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Abstract. Model acquisition processes usually produce incomplete surfaces due to the 
technical constrains. This research presents the algorithm to perform surface completion 
using the available surface’s context. Previous works on surface completions do not handle 
surfaces with near-regular pattern or irregular patterns well. The main goal of this research 
is to synthesize surface for hole that will have similar surface’s context or geometric details 
as the hole’s surrounding. This research uses multi-resolution approach to decompose the 
model into low-frequency part and high-frequency part. The low-frequency part is filled 
smoothly. The high-frequency part are transformed it into the Laplacian coordinate and 
filled using example-based synthesize approach. The algorithm is tested with planar 
surfaces and curve surfaces with all kind of relief patterns. The results indicate that the 
holes can be completed with the geometric detail similar to the surrounding surface. 
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1. Introduction 
 
In recent years, we have seen widely spread use of 3D model acquisition systems. The acquisition process is 
fast and convenient. Many engineering and scientific simulations which require geometric data will gain 
great benefits from this development. However, the acquired surface usually incomplete due to many 
reasons such as noise, limited viewpoints, self-occlusion, and technological constrains. The incompleteness 
of the surface or holes is needed to be filled before the further use of the acquired model. In order for 3D 
scanning systems to be widely available to the research communities, robust and easy-to-use surface 
completion methods need to be developed for the users. 

Surfaces can be categorized into smooth surfaces and non-smooth surfaces. Smooth surfaces are 
surfaces with low geometric variations. There are no geometric details or relief information on the surfaces. 
On the other hand, non-smooth surfaces exhibits relief patterns on the surfaces. This type of surfaces 
require much more time in manually completing them than the smooth surfaces, since the users have to 
craft the relief of the surface to make overall surface looks harmony. Recent researches have investigated 
non-smooth surface completion [1-4]. However, surfaces with regular or irregular relief patterns are still 
challenging cases that we want to focus on this work. This research is built on the two ideas, multi-
resolution decomposition of meshes and example-based synthesis. 

The multi-resolution decomposition [5] views the surface as compose of low-frequency part which 
represents the overall surface structure and high-frequency part which represents the geometric surface 
detail. This view, in many ways, reflects the human observation on object shapes. The technique is used 
extensively in model editing process [6]. 

This work decomposes the surface into two parts, the coarse mesh, the low-frequency part of the 
surface, and the relief mesh, the high-frequency part of the surface. First, the hole of the coarse mesh is 
smoothly filled. Then, the relief pattern is transferred to this hole. This is to ensure that both the structure 
of the filled hole and the relief pattern on the hole are consistent with the input surfaces. 

This research adapts the idea of the example-based framework of texture synthesis [7] to transfer the 
relief pattern to the smoothly filled hole. However, for the mesh domain, some important aspects need to 
be solved. First, mesh topologies do not align regularly in uniform grid style as in images. Meshes that are 
similar in shape may differ in topology considerably making the comparison between the two vertices' 
neighborhoods impossible. Second, a new surface similarity metric or surface signature has to be defined 
spatially at each point of the surface in order to use with the example-based framework. 
 

 
Fig. 1. Context-based surface completion of non-smooth surfaces using our proposed method. The 

method analyzes the existing relief patterns of the surface in Laplacian domain and transfers 
them to the smoothly filled hole. The proposed method can handle regular, irregular and 
stochastic relief. 

 
This research proposed the use of Laplacian coordinate as the representation for the coarse mesh and 

the relief mesh and to use it as the surface signature. Laplacian coordinate represents the curvature and 
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normal of each point on the surface instead of the position. Figure 1 shows the surface completion result 
from our proposed method. Note the relief pattern that exhibit on the synthesis surface. The seam between 
the synthesis surface and the input surface is hardly visible. Note that our method does not need to modify 
the exiting surface at all. 
 

