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Abstract. One of the key requirements for supervised learning in deep learning model 
construction is the dataset for training and validation. For gathering the dataset, obtaining 
various image qualities from different resources is unavoidable, and this has been considered 
to affect the supervised model performance. This research proposes to demonstrate the 
effect of image quality involving high and standard datasets obtained from 2 different 
resources on the performance of models. The various cell characteristics with gram-positive 
and gram-negative bacteria datasets were challenged for trial. These different datasets were 
matched and contributed to 5 cases; case 1: train and test with high-quality images, case 2: 
train with high-quality images and test with standard quality images, case 3: train and test 
with images of standard quality, case 4: train with standard-quality images and test with high-
quality images, and case 5: train and test with combining these two image qualities. Pre-
trained CNN models were implemented to prove the purpose with and without stratified 
K-fold cross-validation. The results of retrained models showed that the high-performance 
models require high-quality datasets obtained from the same resource as the testing set, 
which yield more than 90% of all performance evaluation metrics when tested on 
challenging unseen datasets. This study provides valuable insights for building high-
performance models that can be applied to automate microbiology diagnostics, impacting 
public health and clinical practice. 
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1. Introduction 
 
Bacteria identification is a pathological approach to 

identifying pathogens from patient specimens or 
foodborne contamination. The samples can be either a 
body fluid, for instance, blood and urine, or tissue from a 
biopsy. However, the constraints of the traditional 
approach include the proceeding time and the 
pathologist’s expertise [1]. This process is time-consuming 
because it requires the procedure involving cell culture 
followed by identifying the differentiated morphology of 
the cell such as sizes, shapes, cell arrangements, gram stain, 
and colonization observed under the microscope [2]. Then 
biochemical tests are carried out to identify the bacteria. 
These steps are performed manually in the laboratory, and 
the process requires the workers' expertise to analyze the 
results precisely, which can be prone to human error due 
to subjective human interpretation. To address these 
limitations, applying computer vision is a promising 
technique, which has been developed and successfully 
applied in microscopic image classification [3-6]. 
Classification is one technique in deep learning in which 
the models autonomously extract relevant and 
distinguishing features to make a decision based on the 
input. Because deep learning models require information 
from input to accomplish the tasks, the input dataset is an 
important factor in constructing the high performance of 
deep learning models.  

The microscopic bacterial cell images have been 
widely used to implement several state-of-the-art deep 
learning models, which are open source such as DIBas [4-
9], and even private dataset images collected on their own, 
have different image quality with different resolutions [10]. 
This is typically accomplished through various techniques 
of database preparation, such as cell staining and the 
utilization of specialized equipment for image acquisition. 
The bacteria can be categorized into two groups of gram-
positive and gram-negative according to the different 
peptidoglycan layers of the cell wall. The gram-positive 
bacteria contain a thick layer of peptidoglycan retained 
purple of crystal violet and gram-negative bacteria contain 
a thin layer of peptidoglycan retained red of safanin [11]. 
The bacteria cells, shape, and arrangement can be 
visualized under the microscope by which the image 
dataset was captured [4, 5]. Since the performance of deep 
learning models is significantly influenced by the quality 
and various resolutions of the images [12], it is 
unsurprising that the development of an effective model 
for various quality and resolution bacteria image 
classification has not yet been achieved.  

Therefore, this research aims to demonstrate the 
effect of different quality images used to train and evaluate 
the performance of the deep learning model-based 
Convolutional Neural Network (CNN) architectures by 
employing two image datasets to observe the model's 
behaviors and their limitations. This purpose is valuable 
information for improving the deep learning model 
applied with the further application that can be used in the 
proposed way, e.g. multiple microbial identification under 

lacking the sufficient dataset for training. Multiclass 
bacteria species including Escherichia coli, Lactobacillus casei, 
Lactobacillus delbrueckii, Micrococcus spp, and Staphylococcus 
aureus were selected for challenging examination of the 
models due to their diverse characteristics such as shape, 
size, arrangement, and gram strained.  E. coli and S. aureus 
are used as indicators to assess hygiene conditions and 
sanitation in hospitals and for foodborne disease 
evaluation due to their simplicity and are more affordable 
to detect than other pathogens [13-15]. E. coli is a gram-
negative bacillus, which has a rod shape. The same genus 
of Lactobacillus but a different group of species; L. casei 
and L. delbrueckii are gram-positive straight rod-shaped 
often with square ends occurring singly, in pairs, or chains 
[16]. They produce lactic acid as the major end product of 
fermentation [17]. Micrococcus spp is gram-positive cocci 
arranged in pairs, tetrads, or clusters but not in chains [18]. 
Staphylococcus aureus is a gram-positive spherical shape 
(cocci) and grows in clusters, pairs, and occasionally in 
short chains [19]. It is an opportunistic pathogen most 
associated with skin and soft-tissue infections [20, 21]. 
There are 2 different types of microscopic image qualities 
defined, including high quality and standard quality, which 
were prepared from different resources. The strategy of 
this study involves the variation of images for the training 
and the testing datasets, which were arranged into 5 cases; 
case 1: train and test with high-quality images, case 2: train 
with high-quality images and test with standard-quality 
images, case 3: train and test with the standard quality 
images, case 4: train with standard images and test with 
high-quality images, and case 5: train and test with 
combining images quality. The cross-validation technique 
was performed to ensure no overfitting and the dataset 
bias caused the model performance. The results were 
comparable with no cross-validation accomplishment. 
The unseen dataset was used to test the trained models 
simulating challenges that imitate real-world applications.  
 

