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Abstract. In the construction of reinforced concrete structures, rebar bending and cutting 
lists are commonly developed. However, in practice, engineers often develop them based 
on ease of design. This involves specifying splicing patterns manually, rather than using 
optimization techniques. To address this issue, a framework for optimizing rebar cutting 
and splicing patterns using Particle Swarm Optimization (PSO) is proposed in this study. 
Two areas of a high-rise building were used as a case study to demonstrate the practical 
application. The framework first organizes the columns by reinforcement patterns before 
further subdividing the column categories’ rebars by diameter and end patterns. Next, it 
randomizes splicing positions to serve as initial positions for PSO. Then, the corresponding 
cutting lengths are calculated and used for waste calculation. These processes are iterated to 
minimize waste. The results showed a significant reduction in waste across both areas, from 
13.86% to 2.88%, compared to the as-built bar cutting list. This highlights the effectiveness 
of the framework in improving material efficiency and supporting sustainability. To validate 
practicality, the cutting and bending processes using machinery integrated with a QR code 
reader at a factory were demonstrated. This ensures the precise execution of the optimized 
list and enhances its robustness in real-world applications. 
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1. Introduction 
 

Construction material waste poses a significant 
economic and environmental challenge on a global scale 
[1]. Achieving sustainable construction practices hinges 
crucially on the efficient utilization of materials. Within the 
construction industry, particularly in the domain of 
reinforced concrete structures, minimizing material 
wastage has been a persistent issue, with inefficiencies in 
rebar cutting processes standing out as a notable 
contributor to this challenge [2-6]. Given that rebar 
represents over 30% of the total cost in civil engineering 
projects [7], optimizing bending schedules and cutting lists 
not only serves to reduce waste but also plays a pivotal role 
in lowering overall project costs and lessening the 
environmental impact. 

In contemporary construction practices for reinforced 
concrete structures, the creation of rebar bending 
schedules and cutting lists is essential for optimizing the 
use of rebars, minimizing material waste, and ensuring the 
structural integrity of buildings [8]. Traditionally, engineers 
in developing countries like Thailand, generate these 
schedules based on design convenience and practical 
considerations. This approach often involves manually 
defining a limited number of splicing patterns, rather than 
leveraging advanced optimization techniques. In addition, 
the focus of existing optimization software is frequently 
restricted to improving the efficiency of rebar cutting 
based on these predefined splicing patterns, overlooking 
further opportunities for enhancing efficiency and 
reducing waste. Moreover, the progress in utilizing 
optimized splicing patterns is impeded by the lack of 
advanced cutting and bending machinery, which further 
constrains the industry's ability to adopt more efficient 
practices. Consequently, rebar cutting waste arises from 
purchasing market-length rebars based on the inefficient 
cutting patterns [9], and thus rebars have been identified 
as a major component of construction waste in Thailand, 
according to a comprehensive survey conducted in 2002 
[10-11]. 

As advancements in computational algorithms as well 
as cutting and bending technologies continue to emerge, 
coupled with a growing emphasis on sustainability, there 
is a compelling need to develop a more comprehensive 
framework for optimizing both rebar cutting and splicing 
patterns.  

Various techniques have been employed for the task in 
a variety of reinforced structural components. For 
instance, Zahra et al. [12] applied Linear Integer 
Programming (LIP) to optimize lap splicing patterns in 
reinforced concrete columns and shear walls of an existing 
six-story building to minimize steel waste, and the results 
demonstrated a significant reduction. Zheng et al. (2018) 
[13] developed a sophisticated three-stage optimization 
framework, employing Integer Programming (IP) in the 
initial phase to generate optimal rebar stock procurement 
and cutting plans for alternative layout arrangements in a 
reinforced concrete slab case study. The subsequent stages 
incorporated comprehensive analyses of crew installation 

costs and field productivity metrics, encompassing rebar 
cutting, handling, and installation processes. The 
framework proved effective in generating balanced 
solutions that simultaneously addressed material waste 
reduction and total cost optimization, demonstrating the 
potential for achieving multiple operational objectives 
through systematic optimization approaches. This 
methodology particularly highlighted the importance of 
considering both material efficiency and labor-related 
parameters in achieving optimal construction outcomes. 
Salem et al. (2007) [14] demonstrated the effectiveness of 
combining Genetic Algorithm (GA) with Linear 
Programming (LP) and IP. This framework was validated 
through three real-world case studies, where the 
framework exhibited superior performance in minimizing 
cutting waste compared to conventional as-built cutting 
schedules. Their empirical findings substantiated the 
framework's significant potential for waste reduction in 
practical construction applications, establishing a 
compelling case for the adoption of advanced algorithmic 
solutions in construction resource optimization. 
Additionally, the application of various stochastic 
optimization algorithms was demonstrated in [15-17]. 
While existing research has made significant contributions 
to understanding cutting waste optimization, there 
remains a notable scarcity of studies employing 
continuous optimization algorithms like Particle Swarm 
Optimization (PSO) [18], a computational technique 
inspired by the collective behavior of birds and fish 
designed to tackle non-linear and non-convex 
optimization problems, in cutting pattern optimization. 
Furthermore, the application of PSO specifically for bar-
cutting optimization in actual high-rise building reinforced 
concrete columns incorporating mechanical splicing 
couplers represents an especially underexplored area in the 
current literature.  

