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Abstract. Reinforcement learning has emerged as a leading algorithmic approach due to its success-
ful applications across various domains. While many implementations favour the model-free approach
for its aptitude for handling complex problems, its learning curve tends to be slower. Given the intri-
cacies of the Linear Multi-Echelon Inventory System, a model-based approach might be more fitting,
offering faster learning rates. This study seeks to integrate Neuroevolution of Augment Topologies
(NEAT) – a hybrid of model-based reinforcement learning and evolutionary algorithms – into such an
inventory system. Furthermore, the research delves into hyperparameter tuning, experimenting with
seven specific hyperparameters to discern the most efficient combination and understand their inter-
play. Benchmarking against the model-free Proximal Policy Optimisation (PPO) serves as a measure
of NEAT’s effectiveness. Findings indicate that when optimally tuned, NEAT can slash total costs by
25.02% compared to PPO. Impressively, NEAT achieves this peak performance in a mere 1,000 gener-
ations, significantly outpacing PPO’s learning trajectory.
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1. Introduction

Reinforcement learning (RL), a pivotal segment of
machine learning, has seen progress in areas like robotics
and predictive analytics [1, 2, 3]. RL frequently applies
Deep Learning (DL) techniques, known as Deep Rein-
forcement Learning (DRL), to manage complex issues
and learn effectively from rewards. However, its sig-
nificant data requirements pose a challenge. Simulation
models can mitigate this data hunger by generating nec-
essary training data. RL is categorised intomodel-based,
efficient for simple tasks, and model-free, suitable for in-
tricate situations but slower to adapt.

In the domain of inventory control, RL adapts to
various complexities, influenced by system structure,
costs, demand, and lead times. Studies highlight the ap-
plication of both model-free [4, 5] and model-based al-
gorithms [6] to tackle different levels of inventory com-
plexity. [5] specifically delved into the model-free Prox-
imal Policy Optimisation (PPO) algorithm, introduced
by [7], for its capacity to handle complex challenges or
scenarios where full simulation is impractical due to less
reliance on the simulation model. Employing the Lin-
ear Multi-Echelon Inventory System (LMEIS) frame-
work by [4, 5] applied PPO to a system encompassing
five levels—supplier, manufacturer, distributor, retailer,
and customer—each with a single stock point as illus-
trated in Fig. 1. Customers at level 0 initiate the re-
plenishment process by requesting stock from the sub-
sequent upper level. This operational model unfolds in
discrete time steps, marked by four pivotal events: re-
ceiving the previous order from the upper level, obtain-
ing a new order from the lower level, order fulfillment,
and the agent’s decision-making onwhether a new order
is warranted.

Fig. 1. Example of a linear multi-echelon inventory
system.

On the other hand, model-based algorithms ex-
cel in efficiency, achieving results on par with model-
free methods in fewer cycles, thanks to their adaptabil-
ity. This proves especially advantageous for stream-
lined LMEIS inventory management. [8] showcased
the success of Neuroevolution of Augmenting Topolo-
gies (NEAT) in situations requiring strategic decision-
making, such as pole-balancing and Atari games, where
it significantly improved performance and reliability.
The significance of past actions in inventory systems
highlights NEAT’s

Nevertheless, hyperparameter tuning is critical

since no single RL algorithm fits every situation. This
study focuses on NEAT to investigate howmodel-based
RL can tackle the complexities of LMEIS. With limited
discussion in existing literature, examining NEAT’s ap-
plication, the effects of hyperparameter Optimisation,
and its comparison with traditional methods opens up
promising avenues for research.

The paper is structured as follows: Section 2 ex-
plores recent developments in RL across various fields.
Section 3 details the inventory system, its definitions, as-
sumptions, and methodology. Section 4 addresses tun-
ing of the NEAT algorithm’s hyperparameters. Sec-
tion 5 assesses the algorithm’s performance and bench-
marks it. The conclusion in Section 6 summarises key
findings and suggests directions for future research.