2. Literature Review 
 

Many published studies reveal that the deep learning 
model can classify multi-class bacteria images under 
supervised learning of model recognition [3-9]. The 
overview of machine learning and deep learning 
algorithms has been compared and discussed by Y. Wu 
[22]. They presented the effectiveness of pre-trained 
Convolutional Neural Network (CNN) architectures 
including AlexNet, VGGNet, Inception networks, 
Residual Networks, and Densely Connected 
Convolutional Networks to classify the multi-class of 
bacteria. The pre-trained method leverages knowledge 
gained from solving different image classification tasks to 
accurately classify microbial images. As a result, the need 
for large and diverse training data is greatly reduced. The 
accuracy by DensNet121 yields the optimal performance, 
achieving an accuracy of 99.08%, precision of 99.06%, 
recall of 99.00%, and an F1-score of 98.99% [22]. B. 
Zieliński, et al. [4] reported the model involving VGG-M 
and VGG-VD of CNN architecture can successfully 
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classify the multi-class bacteria image. In addition, 
publications are reporting on the capability of VGG-16 in 
multi-class image classification [23, 24]. Therefore, we 
included the pre-trained models VGG-16, VGG-19, 
LeNet-5, InceptionV3, ResNet50, and DenseNet121 to 
construct comparable models for exploring how image 
quality affects model performance. Recently, further 
studies on clinical bacterial datasets aimed at detecting and 
classifying pathogenic have been developed by X. Wang, 
et al. [25]. They employed object detection and 
segmentation to localize and classify the multi-class of 
pathogenic gram-positive and gram-negative bacteria for 
the purpose of Microbiological Rapid On-Site Evaluation 
(M-ROSE). In addition, the technique of phase-contrast 
microscopy capturing time-lapses bacterial growth in 
microfluidic chip traps combined with deep learning is 
implemented to classify bacteria species relevant to human 
health as discussed by E. Hallstro, et al. [26]. Thus, the 
deep learning model has the potential to distinguish 
bacteria species in order to enhance the quality and 
accuracy of identification, reduce the processing time of 
the classification step, and minimize human errors, 
resulting in clinically achievable and applicable diagnosis 
[1, 25-28]. Furthermore, bacteria classification by deep 
learning can be applied more extensively, not only in the 
medical field but also in foodborne bacteria and other 
biotechnology applications [29]. 

The key requirement for successful deep learning 
model application is the training data, however, the 
literature reviews involving deep learning implemented for 
microorganism classification reveal the challenge under 
the limitation of quality and quantity of datasets for 
constructing effective models [1-3]. The technique to 
overcome the limitations of bacterial dataset 
quantification is augmentation, which is the process of 
increasing the number of datasets by automatically or 
manually generating a new dataset from the original 
dataset, with the underlying category unchanged [13, 30, 
31].  
 

3. Materials and Methods 
 

3.1. Dataset Acquisition for Bacterial Classification 
 
The bacteria images were obtained from 2 resources: 
 
3.1.1. The open source dataset 

 
The bacteria image dataset has been downloaded 

from Digital Image of Bacterial Species (DIBaS). In this 
study, we selected 5 different types of bacteria: Escherichia 
coli, Lactobacillus casei, Lactobacillus delbrueckii, Micrococcus spp, 
and Staphylococcus aureus. The cells were stained using 
Gram’s staining method [11]. The images were taken with 
Olympus CX31 Upright Biological Microscope equipped 
with a SC30 camera (Olympus Corporation, Japan). They 
were evaluated using a 100 times objective under oil 
immersion (Nikon50, Japan) [4]. These images have a 
resolution of 2048x1532 pixels before splitting. 

3.1.2. The bacterial images collected by authors 
 
The digital images of 5 bacteria strains were taken 

from our laboratory at School of Engineering, King 
Mongkut's Institute of Technology Ladkrabang: Escherichia 
coli TISTR 527, Lactobacillus casei TISTR 1463, Lactobacillus 
delbrueckii TISTR 1339, Micrococcus spp TISTR 1404, and 
Staphylococcus aureus TISTR 746. These bacteria strains were 
obtained from Thailand Institute of Scientific 
Technological Research (TISTR). The bacteria were 
stained following the Gram’s procedure [11]. The digital 
image dataset was further collected under a microscope 
(Optika B-292) using a magnification of 100 of the object 
lens, equipped with a camera (Optikam B3) incorporated 
with a 1.3 MP CMOS sensor. Our images have a 
resolution of 1966x1474 pixels before image splitting.  

