of all layers. 

  

 
           (a)       (b) 

  

         (c)       (d) 
 

Fig. 8. Correlation between ANN predictions and input elastic moduli: (a) asphaltic concrete; (b) base; (c) subbase; and 
(d) subgrade. 
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           (a)       (b) 

 

   
           

         (c)       (d) 
 

Fig. 9. Correlation between LSTM predictions and input elastic moduli: (a) asphaltic concrete; (b) base; (c) subbase; and 
(d) subgrade. 

 
The efficiency of two machine learning models, ANN 

and LSTM, on their corresponding train and test sets is 
compared in Table 5. Throughout the training and testing 
stages, both models demonstrate exceptional predictive 
capabilities for the elastic moduli. Each dependent 

variable (E1, E2, E3, and E4) is comprehensively explained 

by all independent variables (f0, h1, h2, h3, and D1-D9), 
implying that there is a robust relationship between the 
input and output variables, ensuring that both models 
accurately capture underlying patterns. However, the 
LSTM model exhibits a slight edge over the ANN model 
across various indicators throughout the phases of training 
and testing due to its ability to capture long-term 
dependency patterns. When compared to the average 
values obtained from the ANN model (RMSE = 47.09 
MPa, MAPE = 3.28%, R2 = 98.17%, a20_index = 99.01%, 

RSR = 0.126, and IOS = 0.044), the average values from 
the LSTM model demonstrate lower RMSE (35.38 MPa), 
MAPE (2.42%), RSR (0.092), IOS (0.032), and a greater 
R2 (99.05%), a20_index (99.96%) during the train stage. 
The LSTM model continues to outperform the ANN 
model during the test stage, as indicated through its lower 
RMSE (35.88 MPa), MAPE (2.41%), RSR (0.092), IOS 
(0.032), and a higher R2 (99.04%), a20_index (99.94%) 
values, comparing to the corresponding average values 
obtained from the ANN model (RMSE = 44.57 MPa, 
MAPE = 3.25, and R2 = 98.26%, a20_index = 99.09%, 
RSR = 0.122, and IOS = 0.042). Thus, the LSTM model 
exhibits superior performance in the prediction of the 
elastic moduli of flexible pavements based on FWD data. 
In the subsequent sections, the LSTM model is then 
employed in the verification with the data from FWD tests 



DOI:10.4186/ej.2025.29.3.27 

 
38 ENGINEERING JOURNAL Volume 29 Issue 3, ISSN 0125-8281 (https://engj.org/) 

carried out on Thailand's road infrastructure, and in the 
analysis of sensitivity to study the significant of each input 
variable on each layer's elastic modulus prediction.   

 
4.2. Comparison with existing results  

 
The applicability of the LSTM model is demonstrated 

by comparing the predicted elastic moduli with the 
backcalculated moduli from FWD field experiments 
carried out on Thailand's road infrastructure. In this 
investigation, 454 FWD test datapoints were selected from 
the previous FWD test on four-layered pavement sections 
with various thicknesses and different FWD loadings. In 
each datapoint, the applied loadings, layer thicknesses, and 
measured deflections from the nine geophones at a variety 
of locations were obtained from the test. It is essential to 
transmit these parameters to the LSTM model as the input 
variables in order to predict the elastic moduli of the four-
layered pavement. Statistics values for the pavement 
sections derived from the FWD field testing are 
summarized in Table 6. Figure 10 illustrates a correlation 
between the elastic moduli predicted from the LSTM 
model and the backcalculated values obtained from the 
FWD field test results. The elastic moduli from the FWD 
tests were backcalculated from the ELMOD program 
using the measured surface deflections, the magnitude of 

applied loading, and the layer thicknesses obtained from 
the field tests. The ELMOD program was developed by 
Dynatest Consulting Inc., using the theory of Odemark-
Boussinesqe transformed sections. It utilizes an iterative 
approach to estimate the elastic moduli by minimizing the 
discrepancy between measured and theoretical deflections 
derived at the pavement surface [33].  