2. Literature Review

This section briefly reviews related research on RL,
focusing on two key areas: 1. Applying model-based
RL and integrating meta-heuristics into various fields.
2. Development and use of RL in inventory control re-
search.

2.1. Model-Based Reinforcement Learning
(MBRL)

Researchers widely recognised RL’s ability to ad-
dress complex challenges. [9] discussed the diverse
applications of model-based and model-free RL. [10]
presented the Cluster-Explore Classify-Exploit (CECE)
framework for clustering, adaptable across domains.
[11] used RL for context-based change detection, tested
in ball catching and traffic scenarios. [12] employed a
Markov decision process (MDP) for demand distribu-
tion changes in inventory. For decision-making, re-
searchers like [13, 14, 15, 16, 17, 18, 19] applied MDP
in route planning and robotic movements.

These studies span various domains, including
robotics [20, 19, 16, 18, 15, 14], where they have been
applied to tasks like balance control, motion planning,
and robotic arm trajectories. RL algorithms have been
used in logistics for route and path planning [21, 17, 22].
However, a key challenge in implementing RL lies in
hyperparameter tuning. Several studies have focused
on developing algorithms specifically for adjusting hy-
perparameters, such as those by [12, 23]. It is im-
portant to note that the choice of hyperparameters is
data-dependent [13], requiring each research study im-
plementing RL to conduct experiments to identify the
most suitable hyperparameter configuration.

As [24] stated, the RL nature of data-hungry in
the training phase might limit itself from a real-world
problem and large state spaces. Therefore, one of the
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ways out is to hybridise it with other well-known con-
cepts. These evolutionary algorithms help in their data-
hungry nature, called Evolutionary Algorithms (EA)
for RL (EARL). An evolutionary algorithm for learning
algorithms can be implemented in the process [25, 26]
or parameter tuning [27]. For instance, [24] reviewed
the literature on EARL-type implementation in various
fields such as business management, medical, industrial,
or image processing. Conversely, some papers, such as
[12], implemented EA for parameter tuning, and [27]
applied their research to detect fraud within cryptocur-
rency networks.

NEAT was chosen for its ability to evolve both net-
work topologies and weights, which allows it to dynam-
ically adapt to the complexity of multi-echelon inven-
tory systems. Unlike DQN, which relies on fixed net-
work architectures that may not fully capture varying
system dynamics, NEAT optimizes both structure and
parameters simultaneously. Additionally, NEAT builds
on the core principles of Genetic Algorithms (GA),
such as mutation and crossover, but extends them by
evolving architectures alongside weights. This combina-
tionmakesNEATparticularly effective for handling the
non-linear, multi-level interactions in dynamic, high-
dimensional inventory problems [28].

One of the concepts is combining neural net-
work development with the Genetic Algorithm (GA)
named NEAT, introduced by [8]. This method con-
tinuously improves the neural network structure and
weight through evolutionary processes. In addition,
this method has shown promising results throughout
various research fields, e.g., the medical field [29, 30],
playing a game [31], or scheduling problems [32].

2.2. Inventory Control

In inventory control research, the complexity of the
system can be gauged through various factors, as rec-
ommended by [33, 34]. These factors include the num-
ber of stages, time horizon, node connections in each
stage, uncertainty, performance criteria, and other con-
straints, which help classify the system’s complexity.
Regarding solution approaches, techniques for inven-
tory control problems, like many computational prob-
lems, have evolved. They initially used exact solutions
like the EOQ model [35, 36] or mathematical models
[37]. Researchers introduced approximation methods
[38] as problems required longer computation times.

As the problem grew more computationally de-
manding, heuristic methods emerged as popular solu-
tions, such as the greedy approach [39] and simulation-
based methods [40, 41, 42]. These heuristics further
evolved into well-known meta-heuristics, many draw-
ing inspiration from natural processes. [43] conducted a

review of these nature-inspired meta-heuristics, includ-
ing GA [44, 33, 45, 46, 47], particle swarm optimisation
(PSO) [48, 49, 50, 51], and EA [52].