Considering the quality of images between DIBaS 
dataset and the images collected from our laboratory, the 
image of DIBaS was certainly higher resolution and 
contained less image noise. Moreover, the color of the cell 
on images of the DIBaS dataset was more clearly apparent. 
This is because of the difference in the specification of 
tools including the microscope and equipped camera used 
to collect the image datasets. Therefore, the image of 
DIBaS open source was defined as a high-quality image 
dataset. Our image dataset offers standard quality. The 
examples of the image dataset of high-quality and standard 
quality of each class are shown in Fig. 1 and Fig. 2, 
respectively. The number of datasets was increased by 
splitting each original image at the defined split size of 
200x200 pixels for both resources.  

 

 

 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
Fig. 1. The examples of high-quality bacteria images: (a) 
Escherichia coli, (b) Lactobacillus casei, (c) Lactobacillus 
delbrueckii, (d) Micrococcus spp, and (e) Staphylococcus aureus. 
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(a) (b) 

 
(c) 

 

 
(d) 

 
(e) 

 
Fig. 2. The examples of standard-quality bacteria images: 
(a) Escherichia coli TISTR 527, (b) Lactobacillus casei TISTR 
1463, (c) Lactobacillus delbrueckii TISTR 1339, (d) Micrococcus 
spp TISTR 1404, and (e) Staphylococcus aureus TISTR 746. 

 
The unqualified split images were excluded from the 
dataset, whether the unsatisfied size or no cell contained 
on an image. The image dataset of each class was balanced 
in the range of 1,000 to 1,300 images to reduce the bias of 
the unfair dataset. The dataset was allocated into three 
categories: training, validation, and unseen. As shown in 
Fig. 3, the workflow diagram of dataset preparation. 90% 
of the dataset of each class was split into 80%:20% for 
training and validating. Another 10% of the dataset was 
used for unseen tests. This unseen dataset was not 
imported to train and validate the model.  It was randomly 
selected and used to evaluate the model's performance. 
For non-cross-validated models, the unseen dataset 
contained 100 bacteria images manually selected from 
each class randomly. For cross-validated models, the 
allocation of unseen datasets was automated by the Python 
code by selecting 10% of all bacteria images from each 
class. 
 

 
 
Fig. 3. Dataset acquisition workflow diagram. 
 
3.2. Deep Learning Model Construction 

 
The deep learning models for image classification 

were implemented in a Python-based workflow called 

TensorFlow. To study the effect of image quality on 
model performance, we built the models in 6 CNN 
architectures: LeNet-5, VGG-16, VGG-19, InceptionV3, 
ResNet50, and DenseNet121. We executed them to train 
and evaluate their efficiency. The model was applied with 
the dropout parameter of 0.5, batch size of 32, and 
learning rate of 0.001 as the default values. The epoch of 
training was set at 50. The stratified K-fold cross-
validation was conducted to compare with the results 
obtained by the model without cross-validation.  

 
3.2.1. CNN architectures 

 
The different complexity of CNN architectures was 

considered to impact the prediction performance under 
the difference of image quality datasets. Therefore, 6 CNN 
architecture of LeNet-5, VGG-16, VGG-19, InceptionV3, 
ResNet50, and DenseNet121 were examined.   

LeNet-5 is a simple CNN architecture developed by 
Lecun, et al. [32]. The configuration of LeNet-5 consists 
of 8 layers: the input layer, 2 convolutional layers, 2 
average pooling layers, 2 fully connected layers, and the 
output layer with softmax activation function [32].  The 
layers apart from the input and the output layer are defined 
as the hidden layers, which are involved in the feature 
extraction and classification [33]. The configuration of 
LeNet-5 is illustrated in Fig. 4. 

 

 

 
 
Fig. 4. LeNet-5 architecture. Block’s colour represents a 
layer type: input/output layer (red), convolutional layer 
(navy), average pooling layer (green), and fully connected 
layer (yellow). 

 

 
VGG-16 and VGG-19 are a subset of CNN 

architecture called VGGNET. They stand for visual 
geometry groups of 16 and 19, respectively. The 
configuration of VGG-16 consists of an input layer, 13 
convolutional layers with Rectified Linear Unit (ReLU) 
activation function, 5 max pooling layers, 3 fully 
connected layers, and an output layer with softmax 
activation function [34]. The configuration of VGG-19 is 
similar to the configuration of VGG-16 except for the 
number of convolutional layers with ReLU activation 
function changes to 16 layers [35]. In other words, the 
total number of layers is 23 for VGG-16 and 26 for VGG-
19. The configurations of VGG-16 and VGG-19 
architectures are illustrated in Fig. 5(a) and 5(b), 
respectively. 
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(a) 

 

 
(b) 

 
Fig. 5. Architectures of (a) VGG-16, and (b) VGG-19. The 
block’s color represents a layer type: input/output layers 
(red), convolutional layers (navy), max pooling layers 
(green), and fully connected layers (yellow). 