The accuracy and reliability of the LSTM model are 
explained by each subfigure, which concentrates on each 
layer material. A black diagonal line illustrates the ideal 
correlation, while dashed lines indicate acceptable 
deviations of +30%, +20%, -20%, and -30% between the 
predicted elastic moduli from the LSTM model and the 
backcalculated results from FWD field test. As shown in 
Fig. 10, it is evident that the majority of the datapoints for 
elastic moduli across all layers are distributed within a 
margin of error of ±20%, with a few exceeding the ±30% 
error lines. In the context of the overall performance 
measurement, the mean absolute percentage error (MAPE) 
indicates that the MAPE for the predicted elastic moduli 
of all pavement layers (E1-E4) do not exceed 15%, with 
the predicted subgrade modulus (E4) exhibiting the lowest 
MAPE value of 9.88%. Thus, the LSTM model can be 
utilized as an acceptable alternative for predicting the 
multi-layered elastic moduli of pavement infrastructures 
according to FWD test data. 

 
Table 5. Performance measures of the prediction of layered pavement moduli. 
 

Dataset Layer Model RMSE 
(MPa) 

MAPE 
(%) 

𝑹𝟐 
(%) 

a20_index 
(%) 

RSR IOS 

Train set  asphaltic  ANN 151.295 2.99 98.04 98.68 0.14 0.048 

 concrete (E1) LSTM 117.863 2.74 98.81 99.99 0.109 0.038 

 base (E2) ANN 27.271 4.77 96.75 97.68 0.18 0.063 

  LSTM 15.108 2.52 99 99.93 0.1 0.035 

 subbase (E3) ANN 9.041 3.9 98.07 99.68 0.139 0.048 

  LSTM 7.909 3.19 98.52 99.91 0.122 0.042 

 subgrade (E4) ANN 0.744 1.46 99.82 100 0.043 0.015 

  LSTM 0.656 1.23 99.86 100 0.038 0.013 

 Average ANN 47.090 3.28 98.17 99.01 0.126 0.044 

  LSTM 35.380 2.42 99.05 99.96 0.092 0.032 

Test set asphaltic  ANN 141.784 2.93 98.26 98.85 0.132 0.045 

 concrete (E1) LSTM 119.962 2.76 98.75 99.98 0.112 0.038 

 base (E2) ANN 26.615 4.68 96.94 97.85 0.175 0.061 

  LSTM 14.99 2.48 99.03 99.93 0.098 0.035 

 subbase (E3) ANN 9.121 3.92 98.03 99.68 0.14 0.048 

  LSTM 7.903 3.2 98.52 99.85 0.122 0.042 

 subgrade (E4) ANN 0.756 1.46 99.81 100 0.043 0.015 

  LSTM 0.646 1.19 99.86 100 0.037 0.013 

 Average ANN 44.570 3.25 98.26 99.09 0.122 0.042 

  LSTM 35.880 2.41 99.04 99.94 0.092 0.032 
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Table 6. Descriptive statistics of input variables from FWD experiments. 
 

Symbol Explanation Minimum Maximum Median Average 
Standard 
deviation 

f0 Uniformly distributed applied loading 701 799 753 750.725 27.761 

h1 Asphaltic concrete’s thickness 70 200 120 119.295 37.931 

h2 Base’s thickness 150 250 200 206.718 37.47 

h3 Subbase’s thickness 150 450 300 305.176 100.938 

D1 Uniform loading center 391.5 2897.4 965.1 1083.552 465.163 

D2 Center offset 200 mm 346.8 2403.2 805.05 913.03 397.428 

D3 Center offset 300mm 320.8 2085.8 698.75 804.916 353.051 

D4 Center offset 450 mm 285.3 1702.6 577.05 670.604 298.746 

D5 Center offset 600 mm 249.6 1408 477.85 564.047 255.658 

D6 Center offset 900 mm 191.8 980.1 344.85 411.898 192.391 

D7 Center offset 1200 mm 150.3 740.6 262.5 314.159 149.725 

D8 Center offset 1500 mm 119.2 590.6 209.3 249.381 119.869 

D9 Center offset 1800 mm 99.07 490.8 172.15 204.942 98.597 

 

 
(a) (b) 

 

 
         (c)       (d) 

Fig. 10. Correlation between predicted elastic moduli from LSTM and backcalculated values from FWD field test: (a) 
asphaltic concrete; (b) base; (c) subbase; and (d) subgrade.  
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To further verify the present ML results, Table 7 
presents a comparison between the predicted elastic 
moduli from LSTM and the conventional backcalculated 
scheme based on a nonlinear least square optimization 
based on modified Levenberg-Marquardt algorithm. 
Puarungroj [34] employed this scheme in the 
backcalculation for pavement layer moduli from FWD 
data using dynamic analysis. The backcalculated moduli 
from the past FWD field tests based on ELMOD are also 
presented for comparison. It is evident from Table 7 that, 
although there are several inconsistencies among the three 
schemes, the elastic moduli values generated by the LSTM 
model exhibit strong consistency with ELMOD, 
particularly for the asphaltic concrete (E1) and base layer 
(E2). This underscores the potential of the LSTM model 
as a viable alternative to conventional backcalculation 
techniques, given its ability to approximate backcalculated 
moduli from FWD tests with reasonable accuracy. Thus, 
LSTM can serve as a practical and efficient tool for 
backcalculating the elastic moduli of pavement structures, 
reducing the computational complexity associated with 
conventional backcalculation methods while maintaining 
accuracy and reliability. 