Machine learning has gained popularity in address-
ing inventory challenges. [53] applied supervised ma-
chine learning for inventory classification, but most al-
gorithms focus on cost minimisation in inventory con-
trol. [54, 55] explored the implementation of RL in in-
ventory control, while [56] summarised literature using
deep Q-learning for Multi-Echelon inventory control,
citing [4, 5]. [57] employed Asynchronous Advantage
Actor-Critic (A3C), and [5, 58] chose PPO for inventory
systems. However, as highlighted by [54], most imple-
mented learning is model-free, leading to slow learning
convergence [54, 18]. Table 1 compares these studies in
terms of sourcing, echelons, retail, inventory structure,
cost considerations, uncertainty sources, constraints,
and methodologies.

In this study, we employ NEAT algorithm, a hy-
brid MBRL and EA, which has demonstrated promise
across different research areas but has not been applied
to the LMEIS as proposed by [4]. The PPO algorithm,
studied by [5], is used as a benchmark with an objective
of minimising total costs. Additionally, how hyperpa-
rameter tuning influences NEAT’s performance are in-
vestigated. This point has not previously been explored
in the LMEIS literature.

3. Model Formulation

The inventory system focused in this paper is ex-
plained in this section, which is divided into two main
parts: 1. inventory system and its simulationmodelling,
and 2. DRL formulation.

3.1. Inventory System and Simulation Modelling

The study adopts a LMEIS model from [4], charac-
terised by five echelons and centralised information, as
depicted in Fig. 2. Customer orders at the first echelon
are generated each period, adhering to a uniform distri-
bution between 0 and 15 units, with immediate fulfil-
ment required to avoid backlogs. To meet this demand,
each subsequent echelon, spanning a total of five levels,
requests inventory from the level above it. Inventory
transfers are governed by a lead time, which is deter-
mined randomly from a uniform distribution of 0 to 4
periods for each time period and applies to all stock lev-
els except the first within that timeframe.
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Table 1. Literature comparison.

Fig. 2. Inventory system considered in this research.

Table 2. Inventory system parameters.

This setup illustrates how, for example, a gener-
ated lead time of 1 period means any transport initiated
across the supply chain concludes in the following pe-
riod. Conversely, a lead time of 3 periods causes trans-
fers to reach their destinations after three periods. At
the end of each period, holding and penalty costs are
calculated at $1 and $2 per unit, respectively, for stored
and backlogged units. System parameters for each level
are detailed in Table 2. This process repeats over 35 peri-
ods to complete a single experimental replication, with
its operational logic succinctly illustrated through pseu-
docode in Fig. 3.

Following the operational details outlined, a mathe-
matical model is introduced to succinctly represent this

LMEIS. This model captures the essence of customer de-
mand, inventory transfers, and cost calculations, as pre-
viously described. It offers a quantitative foundation for
analysing the system’s dynamics over the 35-period ex-
perimental replication.

minimise

n∑
t=1

m∑
i=1

(hixi,t + sici,t) (1)

Fig. 3. Pseudocode for inventory system simulation.
Such that:

pi,t = pi,t−1 + oi,j,t − oi−1,i,t; ∀i ∈ m (2)

xi,t = max (0, xi,t−1 + ai,i+1,t

−oi−1,i,t − ci−1,t) ; ∀i ∈ m
(3)

ci,t = |min (0, xi,t−1 + ai,i+1,t − oi−1,i,t

−ci−1,t)| ; ∀i ∈ m
(4)
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where:

• m - Level of supply chain member (1, 2, 3, 4)

• n - Time period for the simulation (1, 2, 3, …, 35)

• xi,t - Inventory on-hand of level i at the end of
time t

• pi,t - Inventory position of level i at the end of
time t

• ci,t - Shortage amount of level i at the end of time
t

• hi - Holding cost per unit at level i ($/unit)

• si - Shortage cost per unit at level i ($/unit)

• oi,j,t - Order from level i to level j at time t and
j = i+ 1

• ai,j,t - Arriving stock of level i from level j arrives
at time t and j = i+ 1

In this model, Equation (1) represents the objec-
tive, which is set up to minimize the total holding and
penalty costs at each echelon, except at the customer
level, for every time period. Equations (2) and (3) are
constraints to ensure that the inventory position and
inventory on-hand at each level i are updated correctly.
The last constraint, shown in Equation (4), captures any
shortages in inventory at each level.