 
InceptionV3 is the third generation of Google-

owned CNN architecture, launched after GoogLeNet 
(Inception-v1) and Inception-v2 [35]. It contains 42 layers: 
5 convolutional layers, 2 max pooling layers, 1 average 
pooling layer, 1 dropout layer, the output layer with 
softmax activation function, and 11 inception modules 
[36, 37]. For inception modules, consist of multiple 
parallel convolutional layers and pooling layers, which 
enable the integration of features in multiscale [37]. Figure 
6 illustrates the configuration of InceptionV3. 

 

 
 
Fig. 6. InceptionV3 architecture. Block’s color represents 
a layer type: input/output layers (red), convolutional layers 
(navy), max pooling layers (green), average pooling layers 
(sky blue), concatenate layers (orange), dropout layer 
(violet), and fully connected layer (yellow). Adapted from 
Z.-K. Chai, et al. [37]. 
 

ResNet50 is defined as a CNN architecture with deep 
residual connection, developed by Kaiming and his team 
from Microsoft Research [38]. This model is built by 
adding shortcut connections to each building block of 
convolutional layers in the architectures to obtain a 
compromised training error, instead of stacking the layers 
like VGG and LeNet-5 network [38]. Each building block 
consists of 3 convolutional layers [38]. The stacking of the 
convolutional layers in each block is in a bottleneck 

fashion in which the second layer in the block has the 
largest filter size of 3x3 and the others have the smaller 
filter size of 1x1 [38]. The number of 50 represents the 
total number of layers in the architecture apart from the 
input layer and the output layer with softmax activation 
function: 48 convolutional layers, 1 max pooling layer, and 
1 average pooling layer [39]. Fig. 7 depicts the structure of 
ResNet50 architecture. 

 

 
 
Fig. 7. ResNet50 architecture. Block’s color represents a 
layer type: input/output layers (red), convolutional layers 
(navy), max pooling layer (green), average pooling layer 
(sky blue), and fully connected layer (yellow). 

 

 
(a) 

 

 
(b) 

 
Fig. 8. DenseNet121 architecture; (a) overview 
configuration of the architecture, and (b) structure of 
dense block. Block’s color represents a layer type: 
input/output layers (red), convolutional layers (navy), 
average pooling layers (green), batch normalization layers 
(sky blue), dense blocks (yellow), and input/output of 
dense blocks (pink). Adapted from H. Amin, et al. [40]. 

 
DenseNet121 is a CNN architecture with a feed-

forward connection [40]. This connection style aims to 
augment the passage of information [41]. The 
configuration of DenseNet121 consists of an input layer, 
an average pooling layer, 4 dense blocks, 3 transition 
blocks, and an output layer with a softmax activation 
function as illustrated in Fig. 8(a) [40]. The dense block 
contains a different number of dense layers: 6 for the first 
block, 12 for the second, 24 for the third, and 16 for the 
last block [40]. 2 convolutional layers with different filter 
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sizes are included in each of dense layers as shown in Fig. 
8(a) [40]. The transition block is connected to each dense 
block, except for the last dense block which is followed by 
the output layer [40]. Each transition block contains the 
stacking of 3 layers in the order of batch normalization 
layer, convolutional layer with ReLU activation function, 
and average pooling layer [40, 41].  
 
3.2.2. Layers’ function in CNN architectures  

 
Apart from the input and the output layers, the layers 

that are mainly involved in the CNN architectures include 
the convolutional layer, pooling layer, and fully connected 
layer.  

The convolutional layer is the highly prominent layer 
in the network responsible for feature extraction with the 
designated filter size [42, 43]. The nodes in this layer 
recognize the details of input images, and then each 
feature map is generated and stacked together [44]. In the 
generation of feature maps, the order of data collection is 
arranged based on the location of information, starting 
from the superficial details to insight details [44]. ReLU is 
also included in this layer as the non-linear activation 
function because the improved model performance is 
enabled without the variation of the layer’s dimensions 
[42, 45, 46].  Moreover, training a large CNN network with 
this activation function is more convenient than other 
types of function [46]. The output of each convolutional 
layer, which will be the input of a subsequent layer, is 
based on the specification of filter including number and 
size [45].  

The pooling layer is located after the convolutional 
layer for the purpose of down-sampling the feature maps 
to prevent output variation due to either small input or 
trivial dislocation of features in the image, such as 
translation, rotation, and scaling [42-44]. Additionally, this 
layer is capable of preventing the overfitting, resulting in 
the training of extracted features that mostly contain the 
relevant details of training data [44]. The output of the 
pooling layer relies on the type of pooling and the 
designated pool size. There are 2 types of pooling layers 
utilized in this study, which are named based on the 
principle of pooling: max pooling and average pooling. 
Each output of max pooling is the maximum value, while 
the individual output of average pooling comes from the 
average value [42].  