In response to this need, this study introduces an 
innovative framework to address the concerns through the 
application of such the optimization algorithm. The 
framework aims to enhance both the cutting and splicing 
patterns by employing PSO to identify optimal 
configurations considering ease of construction and 
practicability. To validate the practical applicability of this 
framework, it was applied to two critical areas of a newly 
constructed high-rise building in central Bangkok, 
Thailand, adhering to the American Concrete Institute 
(ACI) standards. 

The proposed framework starts by organizing 
reinforcement rebars into groups based on their diameter, 
structural component type, and location to which the 
component belongs, simplifying the optimization process 
and ensuring that the outcomes are practically viable. 
Then, splicing positions are initialized randomly to serve 
as the starting points for the PSO algorithm. The 
framework then calculates the corresponding cutting 
lengths based on design and construction standards while 
considering the available market lengths of rebar. These 
are used to assess material waste. This iterative process 
continues until the results are refined to minimize waste 
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effectively. Subsequently, splicing pattern and cutting 
position diagrams are developed for illustration, and bar 
cutting and bending schedules are generated alongside 
corresponding QR codes. To further validate the 
practicality of these results, the cutting and bending 
processes were integrated with QR codes and barcode 
readers at a factory as a demonstration. This ensures 
precise execution of the optimized cutting plans and 
reinforced the real-world applicability of the approach. 

By comparing actual rebar wastage observed in as-built 
bar cutting and bending schedules with outcomes 
achieved through PSO-based optimization, this research 
aims to demonstrate the effectiveness of computational 
optimization techniques in enhancing construction 
efficiency and sustainability. These advancements not only 
promise to reduce environmental impact but also 
contribute to the economic viability of construction 
projects, aligning with broader goals of sustainable 
development in the built environment.  

The manuscript begins with an introduction to the 
adopted optimization algorithm and the proposed 
framework, detailed in the second and third sections 
respectively. Following this, the proposal is applied to a 
case study to demonstrate its practical application. The 
results of this case study are then presented and discussed 
in the fourth section. Finally, the manuscript concludes 
with a comprehensive analysis of the findings and their 
implications in the concluding section. 

 

2. Particle Swarm Optimization (PSO) 
 

PSO [18] is a metaheuristic optimization algorithm 
inspired by the collective behaviors observed in bird 
flocking or fish schooling search for food. This technique 
is extensively applied to solve diverse optimization 
challenges as shown in various studies [19-21] such as 
engineering design, resource allocation, as well as 
scheduling by simulating a swarm of particles i.e., 
candidate solutions that systematically explore the d-
dimensional search space to locate the best possible 
solution while avoiding local optima. Each particle 
dynamically adjusts its position and velocity based on its 
own historical best position and the best positions 
achieved by neighboring particles so far. This cooperative 
strategy enables the swarm to progressively converge 
towards the optimal solution through successive 
iterations. The flowchart of the algorithm is illustrated in 
Fig. 1. 

PSO begins by initializing the positions of all particles, 

X = [X𝑖 for 𝑖 = 1, 2, … , 𝑛
𝑡ℎ particle] , where X𝑖 =

[𝑥𝑖𝑗  for 𝑗 = 1, 2, … , 𝑑
𝑡ℎ  dimension], and setting each X𝑖 

as the initial best position denoted by P𝑏𝑒𝑠𝑡,𝑖 . The 

initialized positions should uniformly cover the search 
space, and literature suggests drawing these positions 

randomly from a uniform distribution, i.e., X(𝑡 =
0)~U(X𝑚𝑖𝑛, X𝑚𝑎𝑥) , where X𝑚𝑖𝑛  and  X𝑚𝑎𝑥  are the 
minimum and maximum boundaries of the search space 

respectively. Next, the cost function 𝑓(X)  is calculated 

and compared across all particles to determine the swarm's 

initial best position namely G𝑏𝑒𝑠𝑡  corresponding to the 
particle with the lowest cost function. Positions and 

velocities of all particles 𝑉 = [𝑉𝑖 for 𝑖 =

1, 2, … , 𝑛𝑡ℎ particle] , where 𝑉𝑖 = [𝑣𝑖𝑗 for 𝑗 =

1, 2, … , 𝑑𝑡ℎ dimension], are then updated using 𝑃𝑏𝑒𝑠𝑡,𝑖 
and 𝐺𝑏𝑒𝑠𝑡 according to Eq. (1) and (2). The cost function 

is recalculated and compared to update P𝑏𝑒𝑠𝑡,𝑖 and G𝑏𝑒𝑠𝑡 
following these logics: 

 

 
 

Fig. 1. Flowchart of the conventional PSO. 
 

 

a) Update P𝑏𝑒𝑠𝑡 : 
If 𝑓(X𝑖(𝑡 + 1)) ≤ 𝑓(P𝑏𝑒𝑠𝑡,𝑖(𝑡)) then 

 P𝑏𝑒𝑠𝑡,𝑖(𝑡 + 1) = X𝑖(𝑡 + 1) 
 

b) Update G𝑏𝑒𝑠𝑡 : 

: If 𝑓 (P𝑏𝑒𝑠𝑡,𝑖(𝑡 + 1)) ≤ 𝑓(G𝑏𝑒𝑠𝑡,𝑖(𝑡)) then 

G𝑏𝑒𝑠𝑡,𝑖(𝑡 + 1) = P𝑏𝑒𝑠𝑡,𝑖(𝑡 + 1) 
 
This iterative process continues until the maximum 

number of iterations is reached or the cost function values 
for all particles are sufficiently low and stable within the 
same region of the search space. 
 