 
4.3. Sensitivity Analysis 
 

This subsection presents sensitivity analysis to assess 
the relative significance of each input variable, i.e. the 

magnitude of uniform vertical loading (f0), the layer 

thicknesses (h1, h2, h3), and measured surface deflections 
(D1-D9), on the estimation of layered elastic moduli (E1-
E4). Plischke [35] performed the first-order sensitivity 
analysis, employing the Fourier Amplitude Sensitivity Test 
(FAST) in conjunction with the Efficient Approximation 
of Sensitivity Indices (EASI) and Random Balance 
Designs (RBD). A bias correction technique which Tissot 

and Prieur [36] is additionally adopted to improve the 
accurateness of sensitivity estimates. The formula for 
determining the first-order sensitivity of an input variable 
is expressed as follows: 
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where V[.] represents the variation in values of a random 
variable and E (f (y, Xi)) denotes the conditioned 
expectation of the machine learning predicted value for a 

given Xi. A robust correlation between the predicted 

output variable �̂� and the input parameter Xi is indicated 

by a high value of Si.  
In the current study, the sensitivity analysis is 

conducted by representing the first-order sensitivities of 
input parameters on the predicted elastic moduli from 
LSTM model, as presented in Fig. 11. It is evident from 
Fig. 11 that the first-order sensitivities of the loading 

magnitude (f0) and the layer thicknesses (h1-h3) are 
relatively low across all predicted layered moduli, 

suggesting that the input variables f0 and h1-h3 have less 
impact on E1-E4 compared to the measured surface 
deflections on (D1-D9). For the asphaltic concrete layer 
(E1), the measured deflections at D1 predominantly 
influence the prediction of E1, with the highest first-order 
sensitivity at 48%, followed by D2 and D3, with sensitivities 
of 21.74% and 13.77%, respectively. In addition, the 
deflections at the remaining geophones (D4 to D9) 
contribute only marginally, with sensitivity values below 
8%. Similarly, the deflections measured at the center of 
loading D1 exhibit the most significant influence on the 
base layer modulus (E2), followed by the deflections at D2 

and D3, respectively. It is found that the cumulative effect 
of the deflections observed at the first three geophones 
(D1 to D3) on the estimated value of E2 exceeds 70%.  

 
Table 7. Comparison of backcalculated elastic moduli from various schemes. 
 

Section f0 (kPa) Layer 
Thickness 
(mm)  

Backcalculation Moduli (MPa) 

ELMOD Levenberg-Marquardt  LSTM 

A 704 asphaltic concrete (E1)  200 2980.674 2978.265 3035.977 

  base (E2)  250 377.346 387.184 372.049 

  subbase (E3)  300 184.484 96.793 185.519 

  subgrade (E4)  ∞ 50.536 50.397 50.233 

B 757 asphaltic concrete (E1)  100 4879.248 4949.369 4974.01 

  base (E2)  200 229.658 223.63 224.538 

  subbase (E3)  350 227.704 132.078 238.363 

  subgrade (E4)   ∞ 31.26 38.578 31.234 

C 763 asphaltic concrete (E1)  120 2872.408 2141.029 2842.911 

  base (E2)  150 272.145 482.595 279.291 

  subbase (E3)  450 293.531 182.215 298.567 

  subgrade (E4)  ∞ 63.686 63.709 63.253 

D 797 asphaltic concrete (E1)  200 1434.954 1397.39 1564.69 

  base (E2)  250 251.024 280.296 249.843 

  subbase (E3)  350 121.196 70.805 127.394 

  subgrade (E4)  ∞ 21.999 21.859 22.861 
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Fig. 11. First-order sensitivity of measured deflections on the predicted moduli from LSTM. 
 