2. Related Works on Surface Completion 
 
Surface completion can be broadly divided into two categories: one that does not consider contextual 
surface information and the other one that fill the hole with the available geometrical detail. Many authors 
proposed methods to smoothly fill the incomplete surfaces. Notably, Liepa [8] presents a method that can 
fill the hole smoothly and the filled surface preserved the overall structure of the model. The author use 
dynamic algorithm to fill the hole with subject to minimizing surface area. Davis et al. [9] use the diffusion 
process to fill the hole. This method performs voxelization of the model and the cell is classified as inside, 
outside or on the surface boundary. Other researchers [10-11] solve the problem of surface reconstruction 
from point clouds by the use of active contour base method. The minimization technique is used to 
propagate the active contour to fit the given point clouds as much as possible. However, the filled surface is 
smooth and lack of geometric details. For a large hole, the visual perception can be distracting. They also 
have to convert the model to volumetric representation which required computational time and memory 
consumption. 

Some authors consider contextual information when perform surface completion. Schnabel et al. [2] 
use primitives as guidance for surface completion. They first fit the model with the predefined primitives 
and extended the primitives shape to fill the holes. Their works apply well for CAD model. Pauly et al. [1] 
perform surface completion using model database. The database has to contain the stock models that 
similar to the one it try to complete. 

Shaft et al. [3] propose an example-base method to do context filling of holes. They fill the missing 
surface iteratively from coarse to fine level using an octree. They use the signed distance vectors of grid 
corners as the surface signature for surface similarity test. Park et al. [12] present a method to do surface 
completion that preserves both shape and appearance. They use grid to divide the surface into patches and 
do parameterization on each patch. For each patch, the six signatures of average, maximum and minimum 
of principle curvatures are used to perform shape similarity test. Although they use curvatures as signatures, 
the six statistic information of curvature can only represent the overall patch curvature but not the 
geometric context of the surface. In addition, by pasting the whole patch to a hole, the quality on the hole 
boundary can be noticeably different from other parts of the filling surface even with the use of surface 
blending. Bendels [13] and Breckon et al. [4] method first fit the whole model with a primitive, such as a 
plane, sphere or cylinder. Then, the primitive is used as a base surface to sample the vertex displacement 
vectors from the original surface. The vertex displacement vectors are used as surface signature to search 
for the similarity. This method may have difficulty with non-height field surfaces which cannot be 
represented by the vertex displacement vectors and the surface with steep surface detail can produce high 
distortion result from sampling. 

All of the above methods have shown impressive results but do not truly use signatures that can reflect 
the local properties of the surface. Furthermore, for a large hole, the filled area should also preserve the 
overall surface structure of the model. The example-based method which fills small patch by patch lacks 
the knowledge of the higher view of the surface structure. Unfortunately, analyzing relief pattern and 
transferring it to the hole's surface is not trivial. Usually, most of the previous works on non-smooth 
surface completion can handle patterns that are stochastic. However, relief patterns that contain near-
regular or irregular structures are still a challenging problem. 

Another group of works that are related to our problem setting are woks that perform texture synthesis 
on 3D surfaces. Texture synthesis directly on the surface is challenging since it is not easy to specify the 
orientation and neighborhood information on surfaces. In texture synthesis, the value of each output pixel 
is determined by comparing its spatial neighborhood with all neighborhoods in the input texture. The input 
pixel with the most similar neighborhood will be assigned to the corresponding output pixel Approaches to 
tackle these problems are to densely populate surface with points and treat them like pixels [14-15], unfold 
the mesh onto the plane and perform synthesis in 2D [16] or treat triangles like patches, and find per-vertex 
(u, v) coordinates [17]. In this research, we adapt the idea of texture synthesis technique to use it to transfer 
the relief information to the smoothly filled surface. 
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3. Background on Laplacian Coordinate 
 
Laplacian operator is defined as the divergence of the gradient and can be written as the sum of second 
partial derivatives: 
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For a given function f defined on a manifold surface S the Laplacian-Beltrami is defined as [18]: 
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Applied to the coordinate function X of the surface, the Laplacian-Beltrami operator evaluates to the 

mean curvature, H, multiple by normal, n : 
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Let },...,{ 1 nvvV  be the set of vertices in absolute Cartesian coordinate, }{ i  be the set of vertices in 

Laplacian coordinate. For discrete Laplacian-Beltrami operator, it can be approximated using Geometric 
Mesh Laplacian [19]. 
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where 
i  is the area of the Voronoi cell constructed around the faces of vertex i (Fig. 2). )(iN  are the 

neighborhood vertex of i. 
ij  and 

ij  are the two angles that opposite to the edge ij. 