𝑉(𝑡 + 1) = 𝑤𝑉(𝑡) + 𝑐1𝑅1⊙ (𝑃𝑏𝑒𝑠𝑡 − 𝑋(𝑡))

+ 𝑐2𝑅2⊙ (𝐺𝑏𝑒𝑠𝑡 − 𝑋(𝑡)) 

(1) 

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝑉(𝑡 + 1) (2) 

 

where 𝑡 denotes the current iteration, and ⊙ represents 

the Hadamard product. The scalars 𝑐1  and 𝑐2  are 
acceleration constants that balance the importance 
between a particle's personal best position and the global 
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best position. It is generally recommended to set 𝑐1 and 

𝑐2 within the range of 0.0 to 4.0 [22]. The matrices R1 and 

R2 are 𝑛 × 𝑑 metrics containing values randomly drawn 

from a uniform distribution U(0, 1) in each iteration to 
introduce stochasticity to the search. The scalar inertia 

weight 𝑤 regulates the influence of the particle's previous 
velocity. 

It is important to carefully select parameters such as 
the number of particles and the maximum iterations for 
PSO. The number of particles determines the swarm size 
in PSO, affecting the algorithm's balance between 
exploring the search space and refining solutions. While a 
larger number of particles can improve exploration, 
especially for high-dimensional and complex problems, it 
also increases computation time. The maximum iterations 
define how many times the PSO will run before stopping. 
This number should be chosen based on the complexity 
of the problem, with more complex or higher-dimensional 
problems typically requiring more iterations to converge. 
To determine the optimal number of particles and 
maximum iterations, one approach is to run the PSO 
multiple times with different combinations and observe 
the algorithm's convergence behavior. It is crucial to 
consider the problem's dimensionality, available 
computational resources, and the desired balance between 
exploration and exploitation when selecting the number of 
particles. The maximum iterations should be large enough 
to allow convergence to a reasonable solution but not so 
large that unnecessary computation occurs.  

 

3. Main Proposed Framework for Bar Cutting 
List Optimization 
 
The proposed framework focusses primarily on 

reducing steel waste by optimizing both rebar cutting and 
splicing patterns, considering the standard steel lengths 
available in the reinforcement steel market and splicing 
standard. To achieve this, a comprehensive review of the 
standard steel lengths commonly used in the local 
construction industry as well as a detailed analysis of the 
current practices in rebar cutting processes should be 
conducted to ensure the proposed solutions are practical 
and applicable. The potential for improving rebar cutting 
processes in local areas should also be discussed to ensure 
seamless integration between the practices and the 
optimization results. This discussion should address any 
gaps or challenges that may arise and propose solutions to 
align practical implementation with the optimized cutting 
strategies. The comprehensive flowchart for the proposed 
framework, specifically for the optimization of column 
rebar, is illustrated in Fig. 2. The detailed discussion of 
each step in the flowchart is provided below. 

 

 
 

Fig. 2. The comprehensive flowchart of the proposed 
framework for the bar cutting list optimization. 
 

In the first place, the referenced splicing standard and 
available rebar lengths in the local market should be input 
into the algorithm to ensure the reasonableness and 
practicality of the optimization outcomes. It is important 
to note that these details can vary significantly from one 
area to another and between different contractors. By 
incorporating specific local standards and market 
availability, the algorithm can produce more accurate and 
applicable results, tailored to the unique requirements and 
constraints of each project. This customization helps in 
achieving the most effective optimization and reducing 
steel waste efficiently. Additionally, reinforcement data of 
the whole area intended to optimize should be input to the 
algorithm. Please note that for the ease of application in 
large-scale construction, the program's user interface 
should be well-developed. However, the development of 
such an interface is beyond the scope of this study. 

Subsequently, the input reinforcement data should be 
thoroughly evaluated and systematically organized into 
distinct groups based on several key factors such as the 
type of structural component (e.g., footing, column, beam, 
slab), the specific location of the component (e.g., floor 
level, tower section), the reinforcement patterns, and rebar 
diameter. For instance, columns within a particular 
structure can initially be categorized according to their 
reinforcement patterns. Columns that share identical 
reinforcement patterns are grouped together under the 
same category, which aids in more efficient data 
management and sets the foundation for more detailed 
organization. Once the columns are grouped by 
reinforcement patterns, the next step is to further 
subdivide the rebars within each column category based 
on their diameters and end patterns. Rebars of different 
diameters and end patterns have varying requirements for 
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detailing and corresponding length computation, and 
organizing them accordingly helps streamline the 
optimization process. This step ensures that specific 
requirements and constraints of each floor such as rebar 
splicing, early stopping, and bending are taken into 
account during the optimization process. By meticulously 
organizing the reinforcement data in this hierarchical 
manner, the overall complexity of the optimization 
process is significantly reduced. This hierarchical approach 
ensures that the optimization outcomes are practical and 
tailored to the specific conditions of the construction 
project. Additionally, it facilitates better management of 
the reinforcement data, making it easier to apply necessary 
adjustments and meet project-specific needs.  

Next, starting with the first column category on the 
first floor, the initial splicing patterns for all rebar sub-
categories within this column category should be 
randomly generated to serve as the initial positions for the 
PSO. It is crucial to ensure that this randomization process 
adheres to the relevant covering, splicing, bending, and 
hooking standards, as well as the available rebar lengths in 
the market. In other words, the randomly generated 
splicing positions must not produce patterns that violate 
these constraints. Additionally, allowable regions for 
splicing and measurement positions from reference points 
should be clearly defined to facilitate construction. For 
example, splicing positions should be restricted to 
workable regions, and rebar lengths as well as measured 
splicing positions should be integer values that are 
practical for use in the field. This ensures that the splicing 
patterns are not only feasible but also practical for actual 
construction scenarios. However, it is important to note 
that these constraints significantly increase the 
nonlinearity and discreteness of the waste computation, 
which in turn poses substantial challenges for 
programming and optimization processes. This added 
complexity can lead to increased computational 
requirements and may necessitate the use of advanced 
algorithms like PSO to achieve global or near-global-
optimal solutions. Furthermore, the intricate nature of 
these constraints may also affect the scalability and 
efficiency of the framework, making it essential to 
carefully design and implement strategies that efficiently 
balance optimality, required computational power, and 
indeed, the practicability of the results. 