Figure 11 also reveals that the subbase modulus (E3) 

is dominated by the deflections at D1 to D5, with 
sensitivities ranging from 14% to 19%, while sensitivities 

from D6 to D9 lie between 2% to 6%. This pattern suggests 
that, unlike E1 and E2, the influential deflections on E3 

extend beyond the first three geophones. For the subgrade 
modulus, no single geophone dominates the prediction of 
E4, with the sensitivities of D4 to D9 being from 10% to 
15%. The results from the sensitivity analysis are 
consistent with Zhang et al. [37], who performed a 
dynamic analysis to determine displacement fields from a 
theoretical model of a three-layered pavement structure 
under FWD loading and provided a precondition for the 
backcalculation of multilayered pavement moduli. They 
found the variation of elastic modulus of the top surface 
mainly influences the vertical displacement of points close 
to the load center. The vertical displacement affected by 
the elastic modulus of the base course is shown in a 
broader range, while the subgrade effect is observed across 
the entire monitoring area. 

 
5. Conclusions 

 
This research focuses on the development of data-

driven solutions for backcalculating the modulus of 
elasticity for multi-layered pavement structures from the 
Falling Weight Deflectometer (FWD) experiment. 
Various machine learning techniques, namely, artificial 
neural network (ANN), long short-term memory (LSTM), 

and random forest (RF), are effectively established from a 
synthetic database for the backcalculation process. The 
exact stiffness matrix scheme is employed to create an 
exhaustive database containing 20,000 flexible pavements 
of four-layered roadway structures. The developed 
machine learning models utilize the following input 

variables: the applied uniform vertical loading (f0); the 

thicknesses of the top three layers (h1, h2, h3); and the 
surface deflections, which are measured at nine different 
locations (D1 to D9). The estimation of four-layered elastic 
modulus (E1 to E4) constitutes the output variables. All 
hyperparameters are meticulously optimized in an effort 
to minimize the loss function between the predicted and 
input elastic moduli in the construction of the ML models.  

Among the three proposed ML algorithms, the ANN 
and LSTM models outperform the RF model in terms of 
capturing complex relations for the purpose of estimating 
the four-layered pavement elastic moduli, while 
maintaining an exceptionally high level of accuracy. 
Various statistical metrics, namely, RMSE, MAPE, R2, 
RSR, IOS, a20_index, are implemented to evaluate the 
performance of the developed ANN and LSTM models, 
and they reveal that both constructed models exhibit 
outstanding performance. However, the LSTM model 
demonstrates superior performance compared to the 
ANN model. The increased reliability of the LSTM model 
signifies consistent performance across various datasets, 
whereas its enhanced accuracy assures more accurate 
predictions of the layered pavement moduli. Additionally, 
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the LSTM model demonstrates reduced variability, 
implying that its predictions are more stable and less 
impacted by variations in the input.  

The aforementioned characteristics collectively 
support the LSTM model as a more robust and reliable 
instrument for backcalculating modulus of elasticity in the 
four-layered pavement structures based on FWD test on 
road infrastructures. Furthermore, the comparison 
between the predicted moduli from the LSTM model and 
the backcalculated moduli from the FWD experiment 
indicates an acceptable agreement, with the MAPE for all 
predicted modulus (E1-E4) is less than 15%. Thus, the 
developed LSTM model exhibits an impressive accuracy 
for backcalculating the four-layered pavement moduli 
based on the FWD test.  

The sensitivity analysis reveals that the measured 
deflections at center of uniform vertical load (D1) exhibit 
the most significant influence on the prediction of the 
elastic modulus of asphaltic concrete and base layer (E1 

and E2), while the measured deflections at D2 and D3 also 
contribute substantially to the prediction of the base layer 
modulus (E2). Conversely, the prediction of the subbase 
and subgrade moduli (E3 and E4) is not significantly 
influenced by any particular measured deflections. Besides, 
the layer thickness and the magnitude of vertical loading 
have negligible effects on the estimation of the pavement 
elastic moduli. The present findings emphasize the 
efficacy of the LSTM model and offer significant insights 
into the behavior of multi-layered flexible pavements, 
thereby enhancing the assessment of road infrastructures. 

The efficiency of developed ML models presented in 
this paper illustrates the prospective applications of data-
driven approaches to the strength assessment of 
transportation infrastructure networks for preventive 
maintenance. Work is currently underway to generate 
anomaly detection algorithms integrated with the 
developed ML model to filter out outliers in measured 
deflections obtained from FWD field tests. This will 
enhance the accuracy and reliability of the predicted multi-
layered pavement moduli in the backcalculation process 
based on FWD test results. 
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