In CNN layer configurations, the fully connected 
layer is typically positioned at the end [43]. Its function is 
to ensure that every node is connected to each other [42]. 
The fully connected layer containing the same number of 
units as the number of classes of dataset, will be defined 
as the output layer and the class scores will be estimated 
in this layer [46]. In this study, softmax was utilized as the 
activation function in the output layer.  

 
3.2.3. Hardware specification 

 
The models were compiled on Jupyter Notebook 

version 7.0.8. The computational hardware was ASUS 

Vivobook S 14 OLED (K5404VA) with the 
computational specifications of 64-bit Windows 11 
operating system, 16.0 GB RAM, and Intel Processor core 
i9-13900H (2.60 GHz). 

 
3.3. The Study of the Effect of the Image Quality on 

Model Performance 
 
To study how the quality of the dataset can affect the 

model’s performance, we generated five case studies as 
follows: 

 
Case 1: Train and test with high-quality images 
Case 2: Train with high-quality images and test with 

standard-quality images 
Case 3: Train and test with standard-quality images 
Case 4: Train with standard images and test with high-

quality images 
Case 5: Train and test by combining high and standard-

quality images 
 
The dataset used in this research consists of high-quality 
images sourced from the DIBaS database, whereas 
standard-quality images were obtained from our 
laboratory. The workflow of the case study and the 
performance evaluation process is illustrated in Fig. 9. The 
evaluation metrics utilized to measure the performance of 
the models in this study are common formulas employed 
in the field of computer vision. These performance 
evaluation metrics include accuracy, precision, F-1 score, 
sensitivity, confusion matrix, Receiver Operating 
Characteristic (ROC) curve, and Area Under Curve (AUC) 
score [47, 48].  
 

 
 
Fig. 9. Workflow diagram of study cases and evaluation. 

 
4. Results 

 
To prove the effect of image quality on the model 

performance, we constructed 6 different CNN models: 
LeNet-5, VGG-16, VGG-19, InceptionV3, ResNet50, 
and DenseNet121 to classify 5 bacteria species proving 5 
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cases of different image quality of training and testing 
datasets. The results shown in Table 1 compare the 
evaluation results of the 5 cases under the different 6 
CNN-trained models. Testing the models with the unseen 
dataset corresponds to the case study and performing with 
included and not included the stratified 5-folds cross-
validation. Comparing the results under the same case 
study, the model performance relied on the model's 
architecture. The highest testing reaches 100% accuracy, 
precision, F-1 score, sensitivity, and AUC score in the case 
of training and testing with high-quality images (case 1) of 
VGG-16 and DenseNet121 under no cross-validation, 
also InceptionV3 under cross-validation. The evaluating 
parameters showed over 98% of LeNet-5, VGG-19, and 
ResNet50. Whereas training and testing with the different 
image quality datasets of cases 2 and 4, the models’ 
performance was too small to be less than almost 50%, 
except for the no-cross-validated DenseNet121 model in 
case 4. Following case 1 result is case 5 of combining both 
high and standard image quality for training and testing. 
The results showed more than 95% of all evaluating 
parameters were performed under cross-validation of 
LeNet-5, InceptionV3, and ResNet50.  

Additionally, Table 2 compares the AUC of no cross-
validated models and cross-validated models, which was 
calculated from the prediction results of the models with 
the unseen dataset. The best performance obtained in case 
1 represents the case study in which the models were 
trained and tested with high-quality images. The models 
achieve comparable outstanding performance of AUC 
score of 1 including non-cross-validated models of VGG-
16 and DenseNet121, and cross-validated model of 
InceptionV3 for all classes. These are followed by non-
cross-validated models of InceptionV3 and VGG-19 
respectively. The confusion matrix and the ROC curve of 
non-cross-validated VGG-16 and DenseNet121 models 
were evaluated with the unseen dataset of high-quality 
images as illustrated in Fig. 10. The results of both trained 
models were the same because they achieved 100% 
predicted correctly. The outcomes of InceptionV3 model 
under cross-validation are depicted in Fig. 11. The 
evaluation results of InceptionV3 with non-cross-
validated model for case 1 showed that the ROC curve 
demonstrated an AUC of 1 for all classes, except for S. 
aureus, which had an AUC of 0.99 (Table 2). The confusion 
matrix revealed that out of the unseen dataset containing 
a total of 500 images, the model accurately predicted 499 
images. It correctly classified all images from different 
classes except for an image of S. aureus that was 
misclassified. The AUC represents the overall 
performance of a model in distinguishing between 
different classes. The results showed that the range of 
AUC with a higher value indicates better discrimination 
ability. An AUC of 1 suggests that the model has achieved 
perfect classification. The ROC curve visualizes the trade-
off between the true positive rate (sensitivity) and the false 
positive rate (1 - specificity) at various classification 
thresholds. It provides a graphical representation of the 
model's performance across different thresholds.  