Following this, the cutting patterns should be 
identified to minimize waste, taking into account the 
predefined splicing patterns. Specifically, based on the 
designated splicing patterns, the optimal cutting patterns 
that yield the least waste are selected from all possible 
combinations of standard lengths. This will yield the 
cutting waste, which serves as the cost function for the 
optimization algorithm. Next, if the computed waste is 
sufficiently low or if the number of optimization iterations 
has reached the specified maximum, the optimization 
process for the column category on that particular floor 
should be terminated, and the resulting splicing and 
cutting patterns are considered optimal. Conversely, if the 
waste remains high, the current splicing patterns should be 

updated according to the PSO algorithm, and the process 
should be repeated iteratively. This cycle continues until 
the optimization termination criteria are met. This iterative 
approach ensures that cutting lengths are optimized to 
minimize waste while satisfying the structural 
requirements of the building construction. The objective 

function for the optimization of each 𝑗𝑡ℎ column category 

on 𝑖𝑡ℎ floor can be concluded in Eq. (3). 
 

Minimize           ∑ 𝑊𝑖𝑗𝑘
𝑝
𝑘=1                                  (3) 

with respect to  
X_ij=[x_ijk  for k=1,2,…,p^th  rebar-subcategory] 
Y_ij=[y_ijk  for k=1,2,…,p^th  rebar-subcategory] 

 

where 𝑊𝑖𝑗𝑘  is the total waste produced from 𝑘𝑡ℎ  rebar 

sub-category within the 𝑗𝑡ℎ column category on 𝑖𝑡ℎ floor. 
The cost function can be computed by summing this 
waste across all rebar sub-categories within the specified 
column category, based on the predetermined cutting 

patterns, i.e., 𝑋𝑖𝑗 and 𝑌𝑖𝑗 . The cutting patterns, serving as 

candidate solutions for the PSO to iteratively update, can 

be expressed by positions at the upper (𝑥𝑖𝑗𝑘) and lower 

(𝑦𝑖𝑗𝑘) ends of 𝑘𝑡ℎ rebar sub-category, measured from the 

center of 𝑖𝑡ℎ floor. To compute rebar lengths accurately 
from these coordinate patterns, each end is associated with 
specific rebar starting or ending patterns. These patterns 
include mechanical splicing, 90-degree hooking, 
continuation from or to the previous or next floor, and 
other configurations. At this stage, the referred standards 
should be taken into account when calculating rebar 

lengths. Equations for computing rebar lengths (𝑙𝑖), based 
on typical starting or ending patterns, are provided in Eq. 
(4), with the corresponding variables illustrated in Fig. 3. 

Where 𝑙ℎ𝑜𝑜𝑘 denotes length of 90-degree standard hook 

calculated from Fig. 5 and Table. 1 while 𝑡𝑐𝑜𝑣𝑒𝑟  is 
concrete cover depth. 

 

𝑙𝑖 =

{
 
 

 
 

ℎ𝑖+ℎ𝑖+1

2
+ 𝑥 − 𝑦                  ;mechanical splicing (𝐅𝐢𝐠. 𝟑𝐚)

ℎ𝑖

2
+ 𝑥 + 𝑙ℎ𝑜𝑜𝑘 − 𝑡𝑐𝑜𝑣𝑒𝑟     ; begin with 90

o hook (𝐅𝐢𝐠. 𝟑𝐛)

ℎ𝑖

2
+ 𝑦 + 𝑙ℎ𝑜𝑜𝑘 − 𝑡𝑐𝑜𝑣𝑒𝑟 ; end with 90

o hook (𝐅𝐢𝐠. 𝟑𝐜)
          (4) 

 

 

 
 

(a) Mechanical splicing 
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(b) Begin with 90o hook 

 

 

(c) End with 90o hook 

 

Fig. 3. Typical starting or ending patterns of reinforcing 
steel. 

 
Then, the aforementioned processes should be repeated 

for the 𝑖𝑡ℎ floor until the specified number of 𝑚 floors in 
the structure is reached. Once this is complete, proceed to 

the next 𝑗𝑡ℎ  column category and repeat the processes 

until reaching the specified number of 𝑛  column 
categories. 

 

4. Application of The Proposed Framework on 
a Case of High-Rise Building 
 
The proposed framework discussed comprehensively 

in the previous section is illustrated in this part. The high-
rise building in this study is a newly constructed landmark 
within a large-scale development project located in the 
heart of Bangkok, Thailand, that integrates both 
commercial and residential infrastructures. This 
comprehensive project aims to create a dynamic, mixed-
use environment, enhancing convenience and fostering a 
vibrant community. To investigate the possibility of 
further increasing the sustainability of the project, the bar 
cutting list optimization was applied to columns within 
two critical areas of the building including CUP Zone and 
Tower O1B as shown in Fig. 4. The former features 12 
main floors, while the latter comprises 47 main floors. 
Please note that some column categories may terminate 

before reaching the rooftop due to a reduction in carrying 
loads on the upper floors. 