3.2. Inventory System and Simulation Modelling

To embed DRL within the simulation model, the
”OpenAI Gym” framework, a prevalent Python li-
brary for integrating RL into various environments, is
utilised. This framework offers a systematic method-
ology for crafting RL agents and systems, making the
integration process more manageable. However, it re-
quires users to build RL agents and systems on their
own. Also, ”NEATPython” is tailored to fit the sim-
ulation environment’s specific needs, including state in-
puts and outputs. Importantly, it is vital to initially out-
line the core components of RL, such as the state space,
action space, and rewards. The detail on these crucial
aspects is provided in the next section.

3.2.1. State space

In RL, the ’state’ represents system information at
each point in time, like inventory position, on-hand in-
ventory, and backlog. The ’state’ is crucial to the learn-
ing model as inadequate information limits the learning
agent’s capabilities. Thus, it is essential to design a state

encapsulating all vital information. The state space for
this research is defined as follows:

S(t) = [tx,t, tb,t, xi,t, ci,t, oi,j,t−1,

ai,j,t, ai+1,j,t, ai+2,j,t, ai+3,j,t, ai+4,j,t] (5)

State S(t) comprises 10 primary dimensions, with
txt denoting total inventory, tb,t representing total
backlog, xi,t indicating inventory per level, ci,t sig-
nifying each level’s order backlog, and oi,j,t−1 be-
ing the recent request per level. The parameters
ai,j,t, ai+1,j,t, ai+2,j,t, ai+3,j,t, and ai+4,j,t correspond to
incoming inventory over 0, 1, 2, 3, and 4 periods at
each level, totalling 30 parameters. Each parameter has
a minimum value of zero, while their maximum values
vary.

3.2.2. Action space

At the period’s conclusion, the formulated learning
model determines whether a request to the upper level
is requisite. Given the environmental setup, each level
can request a maximum of 30 units per period. While
the learning model operates in continuous space for ac-
tion output, it necessitates rounding before initiating re-
quests.

3.2.3. Reward definition

Due to the GA-based concept in NEAT, the reward
is redefined as fitness, tied to total costs of holding and
shortages. Balancing these costs is critical, as exces-
sive holding reduces inventory turnover. From Table 2,
holding beyond two periods is less cost-effective, mak-
ing penalties a wiser choice. The reward function is de-
signed to be multi-objective, prioritizing penalties while
maintaining reasonable inventory levels.

3.3. DRL Agent Training

3.3.1. NEAT explanation

The NEAT algorithm fundamentally melds GA
with RL processes to formulate a neural network that
serves as an agent in the RL system. GA is utilised for
encoding neural networks, selecting parents, and creat-
ing populations, ensuring its effective operation. More-
over, the NEAT algorithm, grounded in the concept
of species grouping, guarantees adequate population di-
versity in each generation while mitigating stagnation.
Fig. 4 delineates the NEAT procedure through pseu-
docode.

3.3.2. Encoding

The encoding method encrypts node connections,
comprising connection status and genes of two connect-
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Fig. 4. Pseudocode for NEAT

ing nodes, as shown in Fig. 5. This figure illustrates
a neural network example encoded into the genome
in Fig. 6, where each gene reveals connection number,
node linkage, and status.

3.3.3. Initialisation

The neural network begins with only NEAT’s ini-
tial input and output nodes. There are three initialisa-
tion types: full direct, partial direct, and combined. In
full direct, every input and output are fully connected
with randomised weights. Conversely, partial direct de-
termines the existence of connections between inputs
and outputs probabilistically; if a connection is estab-
lished, the system then assigns its weight.

Fig. 5. Example of developing a neural network.

Fig. 6. Encoded genome.