Therefore, in this case, the high AUC values and the shape 
of the ROC curve suggest that the model exhibited 
excellent performance in classifying the different bacteria 
classes. For the evaluation results of VGG-19 in the non-
cross-validated model with the unseen dataset of high-
quality images, two trivial differences were found when 
compared to the aforementioned InceptionV3’s results, 
even though they had a similar ROC curve and AUC 
score. In fact, this VGG-19 model was capable of 
accurately predicting 498 out of 500 high-quality images 
from the unseen dataset. According to Table 2, the model 
achieves a perfect AUC score from all classes, except for 
L. casei (AUC=0.99). Hence, the VGG-19 model 
misclassified 2 images of L. casei, while flawlessly classified 
bacteria images from other classes. 

 

 

(a) 

 
(b) 

 
Fig. 10. The evaluation results of non-cross-validated 
VGG-16 and DenseNet121 models trained and tested 
with high-quality images (case 1): (a) confusion matrix and 
(b) ROC curve. 
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(a) 

 
(b) 

 
Fig. 11. The evaluation results of cross-validated 
InceptionV3 model trained and tested with high-quality 
images (case 1): (a) confusion matrix and (b) ROC curve. 

 
Although the evaluation results of models built in 

LeNet-5, VGG-16, VGG-19, and InceptionV3 with the 
unseen dataset of high-quality images of case 1 indicated 
excellent differentiating ability as the AUC of all classes 
approached 1 regardless of implementing cross-validation, 
both ResNet50 and DenseNet121 models under cross-
validation obtained opposite outcomes. Even though the 
overall AUC of the DenseNet121 model and the other 
four models are alike, the AUC of S. aureus in this model 
was 0.71. For the ResNet50 model, not only the overall 
AUC but also the individual AUC of L. delbrueckii, 
Micrococcus spp, and S. aureus fell below 0.90. Among these 
classes, poor efficiency was observed on S. aureus with the 
AUC of 0.60.   

Case 2 represents the case study in which the models 
were trained with high-quality images and tested with 
standard-quality images. The cross-validated ResNet50 
model showed the best performance, followed by non-
cross-validated models of LeNet-5 and DenseNet121 as 
shown in Table 1. However, the performance of the 
models tested by the unseen dataset was less than 0.5 for 
all metrics, and the AUC score of all classes was almost 0.5 

as shown in Table 2, which corresponds to less 
performance. The confusion matrix and the ROC curve 
of ResNet50 model, evaluated with the unseen dataset of 
standard-quality images, are illustrated in Fig. 12. Despite 
being evaluated as the best-trained model, the ResNet50 
model was mostly incorrectly predicted to be one of the 
two runners-up. Only a few classes achieved a score of this 
parameter greater than 0.5 but not more than 0.65 of L. 
delbrueckii from LeNet-5. Also, performing the cross-
validation did not improve the performance of these 
models.  

 

 

 
(a) 

 
(b) 

 
Fig. 12. The evaluation results of cross-validated 
ResNet50 model trained with high-quality image dataset 
and tested with the unseen dataset of standard-quality 
images (case 2): (a) confusion matrix and (b) ROC curve. 
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Case 3 represents the case study in which the models 
were trained and tested with standard-quality images. 
Under cross-validation, VGG16 model performed the 
best performance, followed by InceptionV3 and LeNet-5 
respectively (Table 1). The confusion matrix and the ROC 
curve, evaluated with the unseen dataset of standard-
quality images, were illustrated in Fig. 13 for VGG-16 
cross-validation. In these top 3 models, the AUC score of 
all classes was approached to 1, except for Escherichia coli 
in the InceptionV3 model (AUC=0.88) as shown in Table 
2. Also, based on Table 2, it can be inferred that the 
potential to enhance the overall outcomes by applying 
cross-validation to the models built in these architectures 
is plausible.  
 

 
(a) 

 

(b) 
 

Fig. 13. The evaluation results of VGG-16 cross-validated 
model trained and tested with the standard-quality images 
(case 3): (a) confusion matrix and (b) ROC curve. 
 

Case 4 represents the case study in which the models 
were trained with standard-quality images and tested with 
high-quality images. Among all models in this case, 

DenseNet121 model without cross-validation 
outperformed with an accuracy of 77.8% and AUC score 
of 86.13% (Table 1). Compared to other models built in 
the same datasets in other cases, the accuracy was higher 
than the one in the same architecture in case 2 but lower 
than those that trained and tested with the dataset 
generated from the same resource of case 1 and case 3 
under no cross-validation. The confusion matrix and the 
ROC curve are illustrated in Fig. 14 for DenseNet121. 
Although the accuracy of DenseNet121 model was the 
greatest, the AUC score of S. aureus was less than 0.5 while 
the AUC score of other classes was greater than 0.85 
(Table 2). Moreover, the cross-validation did not 
significantly improve the performance of the model. 