 

 
 

(a) Key plan of the building 
 

 
(b) An exemplar 3D illustration of the 1st floor of the CUP 
 
Fig. 4. Layout of the targeted building: location of the CUP 
Zone and tower O1B. 

 
Prior to the optimization process, a comprehensive 

survey was conducted in the local area. This survey 
included a thorough investigation of several key factors: 
the standard steel lengths available in the local market, the 
prevailing rebar detailing standards, and common 
practices in rebar cutting processes. The survey findings 
revealed that the typical rebar production lengths from 
local factories are 8, 10, and 12 m denoted as L8, L10, and 
L12 respectively. In terms of rebar detailing standards, 
construction practices in Thailand predominantly adhere 
to the guidelines set forth by ACI 318 [23]. Two key 
aspects of rebar detailing: the use of 90-degree hooks and 
the permissible locations for mechanical splicing using 
couplers are shown in Fig. 5 and 6 as well as Table. 1. Note 
that bar sizes are adjusted from the design to the available 
sizes in Thai market. These available lengths and standards 
were implemented as one of constraints for the 
optimization. 

 

 
Fig. 5. 90-degree standard hook. 
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Fig. 6. Permissible locations for mechanical splicing. 
 
Table 1. 90-degree standard hook. 

 

Bar size, 

𝒅𝒃 

Minimum 
inside bend 

diameter, 𝑫 
(mm) 

Straight 

extension, 𝒍𝒆𝒙𝒕 
(mm) 

DB10 to 
DB16 4𝑑𝑏 MAX(6𝑑𝑏 , 75mm) 

DB20 to 
DB25 

6𝑑𝑏 12𝑑𝑏 

 
Following the specification of constraints, the rebars 

were systematically categorized into distinct groups based 
on the location and reinforcement pattern of the columns 
as well as rebar diameter and end pattern. Initially, 
columns were classified according to their reinforcement 
patterns, grouping those with identical reinforcement 
configurations into the same category. After that, the next 
step involved subdividing the rebars into finer sub-
categories. This subdivision was based not only on rebar 
diameter but also on the end patterns, including the 
starting and stopping configurations such as 90-degree 
hooks, continuation patterns, and mechanical splicing. 
Rebars that shared the same diameter and end patterns 
were organized into the same sub-category. It is important 
to note that, due to the 50% splicing constraints, each 
column must be equally divided into at least two sub-
categories to ensure compliance with the detailing 
requirements. As a result, columns in the CUP Zone and 
Tower O1B were organized into 8 and 18 column 
categories, respectively, with varying number of rebar sub-
categories within each column category. An example of 
column category C2 in the CUP Zone is presented in Fig. 
7. 

 

 
 

Fig. 7. An example of C2 column category in CUP Zone. 
 

Next, once the group of rebars was organized, the 
optimization routine commenced. This iterative process 
started with the first column category on the first floor and 
continued until the rooftop, then moved on to the next 
column category, repeating until the last column category 
was reached. The hyperparameters for the PSO were 
tuned by balancing between exploration and exploitation 
until satisfactory convergence of all particles was 
observed. A summary of the PSO configurations 
employed is presented in Table. 2. Please note that, for the 
validity of the results, mechanical splicing using couplers 
was employed in this study, as it reflects the actual practice 
in this building construction. Additionally, the number of 
couplers used was fixed to match the actual construction 
to limit potential cost increases due to the number of 
couplers. 

 
Table 2. Summary of PSO hyperparameters. 

 

Hyperparameter Value 

Number of particles (𝑛) 200 

Maximum iterations (𝑡𝑚𝑎𝑥) 100 

Acceleration constants (𝑐1 

and 𝑐2) 
2.0 

Random matrices (R1 and 

R2) 
~U(0.0, 1.0) 

Inertia weight (𝑤(𝑡)) 
Linearly decrease (Eq. 

(5)) [24] 

𝑤𝑚𝑖𝑛 for 𝑤(𝑡) 0.1 

𝑤𝑚𝑎𝑥 for 𝑤(𝑡) 1.0 

 

𝑤(𝑡) = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) ×
𝑡

𝑡𝑚𝑎𝑥
           (5) 
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Following the optimization, detailed splicing patterns 
and cutting position diagrams were created for 
visualization. Alongside these diagrams, bar cutting and 
bending schedules were generated, each accompanied by 
QR codes to facilitate practical implementation. These QR 
codes can be scanned by cutting and bending machines 
equipped with barcode readers at the factory. An example 
of the optimized splicing pattern and cutting position 
diagrams for a column in the CUP Zone is shown in Fig. 
8 and 9 respectively. Additionally, Table. 3 and 4 
summarize the optimization results across all categories in 
both study areas. 

It can be seen in the exemplar splicing pattern diagram 
of column category C2 of the CUP Zone in Fig. 8 that all 
details such as rebar beginning, ending, mechanical 
splicing using couplers, as well as rebar bending were 
considered within the optimization routine since these 
details significantly influence the optimized rebar cutting 
positions and lengths. Moreover, a number of cutting 
patterns and cutting lengths were also controlled to be 
reasonable for the practicability of the optimization 
results. To illustrate, the number of cutting patterns was 
limited to reasonable patterns and not too much so that 
the cutting and installation works would not much 
increase from the common practice. In addition, the 
cutting length was controlled to be reasonable i.e., to be 
suitable integer values so that the optimization results were 
practically possible. The standard for rebar beginning, 
ending, and mechanical splicing was also considered 
during the optimization as discussed. 