3.3.4. Parental selection

In the GA, parent selection, necessary for gener-
ating the next generation population, can be accom-
plished using various methods at the end of each gener-
ation. These methods include basic n-best selection and

tournament selection. Tournament selection is used in
this study for its unique ability to randomly segment
the population into multiple tournaments, preserving
diversity and avoiding local optima. Unlike conven-
tional methods that randomly select contenders in each
tournament, this research categorises tournaments by
species, choosing the n-best from each. These selected
individuals are then sorted and subjected to n-best selec-
tion again.

3.3.5. Population creation

After selecting parents, the process sequentially
matches andmutates the selected parents to create a pop-
ulation. During matching, genomes are combined. If a
genome is present in both parents and is disabled in ei-
ther or both, it will also be turned off in the offspring.
Fig. 7 illustrates this: although connection six is enabled
in parent two, it is disabled in the offspring since it is dis-
abled in parent one. The offspring inherits connection
ten from parent one and fourteen from parent two.

Fig. 7. Example of the matching process.

Upon completion of the matching phase, the off-
spring are subject to mutation. NEAT incorporates
six mutation methodologies: addition and disabling of
nodes, addition and disabling of connections, connec-
tion weight mutation, and connection weight replace-
ment, each occurring with an independent probability.
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4. Numerical Study

Having elucidated both principal components in the
preceding section, ensuring their proper function re-
quires additional steps. Although DRL appears poised
to address the problem, algorithm tuning is imperative.
Consequently, this section will elaborate on integrating
NEAT into the inventory system and deriving appro-
priate hyperparameters.

4.1. Objective

Several crucial reasons necessitate the adjustment of
NEAT hyperparameters for specific cases. Firstly, the
unique nature of the problem influences the requisite
changes to parameters. Secondly, the algorithm mod-
ifies its parameters to maximise expected rewards, but
the default parameters might not always be optimal for
specific tasks. Lastly, the circumstances of the problem
also dictate the necessary parameter adjustments.

Therefore, it is often necessary to fine-tune the pa-
rameters to align with the specific environment to opti-
mise the results derived from the RL algorithm. Hyper-
parameters are adjusted to identify a set that minimises
inventory cost within the given environment.

4.2. Methodology

Typically, DRL necessitates a feedback loop inte-
grating environment and agent, consisting of state, ac-
tion, and reward, as illustrated in Fig. 8. Within the
context of the LMEIS described in Section 3.1, the state
encompasses 10 main dimensions, reflecting the intri-
cacies of our inventory management process across the
five echelons and centralised information system. The
action corresponds to each level’s request to the upper
level for inventory replenishment, a critical component
of our model that ensures efficient stock flow and min-
imises delays in order fulfillment. This study employs
total holding cost and penalty as rewards to gauge agent
performance, directly aligning with our inventory sys-
tem’s objectives to optimize stock levels and reduce asso-
ciated costs. By applying these metrics, we can precisely
assess the effectiveness of the RL agent in managing the
complex dynamics of the described inventory system.

Fig. 8. Integrated mechanism.

Hyperparameters must first be scoped to identify
the combination optimising the specific environment’s
solution. Given the NEAT algorithm’s needs, about 20
hyperparameters require tuning. Since exhaustive ex-
perimentation on all hyperparameters (most continu-
ous between 0 and 1) is impractical, they will be scoped
into high-impact ones, categorised into levels, and exam-
ined through total enumeration testing. Relying on [8]
to sift through low-impact hyperparameters, the focus
will be on seven high-impact ones: population size per
generation, neural network activation function, genera-
tion limit, probabilities of node insertion/deletion, link
weight replacement, link weight mutation, and mini-
mum species per generation.

4.3. Hyperparameter Evaluation and Adjustment

This section focuses on exploring effective combi-
nations of hyperparameters and analysing their trends
and potential impacts. The seven selected hyperparam-
eters are categorised into distinct levels, reflecting their
unique characteristics as outlined in Table 3.