  

(a) 

 
(b) 

Fig. 14. The evaluation results of non-cross-validated 
DenseNet121 model trained with standard-quality images 
and tested with high-quality unseen images (case 4): (a) 
confusion matrix and (b) ROC curve. 
 

Case 5 represents the case study in which the models 
were trained and tested with combined high-quality and 
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standard-quality images. Apart from DenseNet121 model, 
the parameters for evaluated performance of models built 
in other architectures with and without cross-validation 
were higher than 80%. Furthermore, apart from VGG-16 
and DenseNet121 models, performing cross-validation 
could improve the performance turned to more than 90% 
as shown in Table 1. The AUC score approached 1 for 
almost all classes as shown in Table 2. Only the AUC score 
of L. casei for the cross-validated DenseNet121 model and 
S. aureus for non-cross-validated ResNet50 model was not 
more than 0.70, indicating the poor classification 
efficiency. The confusion matrix, AUC score, and ROC 
curve of the best cross-validated InceptionV3 model are 
illustrated in Fig. 15 indicating that L. delbrueckii and 
Micrococcus spp images were classified into correct 
categories, which aligns with the ideal AUC score for both 
classes. 

 
5. Discussion 

 
The results of each study case demonstrated that the 

quality of the training image dataset and the unseen 
validating image dataset significantly impact the 
performance of the model. The quality of microscopic 
images is influenced by characteristics of microorganisms, 
such as their size and gram-stained color. The larger size 
of the cell was visible in its shape. Even belonging to the 
same gram-staining group such as L. casei, L. delbrueckii, 
Micrococcus spp, and S. aureus, the purple color-stained 
different shade, and intensity. The stained colors were 
distinguishable in high-quality images, whereas the stained 
colors were less distinct in standard-quality images. 
Moreover, the higher specifications of the microscope and 
the equipped camera allowed for the collection of higher-
resolution images with less noise, offering clearer detail in 
physical characteristics such as gram-stained color, and cell 
morphology. Therefore, it is unsurprising that the high-
quality microscopic image dataset led to better model 
performance, as shown in the case 1 study results. The 
results observed in cases 2 and 4, where the training and 
validation datasets had different qualities, indicate lower 
classification performance. In contrast, cases 1, 3, and 5, 
where the training and validation datasets came from the 
same source with consistent image quality, showed higher 
classification performance. The results of all cases 
suggested that using the same training and unseen testing 
datasets generally yields better performance compared to 
using different quality datasets for training and testing. 
There are several reasons why matching the training and 
validating datasets in terms of quality leads to better 
performance: 

 

 

 
(a) 

 
(b) 

Fig. 15. The evaluation results of cross-validated 
InceptionV3 model trained and tested with combined 
high-quality and standard-quality images (case 5): (a) 
confusion matrix and (b) ROC curve. 
 

Consistency in image characteristics: when the 
training and validating datasets have the same quality, the 
model becomes familiar with and learns to recognize the 
specific characteristics and patterns of detail within those 
images. This consistency of quality images allows the 
model to generalize better and accurately classify unseen 
images during validation. 

Distribution shift: using datasets with different 
qualities introduces a distribution shift between the 
training and validating datasets. This shift can cause the 
model to struggle in adapting to the differences and fail to 
generalize well to new images. The model can avoid this 
distribution shift and maintain reliable performance by 
maintaining consistency in image quality. 

Robust feature extraction: models trained on datasets 
with consistent image quality can develop robust feature 
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extraction capabilities. When the different sources of the 
validating images match the training images, the model can 
effectively extract relevant features from the unseen 
images, leading to better classification performance. 

Constructing the model with and without cross-
validation did not significantly affect the model's 
performance, especially case 1 and case 5. These results 
confirm that the models did not contain the overfitting of 
the training and validation of the dataset. It is noteworthy 
that whether the model included or excluded cross-
validation, all trained models exposed similar results of 
evaluation performance for each case as the high-quality 
image dataset used in training and testing sets produced 
the best performance models. However, the cross-
validated model was more effective when the models were 
trained and tested with high-quality combined images 
from the DIBaS open-source dataset and private standard-
quality images. This result indicated that the randomly 
separated training, validating, and unseen testing dataset 
of cross-validation 5 folds improves the training efficiency 
of the model by balancing the proportion of both images' 
quality. According to the model performance which was 
trained and tested by the unseen dataset from different 
sources, the performance of the model trained by the high-
quality image dataset was better than those using the 
standard-quality image dataset. Therefore, the applicable 
model for microscopic bacteria image classification is 
suggested to be trained by high image resolution and 
included with the images prepared by the clinical user to 
achieve effective performance.  