In addition to the residual steel waste generated by the 
proposed framework, the actual steel waste was also 
derived from the as-built rebar schedules for validation 
purposes. Specifically, the actual residual steel waste was 
calculated by evaluating all possible combinations of 
standard-length rebars to identify the combinations that 
minimize waste, based on the splicing positions specified 
in the as-built schedules. 

According to the optimization results, the total waste 
length across all column categories was significantly 
reduced compared to those computed from the as-built 
rebar schedules, from 14.20% to 2.99% for the CUP Zone 
and from 12.91% to 2.59% for Tower O1B. This dramatic 
reduction in waste demonstrates the effectiveness of the 
PSO in minimizing steel waste and enhancing resource 
efficiency. While not explicitly illustrated in this 
manuscript, it is important to highlight a notable trend 
observed in the results: the waste generated by rebars on 
the top floor is consistently higher than that on other 
floors. This phenomenon can be attributed to the fact that 
the optimization was conducted in each column category 
from the first floor to the top floor, meaning that the 
splicing patterns and cutting positions were determined 
based on the constraints and conditions of the preceding 
floors. As a result, by the time the optimization reached 
the top floor, the splicing patterns were already fixed 
according to the previous floor's configuration. This 
limitation prevented further adjustments that could have 

achieved an optimal solution for the top floor. The 
increased waste on the top floor underscores a potential 
area for improvement in future studies. One possible 
approach could involve developing a more efficient 
framework that considers the entire building's rebar 
requirements simultaneously, rather than in a floor-by-
floor sequence. Additionally, the results will be further 
improved by considering all column categories at the same 
time. This could help ensure that the splicing patterns are 
optimized not only in isolation but also in the context of 
the overall structure, potentially reducing waste even 
further. However, adopting this approach may introduce 
challenges related to the curse of high dimensionality [25] 
and the significant computational power required. 

 
 
Fig. 8. An example of splicing pattern diagram of column 
category C2 in CUP Zone. 

 
Fig. 9. An example of cutting position diagram from 
footing level to under 1st floor of column category C2 in 
CUP Zone.
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Table 3. Summary of rebar optimization results for the CUP Zone. 
 

Column 
category 

Level 
Bar size, 

𝑑𝑏 

Length of 
required 
rebar (m) 

Baseline from as-built 
schedules  

Optimal 

Standard bars to 
cut 

Waste 
(%) 

Standard bars to 
cut 

Wast
e 

(%) L8 L10 L12 L8 L10 L12 

C1 

Footing  
(-21.85) 

to 
L7 

(+48.60) 

DB28 6617.816 409 216 179 14.54 252 307 137 1.70 

Subtotal 6617.816 409 216 179 14.54 252 307 137 1.70 

C2 

Footing 
(-21.85) 

to 
Roof 

(+71.00) 

DB25 19200.880 1664 528 240 11.83 906 336 751 2.18 

Subtotal 19200.880 1664 528 240 11.83 906 336 751 2.18 

C3 

Footing 
(-21.85) 

to 
Roof 

(+71.00) 

DB25 4679.532 256 151 142 12.45 166 103 217 6.04 

DB28 4047.708 354 84 84 15.62 193 171 76 2.92 

Subtotal 8727.240 610 235 226 13.92 359 274 293 4.59 

C4 

Footing 
(-21.85) 

to 
Roof 

(+71.00) 

DB28 8124.512 660 264 88 10.48 379 176 290 1.82 

Subtotal 8124.512 660 264 88 10.48 379 176 290 1.82 

C5A 

Footing 
(-21.85) 

to 
L1 

(+2.15) 

DB32 1969.760 160 0 80 13.72 88 46 69 1.13 

Subtotal 1969.760 160 0 80 13.72 88 46 69 1.13 

C5B 

Footing 
(-21.85) 

to 
Roof 

(+71.00) 

DB25 3530.640 160 263 13 15.16 38 245 72 2.47 

DB28 1978.960 36 80 94 11.98 3 43 133 3.59 

DB32 1969.760 160 0 80 13.72 16 97 73 0.22 

Subtotal 7479.360 356 343 187 13.94 57 385 278 2.17 

C5C 

Footing 
(-21.85) 

to 
Roof 

(+71.00) 

DB25 3450.024 148 229 45 16.35 236 72 92 7.59 

DB28 1978.960 57 80 80 11.98 57 32 103 1.67 

DB32 1865.760 180 20 40 13.63 103 65 34 0.87 

Subtotal 7294.744 385 329 165 14.47 396 169 229 4.27 

C6 

Footing 
(-21.85) 

to 
L1 

(+2.15) 

DB25 1838.880 200 0 40 13.11 61 70 55 0.50 

Subtotal 1838.880 200 0 40 13.11 61 70 55 0.50 

Total 61253.192 4444 1915 1205 12.91 2498 1763 2102 2.59 

Note: The quantities were calculated from one column per column category. 
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Table 4. Summary of rebar optimization results for the Tower O1B. 
 