These hyperparameters and their respective levels
have been extensively investigated and utilised in various
studies [59, 60, 61, 62], highlighting their significance
and effect on our analysis. Through this exploration,
we aim to identify synergistic hyperparameter config-
urations that enhance performance, acknowledging the
challenge of finding highly effective combinations.

The identified seven hyperparameters, creating
1,458 combinations, significantly influence the search
performance of the algorithm. Population size and gen-
eration limit are GA concepts, while others like node
insert/delete probability, link weight replacement and
mutation probability, are crucial for neural develop-
ment. Including the practical ReLU function as an ac-
tivation option enhances the search, with various mini-
mum species levels maintaining neural network diver-
sity. Experimental results reveal objective values be-
tween $2,000 to approximately $40,000 per 35 periods,
with around 10% (91 combinations) yielding acceptable
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results. However, half of these combinations result
in values over $8,000—about four times the optimum
found—with some significantly underperforming, as ev-
idenced by the outliers shown in Fig. 9.

Additionally, the best objective, at 2,044, was
yielded with a population size of 250, a sigmoid activa-
tion function, a generation limit of 1,000, and node in-
sert/delete, weight replacement, and weight mutation
probabilities of 0.01, 0.05, and 0.1 respectively, with a
minimum of 2 species per generation, as detailed in Ta-
ble 4.

After removing outliers, each hyperparameter’s re-
sults are analysed by a violin plot to examine their statis-
tical data distribution, with Fig. 9 showing the objective
range distribution. The plot reveals a distinct separation
into two major groups of lower and upper objective val-
ues, with the upper group ranging between 10,000 and
13,000 and the lower between 3,000 and 6,000. An inves-
tigation into each hyperparameter’s distribution within
these groups aimed to identify patterns, such as specific
hyperparameter levels correlating with high or low ob-
jective functions. However, as Table 5 indicates, the
distribution of hyperparameter levels within each ob-
jective function group does not display significant dif-
ferences, necessitating further statistical testing to deter-
mine the significance of each hyperparameter.

Table 3. Hyperparameter levels.

Fig. 9. Experimental result group by the objective
range.

The ”General full factorial design” is employed as a
statistical testing tool for deeper investigation, execut-
ing tests in Minitab (version 18). All hyperparameters
are considered continuous except for the categorical ac-
tivation function. Table 6 displays results from the ”An-
alyze factorial design” function, showing that no sig-
nificant interactions between hyperparameters were ob-
served. While some hyperparameters exhibit trends, as
depicted in Fig. 10, the absence of significant interac-
tion effects suggests that these trends are insufficient for
drawing definitive conclusions.

Table 4. Best hyperparameter combination for this en-
vironment.
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Table 5. Hyperparameter ratio at lower and higher objectives.

Fig. 10. Main effect mean plot.

5. Experiment Analysis

In this section, NEAT’s performance and be-
haviours are analysed, focusing on two main topics: Al-
gorithmBenchmarking andNEAT’s response to system
parameters.

5.1. Comparing between Algorithms

The DRL algorithms, PPO and Q-Learning, are
used as benchmark comparisons to the proposed NEAT
algorithm. The intention behind this comparison was
to explore the potential of applying PPO within a more
intricate inventory framework. [5] previously applied
PPO as well as the Reinforcement Learning Ordering
Mechanism (RLOM), which is based on Q-Learning, to
a similar inventory setting. This prior study conducted
50 experiments that were identical in every aspect—
ranging from characteristics and simulation parameters
to mechanics and total cost calculation methodologies—
to those in our research. Crucially, both our exper-
iments and Geevers’ experiments utilized datasets de-

rived from the same data distribution, providing a direct
and unambiguous basis for comparison. [5] achieved a
best objective value of $2,726 with PPO, while RLOM
achieved $3,259.