We can construct a adjacency matrix L such that LV , that is )( ii vL . Matrix L can be viewed as 

the adjacency matrix of a graph of mesh. The dimension of the matrix L is nxn, where n is the number of 
mesh's vertices. The matrix is used to multiply each component (x, y, z) of Cartesian coordinate separately; 
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Fig. 2. The angles and the Voronoi cell (shaded area) used for the Geometric Mesh Laplacian 

computation. 
 

One property of the Laplacian coordinate is that it is translation invariant. As a result, matrix L has 
rank = n-1 therefore we cannot compute its invert matrix. To reconstruct the Cartesian coordinate, we can 
assign the Cartesian coordinate to a vertex in the matrix to get a full rank system and therefore has the 
unique solution. The inverse Laplacian transform thus required solving a linear system of equation. 

In practical application, such as model editing, we assign the Cartesian coordinate to more than one 
vertex. These vertices are called anchor vertices. Let },...,2,1{ mC   be the set of indices of those vertex that 

we assign spatial coordinate Cicv ii  , . This additional constrain makes the linear system over-determine. 

However, we can solve for a unique solution in the least-square sense [20]: 

  2
arg min ( )

v

V L V


     (5) 

The most important feature of the Laplacian coordinate is that it stores local information of mean 
curvature and normal vector of each vertex. These are the local geometric properties of surface. Therefore, 
Laplacian representation can better reflect the local shape of the surface than the use of Cartesian 
representation. In addition, the absolute coordinate reconstruction by linear least-squares method smoothly 
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distributes the error across the domain. This feature is an advantage when perform mesh editing operation 
because distortion error is unavoidable in many situations. 
 

4. Proposed Method Laplacian Coordinate 
 
4.1. Overview 
 
This work represents the 3D surfaces with polygon meshes. The input of the algorithm is a mesh with a 
hole. The mesh should be regular, uniform and composed of isotropic triangles. These criteria are favored 
since the algorithm is operated on vertices. The fairing method can be applied if the input mesh does not 
have the specific qualities. If the model contains many holes, each hole is filled independently, one hole at a 
time. 

The overview of the algorithm is shown in Fig. 3. The process of the algorithm is to smoothly fill the 
hole first and then extract the relief pattern from the surrounding surface and transfer it to the filled hole. 
The challenges of this work are on how to extract the relief pattern, how to represent it and how to transfer 
it to the smoothly filled hole. 

The key idea of the algorithm is to use multi-resolution decomposition to extract the relief pattern and 
to use Laplacian coordinate to represent it. Laplacian coordinate defines the local geometric properties, 
which are normal and curvature, of each surface point. The surface signature can be defined for each vertex 
using the Laplacian coordinate of neighborhood vertices. In this way, this Laplacian signature can be used 
with the example-based framework to transfer the relief pattern to the smoothly filled surface. 

 
Fig. 3. The high-level algorithm pipeline. First, the surface is smoothed and smoothly filled. Then, the 

relief pattern is extracted and represented in Laplacian coordinate. The pattern is transferred to 
the hole area and reconstructed to Cartesian coordinate. 

 
For an input surface O, the offset region around the hole boundary is computed to use as a relief 

pattern exemplar. The offset region around the hole is used because it is likely to contain the same pattern 
as the missing surface. However, users are free to choose the exemplar region as appropriate. The exemplar 
region should cover the relief pattern exhibited on the surface. 

Mesh O is divided into two regions: region O.hole which is the region that is needed to be filled and is 
now empty and region O.offset which is the offset region around the hole boundary (Fig. 3). Other meshes 
that are constructed further in the algorithm are composed of the hole part and the offset part. The surface 
part outside the offset region is not use in the surface completion algorithm. Meshes with subscript L are 
represented in Laplacian coordinate. Those that do not are represented in Cartesian coordinate. 