Considering the pre-trained CNN models used to 
study the image quality affects the model performances, 
several states of the art for CNN architectures have been 
investigated for bacterial classification as discussed by Y. 
Wu, et al. [22]. The assessment of performance involved 
the consideration of accuracy, precision, recall, and F1-
score of 13 trained models including AlexNet, GoogleNet, 
Inception V3, VGG-16, and 19. ResNet18, 34, 50, and 
152, and DensNet121, 161, 169, and 201 have been 
reported and showed over 95% of performance metrics 
from all CNN algorithms. Among these CNN algorithms, 
the pre-trained DensNets121 and 161 displayed superior 
performances with 99.08% accuracy, 99.06% precision, 
99% recall, and 98.99% F1-score obtained from the 
DenseNet121 model emerging as the most favorable 
architecture concerning the DIBaS dataset [22]. These 
results were similar to those of our re-trained 
DenseNet121 model, which was implemented using the 
high-quality image dataset from DIBaS, where all 
performance metrics reached 100%. The Inception V3 
and DensNet121 exhibited outstanding performances, 
especially in most cases. These results reveal that the 
complexity of the architecture impacts the model's ability 
to learn and recognize key distinguishable features. 
Especially case 4 of DensNet121 was trained with 
standard images and tested with high-quality images 
showing a surprising performance compared to other 
models that the accuracy reached 77.8% and AUC score 
of 86.13% (Table 1) and for AUC of E. coli, L. casei, and 

L. delbrueckii were 0.99, 1 and 0.95, respectively under no 
cross-validation (Table 2). However, these evaluated 
performances were unacceptable in case 4. Considering 
case 5 of DenseNet121 under cross-validation, the 
performance decreased compared to when no cross-
validation was used. This observation could be explained 
by the reasons for the transfer learning. Transfer learning 
algorithms, such as DenseNets, are typically pretrained on 
large-scale datasets with distinct statistical properties, 
which can create a domain gap between the source and 
target datasets [22]. Consequently, the re-trained 
DenseNet121 model with the randomly separated 
training, validating, and unseen testing dataset may 
struggle to effectively adapt to the unique characteristics 
of the DIBaS and our datasets. The importance of image 
resolution when selecting deep learning models for 
complex tasks, such as bacterial classification. Since 
deeper networks require more detailed input data to 
effectively capture hierarchical features, high-resolution 
images are essential for achieving optimal results. We 
focused on analyzing feature maps in the convolutional 
layers of different deep learning architectures. While our 
preliminary research suggested that dropout affects 
models with more classes, we did not specifically observe 
its impact here, as the primary focus was on identifying the 
optimal architecture. We observed that high-resolution 
images enhanced performance in deeper models like 
InceptionV3, ResNet50, and DenseNet121. These 
models, with their deeper architectures, benefit from high-
resolution data, enabling better feature extraction and 
improved classification accuracy. In contrast, lower-
resolution images hindered feature extraction, particularly 
in the deeper layers, leading to reduced performance. 

This research addresses the challenges of building 
high-performance CNN models using datasets from two 
different sources, both with and without cross-validation. 
It highlights the crucial role that input image quality plays 
in training CNN models for optimal performance. By 
demonstrating how an unseen test set can mirror real-
world bacterial classification applications, the study 
underscores the importance of training models with 
consistent image sources. This approach is essential for 
developing robust, reliable applications in the field. 
Nevertheless, this study is limited to five categories of 
bacteria, including one gram-negative bacillus and four 
gram-positive bacilli and cocci. Expanding the study to 
include more diverse datasets would improve the 
generalizability of the findings. Additionally, the state-of-
the-art in deep learning does not limit only CNN 
architecture, several techniques of machine learning and 
deep learning can challenge this purpose. Furthermore, 
the findings from this study reveal a strategy for 
developing various applications in the automatic detection 
of microorganisms, such as the rapid detection and 
identification of pathogens. Using clinical bacterial 
datasets with high image resolution is a more effective 
approach to achieving highly accurate prediction 
performance for clinical samples. Additionally, this study 
focused solely on feature maps without exploring 
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additional interpretability techniques. Future research 
could integrate advanced techniques such as saliency maps 
or activation maximization to provide deeper insights into 
how models make classification decisions, further 
enhancing the understanding of model behaviour and 
improving interpretability. 

 

6. Conclusion 
 
Our findings demonstrate that image quality 

significantly influences the performance of deep learning 
models in bacterial classification tasks. This study 
introduces a theoretical perspective on the critical role of 
dataset quality, proposing that high-quality datasets not 
only improve model accuracy but also enhance the feature 
extraction process, enabling better differentiation between 
bacterial species. This contribution provides a foundation 
for developing systematic frameworks to evaluate and 
optimize dataset quality in microbiological imaging, with 
potential applications in advancing automated diagnostic 
tools for bacterial classification and other medical imaging 
tasks.  
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