Through hyperparameter optimisation, we achieved
a substantial reduction in average total inventory cost
to $2,044 across 35 periods from 50 replications, as de-
tailed in Table 7. The table compares the costs of three
methods—NEAT, PPO, and RLOM—while also show-
ing the percentage improvement of PPO andRLOMrel-
ative to NEAT. Although these outcomes are encourag-
ing, a direct comparison with [5] is partially limited by
our inability to duplicate their study exactly. Conse-
quently, our comparative analysis is confined to the as-
pects of the inventory systems that remained constant
across both studies.

Table 7. Comparison between NEAT and PPO algo-
rithm.

Additionally, NEAT achieves its lowest cost of 2,044
within 1,000 generations, whereas PPO requires around
2,000 iterations to attain its best at 2,726, with no im-
provement observed until the 10,000th iteration, as de-
picted in Fig. 11. Notably, NEAT canmatch PPO’s best
performance within just 100 to 200 generations, which
is tenfold fewer than the iterations PPO requires.
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Table 6. Analysed factorial design results for each term.

Fig. 11. Cost comparison between NEAT and PPO in
each generation/iteration.

Stock duration was observed to assess NEAT’s abil-
ity to navigate the trade-off between $1/unit holding
cost and $2/unit penalty in the simulation. Per Fig. 12,
inventory should not be held beyond two periods at any
simulation point. Hence, the inventory turnover ratio,
derived from dividing the average inventory on-hand by

the average demand at each inventory level, is employed
to gauge the average duration of inventory holding. As
Table 8 indicates, inventory levels 1 to 4 have turnover
ratios of 1.05, 2.64, 0.77, and 1.05 days, respectively.

Table 8. Comparison between NEAT and PPO algo-
rithm.

The inventory turnover ratio at level 2 is approxi-
mately 2.64, longer than the expected two periods. This
scenario is common in uncertain inventory environ-
ments with variable demand and lead time. A typi-
cal response to uncertainty is maintaining safety stock,
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Fig. 12. Inventory movement at each level.

Fig. 13. Order history at each level.

leading to extended inventory turnover ratios. The
turnover ratios close to 1 at other levels are surprising
but can be explained by the absence of ordering costs
in this environment. Without ordering costs, keeping
enough inventory on-hand to cover demand is econom-
ical, avoiding multiple periods of holding costs. Hence,
turnover ratios at levels 1, 3, and 4 are near 1.

Figure 12 reveals that while inventory on-hand often
remains zero, inventory positions are always positive.
This pattern, showcasing NEAT’s ability to discern de-
mand patterns reducing average inventory on-hand, also
reflects the algorithm’s recognition of linear relations
between inventory levels. Further examination of the
demand history in Fig. 13 shows synchronised ordering
patterns across levels the agent decides. Nonetheless, or-
ders might be insufficient or lead from the upper level
due to the bullwhip effect common in Multi-Echelon
Inventory System.

6. Conclusion and Future Sesearch

This investigation into the tuning of the NEAT al-
gorithm uncovers its pronounced sensitivity to hyper-
parameters, with implications for costs ranging between
$2,000 and $40,000. Compared to model-free RL meth-
ods such as PPO and Deep Q-Learning-based RLOM,
NEAT demonstrates superior performance in manag-
ing complex inventory systems, achieving a significant
cost reduction of 25.07% over PPO and 37.28% over
RLOM. Its efficacy within the LMEIS suggests consid-
erable advantages for sectors characterized by extensive
supply chains. The 5-level structure used in this study
can be generalized to an n-level structure, allowing
for infinite scalability to increasingly complex systems.
NEAT’s scalability has also been validated in fields
such as robotics and engineering optimization, where
it has successfully addressed large, dynamic problems.
Additionally, its modular and adaptive nature allows
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it to efficiently manage increasingly complex architec-
tures [63]. Future research could explore increasing sys-
tem complexity through divergentmulti-echelon or net-
worked configurations, incorporating stochasticity or
discounted costs, testing in real-world supply chain en-
vironments, or combining NEAT with other RL meth-
ods to leverage their complementary strengths. Reward
shaping, alongside Bayesian Optimization, could also
help refine the reward function to better balance com-
peting objectives and reduce sensitivity, enabling deeper
trend analysis.
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