The algorithm performs mesh smoothing on mesh O and obtain the coarse mesh S as the result (step1, 
in Fig. 3). This mesh, S, is smoothly filled (step 2, in Fig. 3). Mesh O and mesh S are transformed into 
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Laplacian coordinate using Geometric Mesh Laplacian which result in mesh 
LO and mesh 

LS  respectively. 

Mesh 
LO  and mesh 

LS  have the same mesh topology as in mesh O and mesh S but instead of storing 

vertex position, they store Laplacian coordinate. 
The relief mesh, 

LR , is obtained by subtracting 
LO  with 

LS  (step 3, in Fig. 3). The hole's region of the 

relief mesh, holeRL .. , is filled using the relief example from the offset region, offsetRL ..  (step 4, in Fig. 3). 

Finally, the coarse mesh holeSL ..  and relief mesh holeRL ..  are combined to reconstruct the completely filled 

mesh O.hole (step 5, in Fig. 3). In this way, the filled surface can preserve both the surface structure and 
surface contextual detail. 
 
4.2. Multi-Resolution Decomposition on Mesh 
 
Usually in mesh decomposition, the coarse mesh is obtained by perform mesh smoothing and the relief 
mesh is computed using normal displacement method. Normal displacement [21-22] uses the normal of the 
base surface or coarse surface to sample the original surface in order to get the displacement vectors. The 
problem of this method is that the surface has to be representable by a height field function. Depend on 
the geometry of the base mesh, sampling the original mesh can introduce distortion in geometric 
information. And due to undersampling artifact, the neighbor displacement vectors can have discontinuity 
even though the original surface is connected. 

In this research, Laplacian representation is proposed to use with the multi-resolution decomposition. 
Laplacian coordinate does not suffer from the sampling problem as in the Normal displacement method 
and can be used to represent any 2-manifold surfaces. The relief mesh is represented as the difference 
between the Laplacian coordinate of the original surface and the Laplacian coordinate of the coarse detail 
surface, 

LLL SOR  . 

In representing the relief mesh, 
LR cannot be used directly as the relief mesh since its Laplacian 

coordinate,  , is still in the world coordinate. The Laplacian of the relief mesh has to be defined relatively 

to the coarse mesh. Since, this research views original mesh as compose of relief mesh and coarse mesh. 
The Laplacian coordinate,  , of each vertex of 

LR has to be transformed to tangent space of the 

corresponding vertex of the coarse mesh. For each vertex, the three axis of the tangent space can be 
defined using the normal vector, the binormal vector and the tangent vector of that vertex. 

For a given vertex on the coarse mesh S, let B, N, T be the normal vector, tangent vector and binormal 
vector of that vertex respectively. The matrix that used to transform Laplacian coordinate from world space 
to tangent space can be defined as [BT NT TT]. 

Mesh parameterization is needed to compute the binormal vector and the tangent vector (section 4.4). 
This research uses barycentric map to construct conformal map parameterization. The mapping is then 
used to consistently define local axis for each vertex points on the coarse mesh. This mapping can also be 
used with mesh S and mesh R, since both have the same mesh topology as mesh O. 

 

 
Fig. 4. The visualization of the Laplacian representation. 
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Figure 4(b) shows the normal component of the Laplacian representations. The green color represents 
the normal vectors that have the same direction as the normal vectors of the coarse mesh, while the blue 
color represents the normal vectors that have the opposite direction with the normal vectors of the coarse 
mesh. Figure 4(c) shows the mean curvature component of the Laplacian representations. The blue color 
indicates the positive curvature. The red color indicates the negative curvature. The green color indicates 
the zero curvature. 
 
4.3. Coarse Mesh Completion 
 
The coarse mesh offsetS.  is obtained by performing mesh smoothing. This research uses Curvature flow to 

do mesh smoothing [23] on offsetO. . 