Column 
category 

Level 
Bar size, 

𝑑𝑏 

Length of 
required 
rebar (m) 

Baseline from as-built schedules  Optimal 

Standard bars to cut Waste 
(%) 

Standard bars to cut Waste 
(%) L8 L10 L12 L8 L10 L12 

C1 

Footing 
(-17.12) 

to 
L39 

(+187.60) 

DB28 3676.152 16 384 30 17.73 230 192 9 5.22 

DB32 8855.808 363 363 276 11.18 110 520 245 1.85 

Subtotal 12531.960 379 747 306 13.10 340 712 254 2.84 

C1A 

Footing 
(-17.12) 

to 
L39 

(+187.60) 

DB25 1807.212 66 132 22 16.87 89 102 17 7.13 

DB28 2085.028 13 232 3 17.98 143 110 0 7.62 

DB32 9398.208 433 388 262 11.60 234 460 249 0.66 

Subtotal 13290.448 512 752 287 13.31 466 672 266 2.63 

C2 

B2  
(-9.22) 

to 
L47 

(+221.90) 

DB25 1077.69 6 123 0 18.59 105 30 0 5.78 

DB28 3657.432 16 384 30 18.33 230 150 39 4.12 

DB32 7849.008 252 373 250 11.43 227 239 313 1.44 

Subtotal 12584.130 274 880 280 14.05 562 419 352 2.59 

C3 

B2  
(-9.22) 

to 
L47 

(+221.90) 

DB28 2607.320 88 232 6 18.74 244 75 0 3.63 

DB32 11091.712 278 705 277 13.58 371 483 299 2.65 

Subtotal 13699.032 366 937 283 14.56 615 558 299 2.84 

C4 

B2  
(-9.22) 

to 
L47 

(+221.90) 

DB25 2905.052 98 260 6 18.97 140 173 26 8.84 

DB28 12184.564 384 640 355 12.70 703 479 163 1.52 

Subtotal 15089.616 482 900 361 13.91 843 652 189 2.93 

C5 

B2  
(-9.22) 

to 
L47 

(+221.90) 

DB25 2679.592 96 228 10 18.23 177 74 51 3.30 

DB28 2085.028 12 234 2 17.98 143 88 11 3.40 

DB32 7260.802 230 360 223 11.78 334 257 181 2.11 

Subtotal 12025.422 338 822 235 14.29 654 419 243 2.60 

C6 

Footing 
(-17.12) 

to 
L39 

(+187.60) 

DB25 1807.212 66 132 22 16.87 132 70 10 3.81 

DB28 2085.028 8 236 3 17.98 11 143 55 4.46 

DB32 8210.208 339 357 240 11.59 304 407 158 2.29 

Subtotal 12102.448 413 725 265 13.48 447 620 223 2.89 

C7 

B1  
(-5.82) 

to 
L47 

(+221.90) 

DB25 2987.698 118 252 7 18.75 207 127 22 6.77 

DB28 2085.028 12 234 2 17.98 136 110 1 5.51 

DB32 7134.368 238 369 196 11.38 205 170 338 3.67 

Subtotal 12207.094 368 855 205 14.31 548 407 361 4.74 

C8 

B2  
(-9.22) 

to 
L47 

(+221.90) 

DB28 14900.976 410 926 364 13.47 580 527 447 2.50 

Subtotal 14900.976 410 926 364 13.47 580 527 447 2.50 

C9 

Footing 
(-17.12) 

to 
L47 

(+221.90) 

DB25 2963.004 130 236 8 17.99 240 108 8 4.49 

DB28 2085.028 8 240 0 18.18 139 103 0 2.73 

DB32 7995.008 300 358 247 11.87 456 166 236 1.81 

Subtotal 13043.040 438 834 255 14.27 835 377 244 2.57 

C10 

Footing 
(-17.12) 

to 
L39 

(+187.60) 

DB25 1807.212 66 132 22 16.87 110 88 11 4.69 

DB28 2085.028 12 234 2 17.98 95 125 11 2.73 

DB32 8066.688 395 355 196 12.34 338 362 163 2.64 

Subtotal 11958.928 473 721 220 14.01 543 575 185 2.97 

C11 

Footing 
(-17.12) 

to 
L39 

(+187.60) 

DB25 1533.092 48 132 8 17.41 121 66 0 6.19 

DB28 2435.576 19 240 24 16.60 127 143 13 6.83 

DB32 7451.264 291 347 212 11.95 346 276 173 2.05 

Subtotal 11419.932 358 719 244 13.68 594 485 186 3.63 
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Column 
category 

Level 
Bar size, 

𝑑𝑏 

Length of 
required 
rebar (m) 

Baseline from as-built schedules  Optimal 

Standard bars to cut Waste 
(%) 

Standard bars to cut Waste 
(%) L8 L10 L12 L8 L10 L12 

C12 

L20 
(+106.65) 

to 
L47 

(+221.90) 

DB28 5734.540 82 600 15 19.21 486 163 29 2.29 

Subtotal 5734.540 82 600 15 19.21 486 163 29 2.29 

C13 

L30 
(+148.15) 

to 
L47 

(+221.90) 

DB28 4947.544 198 423 0 17.51 264 222 66 3.57 

Subtotal 4947.544 198 423 0 17.51 264 222 66 3.57 

C14 

L38 
(+181.35) 

to 
L46 

(+216.65) 

DB28 638.808 24 56 0 17.72 67 12 0 2.69 

DB32 198.436 20 6 0 10.87 27 0 0 8.85 

Subtotal 837.244 44 62 0 16.10 94 12 0 4.15 

C15 
and 
C16 

L38 
(+181.35) 

to 
L47 

(+221.90) 

DB28 985.712 7 112 0 19.30 93 28 0 3.88 

Subtotal 985.712 7 112 0 19.30 93 28 0 3.88 

C17 

L42 
(+200.05) 

to 
L47 

(+221.90) 

DB28 637.112 0 56 14 14.27 42 28 7 9.87 

Subtotal 637.112 0 56 14 14.27 42 28 7 9.87 

Total 167995.178 5142 11071 3334 14.20 8006 6876 3351 2.99 

 
Note: The quantities were calculated from one column per column category. 
 