Mesh smoothing may alternates the shape of the hole boundary considerably (Fig .5) . This seems to be 
problematic at first as the shape of the filled hole is not match the shape of the original hole boundary. 
However, with the use of Laplacian representation, holeOL .  can be reconstructed by choosing the anchor 

vertices to be the positions of the original hole boundary. The reconstructed holeOL .  fuses seamlessly with 

the .
L

O offset . The least-square solver attempts to reconstruct the Cartesian coordinate while preserve the 

mean curvature normal of each point as much as possible. The geometric distortion that may happen is 
distributed over the surface and hence unnoticeable. On the other hand, if the hole boundary is fix when 
performing mesh smoothing, holeS.  computed from the coarse mesh completion will not be smooth and it 
will not reflect the coarse resolution of the original surface. The result will have a downside effect on the 
relief mesh extraction. 
 

 
Fig. 5. The hole boundary is rounder due to effect of mesh smoothing. 
 

This research use Liepa's algorithm [8] to perform coarse mesh completion. The algorithm performs 
hole triangulation, mesh refinement and fairing. Liepa's algorithm is used in coarse mesh completion 
because it can produce smooth filling surface with minimize surface area and surface dihedral angle. 
 
4.4. Computing Mesh Parameterization 
 
As introduced in section 4.2, mesh parameterization is needed to defined binormal vectors and tangent 
vectors for computing tangent space of 

LR . The Laplacian signature that is used with the example-based 

framework also requires surface parameterization to consistently define the orientation of each surface 
point. 

This research computes the mapping between squared planar surface and the surface of mesh O. This 
mapping can also be used with mesh S and mesh R, since both have the same mesh topology as mesh O. 

This research uses barycentric map to construct parameterization. The mapping is then used to define 
the binormal vectors and tangent vectors for each vertex points on the coarse mesh. The result 
parameterization of barycentric map technique is close to the conformal mapping, the mapping which 
preserves angle distortion. Thus, conformal mapping can consistently define the local axis over the surface. 
The distortion in length can be negligible in computing local axis. 
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Although there is some distortion in the mapping, this is not going to be an issue, since this research 
only uses parameterization for defining the binormal direction and the tangent direction for each point on 
the surface. 
 
4.5. Relief Mesh Completion 
 
The example-based framework is used to fill the region holeRL .. . The region offsetRL ..  is used as the 

exemplar. The relief information of holeRL ..  is still empty since the hole region is only smoothly fill and 

have no relief information. The Laplacian coordinates of every vertices in holeRL ..  have value of zero. The 

relief pattern encoded in Laplacian coordinate from the offset region are used to transferred to holeRL .. . 

The pseudocode is presented in Fig. 6. 
This research uses pixel-based synthesis [24] approach by transferring the Laplacian coordinate of the 

hole region to the offset region vertex by vertex. The patch-based synthesis can have an issue with the 
differences in mesh topology between holeRL ..  and offsetRL .. . If the mesh topologies of the two regions are 

different, Laplacian coordinates cannot be copied directly from one region to the other. In addition, patch-
based synthesis can complicate the surface signature definition since the shape and the area of each patch 
may vary from each other. 

 

 
Fig. 6. The pseudocode for relief mesh completion. 
 

Let 
OV  be the set of vertices of offsetRL .. , 

oV  is an element in 
OV . Let 

HV  be the set of vertices of holeRL .. , 

hV  is an element in 
HV . For each vertex in offsetRL .. , 

oV , its Laplacian signature )( oV  is computed from the 

collection of Laplacian coordinates of the sampling points in the neighborhood region of vertex 
oV . 

The algorithm starts at the vertex on the boundary of holeRL .. . It then visits other vertices of 
HV  in 

spiral fashion. Basically, the spiral traversal is done using breadth first search algorithm using queue data 
structure. At the initialize step, the boundary vertices are enqueued to the queue. The last visited vertex is 
the one located around the center of the hole region. 

By visiting vertices in this manner, many neighborhood vertices around 
HV  will already have the 

Laplacian coordinates assigned and can be used to compute the Laplacian signature for the vertex 
hV . If 

there are too few neighborhood vertices to use in computing the Laplacian signature, the Laplacian 
signature may not reflect the characteristic of the relief pattern of a surface patch. 

For each vertex in holeRL .. , 
hV , the algorithm searches for the 

oV  that have the best matching Laplacian 

signature. The Laplacian coordinate of 
oV  is transferred to 

hV . The algorithm terminates when all vertices in 

HV  are visited and have received the Laplacian coordinate from 
OV . 

 
4.5.1. Computing Laplacian signatures 
 
The surface signature is used to compare the visual similarity between two patches of surface that are 
equivalent in surface areas. Defining a signature on surface introduces many problems that are not found in 
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texture. Vertices may not have an equal number of neighborhoods. Vertices may not uniformly distribute 
on the surface. These are the problems of irregularity of mesh topologies. Furthermore, surface is non-
planar like texture. 

In this research, for any given vertex, 
iV , Laplacian surface signature ( )

i
V  is defined as the collection 

of tangent space Laplacian coordinates 
1 n



 of the sampling points in the neighborhood region of vertex 

iV : 

  niV  ,...,,)( 21  (6) 

where n is the number of sampling point. 
Laplacian coordinate is used because it can be defined on each point of the surface. It also represents 

the geometric properties of each point, the curvature and normal, which define the visual characteristic of a 
surface. 
 

 
Fig. 7. An example of 5x5 sampling points with 3-nearest neighbors interpolation from vertices that are 

used to define the Laplacian signature. (The computation is done in uv space.) 
 

The neighborhood region of vertex 
iV , ( )

i
N V , is a squared region center at 

iV . We use uv space 

(computed from mesh parameterization) in finding the neighbors, not the Euclidean space. The dimension 
of this region is discretized so that it is defined by the odd integer values, such as 5x5, 7x7. The dimensional 
unit is defined to be the inverse of the square root of the number of vertices in the mesh. For example, a 
mesh with fairly uniform polygons areas, the dimensional unit is approximately equal to the average edge 
length of a mesh in Euclidean space. 

The sampling points are sampled uniformly in grid-based style around a given vertex 
iV
 
with the step 

size equal to the dimensional unit. For example, the 7x7 region has 48 sampling points or 48 components 
(Vertex 

iV
 
is not used as the sampling point). The Laplacian coordinate of each sampling point is 

interpolated from the Laplacian coordinate of the k-nearest vertices around that sampling point (Fig. 7). 
The k-nearest vertices are weighted according to the inverse squared distance of the sampling point. 

Using Laplacian coordinates from the sampling points instead of vertices can solve the irregularity 
problem of mesh topologies. The sampling is also done directly on the surface (in uv space), thus there is 
no sampling artifact as presented in normal displacement sampling. In addition, this method does not need 
to flatten the mesh in order to find the nearest neighbors. 

In the regions around the mesh boundary, some sampling points may not be defined because they are 
out of bound and will not be included in the signature (Fig. 8). In addition, sampling points around the 
unvisited 

hV  are not included in the signature since they do not have the relief information from the offset 

region. Thus, Laplacian surface signature of each vertex 
hV  can have different number of components. 
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Fig. 8. The red sampling points which are in the hole region or outside the offset region are not used to 

compute for the surface signature. Only the green sampling points are used to compute for the 
surface signature. 

 
The size of this region can be set by the user and uses for every vertex on the mesh. In practice, the 

neighborhood size should larger than the geometric feature of the surface, so that it can contain enough 
information of the relief pattern. 
 
4.5.2. Comparing Laplacian signatures 
 
Two Laplacian signatures are comparable if they have the same number of components. The comparison is 
done to determine how the two patches are similar visually to each other. Two components from the 
different signatures with the same index are compared to each other one-to-one. Given two Laplacian 
signatures   ]..1[;)( nkV iki    and   ]..1[;)( nkV jkj    where n is the number of sampling points in the 

neighborhood region. This research defines the distance metric as: 

 
1

1 n

H ik jk

k

Dist H H
n 

   (7) 

       
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1
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n ik jk ik jk ik jk

k

Dist n n n n n n
n 

       (8) 

 * (1 ) *Hn n HDist w Dist w Dist    (9) 

where W is the user adjustable weight, 
ikH  is the mean curvature component and 

ikn  is the normal 

component of the Laplacian coordinate 
ik . 