 

To further validate the practicability and illustrate the 
use case of the optimization results, an example of the 
generated bar cutting and bending schedules of column 
category C6 of CUP Zone was implemented at an actual 
rebar cutting and bending factory. These schedules, along 
with the corresponding QR codes as illustrated in Fig. 10, 
were utilized by machines equipped with QR codes and 
barcode readers in Fig. 11. The integration of QR codes 
facilitated the seamless transmission of cutting and 
bending instructions directly to the automated machinery, 
ensuring precise execution of the optimized patterns. 
Additionally, the well-planned cutting and bending 
workflow and well-organized cut and bent rebar inventory 
management system contributed to improved operational 
efficiency, reduced errors, and further minimized steel 
waste. This systematic approach not only streamlined the 
production process but also ensured that the rebars were 
accurately tracked and managed throughout the entire 
lifecycle, from fabrication to installation on the 
construction site. The benefits of these improvements can 
be further amplified through integration with Building 
Information Modeling (BIM). BIM provides a 
comprehensive digital representation of the construction 
project, allowing for precise coordination between design 
and execution. This ensures that the rebar cutting and 
bending schedules are perfectly aligned with the project's 
structural requirements. This integration facilitates better 
communication among project stakeholders, improves 

accuracy in construction, and optimizes resource use, 
ultimately leading to more efficient and effective project 
completion. 

 

 
 

Fig. 10. An example of the generated bar cutting and 
bending schedules and the corresponding QR codes 
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Fig. 11. A rebar cutting and bending machines equipped 
with QR codes and barcode readers  
(Note: The figures were sourced from the rebar cutting of 
another project, as the actual cutting could not be 
performed due to the high workload at the factory.) 
 

5. Conclusion 
 
This study introduces a comprehensive framework for 

optimizing column rebar cutting and splicing patterns 
using the PSO algorithm. The approach begins with an in-
depth survey of key factors, including the standard steel 
lengths available in the local market, prevailing rebar 
detailing standards, and common rebar cutting practices. 

Columns are systematically categorized into 𝑛  column 

categories, with each category consisting of 𝑝 rebar sub-
categories based on column location, reinforcement 
patterns, rebar diameter, and rebar end patterns. This 
categorization aims to reduce complexity in the 
subsequent optimization process and ensure practical 
results. With the identified factors and organized column 
categories as inputs, the PSO initiates with randomly 
generated splicing positions. It then calculates the 
corresponding cutting lengths in line with reinforcement 
detailing standards and market availability, with the goal of 
minimizing steel waste. This iterative process refines 

splicing patterns through successive iterations for the 𝑖𝑡ℎ 

floor, continuing until the specified number of 𝑚 floors in 
the structure is completed. The process then progresses to 

the next 𝑗𝑡ℎ  column category and repeats until all 𝑛 
column categories are addressed. Once satisfactory 
optimization results are achieved, splicing patterns and 
cutting position diagrams, as well as bar cutting and 
bending schedules alongside the corresponding QR codes 
are generated for real-world implementation. 

As a result of applying the proposed framework to 
two critical areas of a newly constructed high-rise building 
in Bangkok, Thailand, the total waste length across all 
column categories in both areas was dramatically reduced 
compared to those computed from the as-built rebar 
schedules, from 13.86% to 2.88%. This significant 
decrease in waste highlighted the PSO algorithm's 
effectiveness in reducing steel waste and carbon footprint, 
improving resource efficiency, and enhancing sustainable 

construction practices. Moreover, the implementation of 
the generated bar cutting and bending schedules with QR 
codes in rebar cutting and bending machines, equipped 
with QR code and barcode readers, enabled the seamless 
transmission of instructions directly to the automated 
machinery. This integration ensured the precise execution 
of optimized patterns. Additionally, the well-structured 
cutting and bending workflow, along with an organized 
inventory management system for cut and bent rebars, 
enhanced operational efficiency, reduced errors, and 
further minimized steel waste. This systematic approach 
not only streamlined the production process but also 
ensured accurate tracking and management of rebars 
throughout their entire lifecycle, from fabrication to 
installation on the construction site. 

Last but not least, potential improvements in rebar 
cutting list optimization are discussed. One notable 
observation is that the waste generated by rebars on the 
top floor tends to be significantly higher compared to 
other floors. This indicates that the floor-by-floor 
optimization approach may have missed opportunities for 
adjustments that could have optimized the top floor more 
effectively. This highlights a potential area for future 
research: developing a more comprehensive optimization 
framework that considers the entire building's rebar 
requirements simultaneously. Such an approach could 
optimize splicing patterns in the context of the overall 
structure, potentially reducing steel waste even further. 
However, implementing this approach might present 
challenges related to high-dimensional optimization and 
significant computational demands. Consequently, future 
studies could explore and compare various stochastic 
optimization algorithms beyond PSO, such as 
Evolutionary Strategies (ES) [26] and others, to identify 
the most effective algorithms for tackling high-
dimensional problems. Additionally, research should 
focus on integrating rebar cutting list optimization within 
the broader context of actual construction projects. This 
would involve examining the entire process from design 
and optimization to cutting, bending, transportation, 
installation, and project completion. Implementing BIM 
throughout the process ensures precise coordination 
between design and execution, aligning optimized rebar 
cutting and bending schedules with structural 
requirements. This integration enhances communication 
among stakeholders, improves construction accuracy, and 
optimizes resource use, leading to more efficient project 
completion. 
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