Finding the best matching ( )
i

V  for all given ( )
j

V  of the hole region is done in a brute force style 

thus result in quadratic time complexity. This part can be speed up by using acceleration structure such as 
k-d tree to store all the signatures of the offset region and then use this tree to compare with the signature 
from the hole region. This adaptation can result in O(n/log(n)) complexity. However, the comparison may 
not be done fairly for each component of the signature. The components near the root node would have 
more influence than the components near the leaf nodes. 
 
4.5.3. Transferring Laplacian coordinates 
 
When transferring the Laplacian coordinate of 

oV  to 
hV , the different in transformed space has to be 

considered. Laplacian coordinate of 
oV  is in tangent space. Thus, it has to be transformed into world space 

to use in the Cartesian coordinate reconstruction stage (Fig. 9). The matrix that used to transform Laplacian 
coordinate from tangent space to world space can be defined as [B N T]. 
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Fig. 9. The transformation to world space is required when transferring Laplacian coordinate from the 

offset region to the hole region. 
 
4.6. Combining Coarse Mesh and Relief Mesh 
 
The Laplacian coordinate of mesh holeRL ..

 and holeSL ..  are combined to obtain holeOL .. . Mesh holeO.  is 

reconstructed from mesh holeOL ..  using inverse Laplacian transformation. The boundary vertices are used as 

anchor points. The corresponding Cartesian coordinate of the boundary vertices of mesh O are assigned to 
these anchor points. Thus, the algorithm does not alter the original surface at all. This feature can be 
important for some applications that have to maintain the original surface data. 

The curvature of mesh holeRL ..
 and holeSL ..  are blended smoothly in the Laplacian coordinate space. In 

addition, reconstruction by least-square minimization method distributes the distortion error all over the 
filling surface hence make the error (from minimization) hardly be noticeable. This is in contrast with the 
Normal displacement method which the discontinuity of displacement vectors cannot be blended easily in 
Cartesian coordinate. 

Triangles around the boundary of holeO.  can be compressed because of the anchor points constrain 
(Fig. 10(a)). This problem can be solved by performing tangential relaxation on mesh (Fig. 10(b)). 
Tangential relaxation is the method to make the faces more uniform by repositioning vertices. In tangential 
relaxation, the vertices can move only in the direction of its tangent vectors. 

 

 
Fig. 10. The triangles around the hole boundary are heavily pulled by the anchor points in the Inverse 

Laplacian transform (a). Tangential relaxation is used to solve the compression of vertices 
problem (b). 
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5. Results 
 
The experiments are done on an Intel Pentium 2.4GHz with 2.00 GB of RAM running Windows 7 OS. 
This research uses linear system solver from TAUCS library [25] when computing mesh parameterization 
and inverse Laplacian transformation. Cholesky factorization method is used for the computations since it 
is fast and requires low memory. 
 

 
Fig. 11. Example of relief patterns ranging from regular, irregular to stochastic patterns.(Top row) Input 

surfaces with big holes on them. (Bottom row) Surfaces are filled with relief information 
extracted from the input surfaces. 

 
All models uses distance metric 

nHDist   in Eq. (9) with the weight setting to 0.5. The number of points, 

k, used as nearest neighbor is three. 
Figure 1 and Figure 11 show a wide range of relief patterns that can be completed using the proposed 

method. The orientation and direction of the relief pattern can be captured and synthesized by Laplacian 
signature as seen in Fig. 11. Figure 12 shows the input meshes with known relief patterns. The small 
neighborhood size of 7x7 (30% of the relief pattern size) and 11x11 (70% of the relief pattern size) do not 
fairly capture the relief pattern of the inputs surface. These surfaces require the neighborhood size of at 
least 13x13 (100% of the relief pattern size) in order to faithfully capture the relief detail. 

 

 
Fig. 12. (a) The input surface with hole. (b) The neighborhood size of 30% of the repeatable relief 

pattern is used for the surface completion. (c) use the neighborhood size of 70% of the relief 
pattern. (d) use the neighborhood size of 100% of the relief patterns. 

 
Figure 13 shows the dragon model with multiple relief patterns. The model does not contain large 

exemplar area. Thus, it is a little challenging for the algorithm to extract the pattern from the available 
surface. However, the proposed method can produce satisfying result. 

The computation time is dominant by the relief transferring part. The other steps of the algorithm 
contribute less than ten percent of all the computation time. The complexity of the algorithm is quadratic 
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with the number of vertices of the hole area and the offset area. The running time also scales linearly with 
the number of sampling points used for the Laplacian surface signature. For surface with 5,000 vertices, the 
computation time is around 125 seconds. And for the surface with 10,000 vertices, the computation time is 
around 500 seconds. 
 

 
Fig. 13. Dragon model with multiple relief patterns contains many holes on the surface. Surface 

completion using Laplacian transform are performed on every holes on the model. The variable 
settings on all of these holes completion are the same. 

 

 

 
Fig. 14. The left column images, (a), are original shapes without holes. The middle column images, (b), 

are shapes that we intentionally make holes on them. The right column images, (c), are shapes (b) 
that was completed with the proposed method. 
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Fig. 15. The geometric deviation (c, f) and the normal deviation (d, g) of input surfaces. 
 

Figure 14 shows the reproducibility of our method for various models. The results indicate that the 
holes can be completed with the geometric detail similar to the original surrounding surfaces.  

The goal of this research is to produce the filled surface that have similar in visual appearance with the 
original surface. The synthesized patterns do not need to be the exact replicate of the original patterns. In 
Fig. 15, surface (a) is the original surface. Surface (b) is the surface completed with relief transfer using the 
proposed algorithm. Surface (e) is the smoothly filled surface. Obviously, when compare with the original 
surface (a), surface (b) should have less error or less deviation than surface (e). However, it turn out that 
this is not the case when using traditional surface comparison metrics. Image (c) and (d) show the 
Geometric deviation of 3.67 and Normal deviation of 1.60 respectively when comparing surface (b) to 
surface (a). Image (f) and (g) show the Geometric deviation of 4.21 and Normal deviation of 1.33 when 
comparing surface (e) to surface (a). The results indicate that the errors value from these matrices do not 
reflect the visual appearance of the comparing surfaces. The error metrics generally used for the mesh 
comparison, such as Geometric deviation or Normal deviation [26], cannot be used in this kind of task. 

In addition, these metrics are transformation variant. The two surfaces with the same geometric pattern 
but are different in transformation, such as translation or rotation, would have great error. 
 

6. Discussion and Conclusions 
 
This research proposes an algorithm to fill the hole on non-smooth surfaces using the available surface 
context. The algorithm can handle surface with relief patterns such as near-regular patterns, irregular 
patterns and stochastic patterns. This work would have a great benefit to surface acquisition process. The 
users do not need to spend a great amount of time repairing the scanned models. Another strong point of 
the proposed method is that no modification is done on the original surface. The preservation of the 
surface characteristics is crucial in application such as archiving ancient objects. 

The quality of the coarse mesh can determine the quality of the result filled surface. If the mesh is not 
smooth enough, the relief pattern may not be clearly detectable. In addition, if the height of the relief 
pattern is too low, the Laplacian representation of the relief mesh may contain too much noise. This 
situation complicates the algorithm to detect the pattern of the surface. The author would like to explore 
geometric metrics that can be used to guide the smoothing process. Surface may not have to be smoothed 
evenly and isotropically. Some points of the surface may need more smoothing that the others. 

Another interesting area of further research is on coarse mesh completion. The minimum area and 
normal variation are fine for smooth mesh completion. However, some characteristics of surface structures 
need additional geometric knowledge. Multi-scale curvature analysis may be useful to capture the structure 
of the model. 
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Most of the time the results from scanning devices contain surface fragments. It will be very useful to 
extend the proposed method to handle hole with isles. To handle hole with isles, many parts of the 
algorithm require modification. Active contour based methods may be more suitable for smooth hole 
completion than minimum surface area method. The available surface information of the fragments can be 
used as guidance when transferring relief pattern from the offset region. However, working with these 
fragments can introduce many difficulties. For example, each isle can have its own holes. Laplacian 
coordinates computed from the isles boundary are not accurate. It may be easier to design the algorithm if 
some losses in geometric detail of these fragments are acceptable. 
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