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Abstract. This study focuses on developing a scheduling model for sequencing a set of jobs 
with different release times in a single machine to meet non-similar due dates as well as to 
reduce total sequence-dependent setup time. A constraint programming (CP) model is 
proposed to solve the scheduling problem by minimizing makespan under multiple 
constraints, namely release times, sequence-dependent setup time, and due dates. The 
proposed constraint programming model is tested and compared with the baseline method 
derived from as-is scheduling of alloy wheels manufactures. The computational experiments 
show the proposed constraint programming model outperforms the baseline method in the 
average improvement in makespan and total setup time. For small-size problems, the 
proposed scheduling model were optimally solved in a short time, achieving the best average 
improvement in makespan of 4.8826% and the best average improvement in total setup 
time of 45.7924%. Despite increasing problem sizes, the proposed scheduling model's 
computational time deteriorates but continues to provide the best solutions, achieving the 
best average improvement in makespan of 7.4891% and the best average improvement in 
total setup time of 55.4033%. 
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1. Introduction 
 
Production scheduling is a decision-making process at 

the operation level [1] that plays an important role in the 
context of manufacturing and production systems  refers 
to the process of allocating limited manufacturing 
resources such as machines, to tasks or jobs [3] to specific 
time periods to accomplish a set of manufacturing 
processes in the plan to achieve certain objectives. It aims 
to deal with resource utilization and timespan of the 
manufacturing operations [4].  

Scheduling is the most important function of 
production planning and control activity in manufacturing 
and engineering. This refers to the process of determining 
the timing of an operation, that is, The process of 
determining the starting and completion times for the 
variety of jobs to be executed on the machine to meet the 
desired delivery dates. The effect of scheduling decisions 
has a significant impact on the productivity of a process. 
By determining what to make, when to make, and in what 
quantities, production scheduling aims to maximize 
operational efficiency [5]. 

Real-world manufacturing environments are typically 
complex systems that feature various constraints and 
characteristics that correspond to fairly specific settings 
found in related companies. The existing varieties of 
manufactured products and numerous factors, such as 
processing times, setup times, precedence relations among 
jobs, due dates, etc., make scheduling a complex issue. The 
best possible way for manufacturing companies to remain 
competitive is through appropriate order sequencing [6]. 

The problem under consideration corresponds to a 
real problem in an alloy wheel manufacturing company in 
the automotive industry. Alloy wheels have a wide variety 
of models  that include sizes ranging from 12 to 24 inches, 
unique patterns and 4 color variations of light color tones, 
medium color tones, dark color tones and black color. 
Each model is considered an individual job to be 
processed. Usually, multiple jobs are being produced 
simultaneously, with the primary production processes 
consist of casting, machining, and painting. In the casting 
and machining processes, there are many identical parallel 
machines in operation, each identical parallel machine is 
capable of producing one job at a time. The variety of 
different jobs that are manufactured on the same time. 
The casting and machining process releases jobs of various 
sizes and patterns that are unique but it is possible that 
several jobs will be the same color in painting process. 
Therefore, multiple jobs are released to painting process 
at several times. Each job can start to be processed after 
its release time. Jobs are the same color can be sequenced 
by grouping jobs to reduce the setup time because of a 
setup time is necessary whenever there is a switch from 
processing a job in one type of setup to another. Jobs have 
sequence-dependent setup times; they require setup times 
that are dependent on the sequence in which they are 
processed.  

The sequencing method affects the scheduling 
performance through the dispatching rules. Some 

dispatching rules may result in a higher makespan, lead to 
late delivery and cause high setup time.  

This study aims to answer the questions of single 
machine scheduling problem with constraints that are 
frequently encountered in actual practice. The majority of 
contributions to proposing a model involve sequencing 
jobs with different release times to meet different due 
dates and reduce setup time where setup times are 
sequence-dependent. Many choice situations involve 
several constraints. Determining a solution that satisfies all 
constraints simultaneously can be challenging when some 
constraints pull the solution in opposite directions. The 
difficulty is to develop a model used for sequencing that 
can handle several constraints. The improvement in 
makespan is used to measure the effectiveness of the 
scheduling model, which shows the gap between the 
objective values of the schedules found by the scheduling 
model (the optimal schedule) and the baseline scheduling 
method (the manufacturer schedule). 

The rest of the paper in the next section is organized 
as follows. Section 2 presents a literature review. Section 3 
analyzes the case problem with the baseline scheduling 
method. In section 4, a constraint programming model for 
makespan minimization in single machine scheduling with 
release times, sequence-dependent setup times and due 
dates are developed. In section 5, a difference in instance 
sizes experiments and result analysis are conducted, and 
the last section concludes the paper and considers future 
works. 
 

2. Literature Review 
 
Single machine scheduling problem is one type of the 

most important problems in production. It is the basic 
building block to develop more comprehensive scheduling 
models [7]. 

Single machine scheduling problems have received a 
significant amount of attention in the literature. Using two 
methods to solve a single machine sequencing problem: 
exact and heuristic [6]. Various approaches are employed 
in the single machine scheduling problem depends on 
different factors. The present research study is interested 
in a problem with minimizing makespan in the objective 
function. Thus, the limitation of the review is previous 
papers with minimized makespan objectives or previous 
papers with constraints are relevant to the current 
research. 

 
2.1. Single Machine Problems with Release Times 
 

Many scheduling problems consider that the jobs are 
available at time zero or the beginning of the time horizon, 
thus ignoring any job release time. However, release times 
are also very common in real-world manufacturing 
scenarios [8]. They present a heuristic and a metaheuristic 
algorithm for solving the challenging single-machine 
scheduling problem with release dates and sequence-
dependent setup times to minimize the makespan. For 
small-scale instances [9] proposed an effective branch and 
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bound (B&B) algorithm integrated with an elaborately 
designed pruning rule and a lower bound is developed to 
achieve exact solutions for minimizing the sum of 
makespan on multi-agent single-machine scheduling with 
release dates. In the literature, there is increasing attention 
to addressing the beginning of the time horizon is not 
zero. Several of the research papers define release times as 
release dates. Therefore, a job cannot be processed before 
the release date, and those jobs are sequenced in the order 
of their release dates. 
 
2.2. Single Machine Problems with Sequence-

Dependent Setup Times 
 

One of the most immediate consequences of a 
changeover is the interruption of production. The time 
allocated to adjusting settings is time that is not used for 
the production of products. Production scheduling must 
prioritize reducing unnecessary changeover from period 
to period [10]. Traditionally, most papers solve this 
scheduling problem without considering setup times or 
including them in the processing times of the jobs, which 
is valid only when the setup times are sequence-
independent. Despite, sequence-dependent setup times 
are very common in scheduling problems involving the 
real-world manufacturing systems (Fernandez-Viagas & 
Costa, 2021) as e.g. painting process. The previous and 
current jobs in the sequence belong to different setup 
times and changing the positions of each job requires a 
setup time. The purpose is to perform a scheduling with 
the lowest setup time sum. According to [11], the 
development of a single machine scheduling problem 
where the jobs to be processed arrive the production 
process with release times and the setup times are 
sequence-dependent to obtain a sequence with minimum 
makespan. 
 
2.3. Single Machine Problems with Due Dates 
 

Different performance measures have been studied. 
Several production control systems are used to meet 
customer demands and needs (C. Silva et al., 2017). Single 
machine scheduling for make-to-order (MTO) must 
address the company’s need for short delivery times and 
on-time deliveries. Since meeting the due dates is 
important in a competitive environment, due date related 
performance measures are gaining importance [12]. The 
most popular due date assignment policy is to assign all 
jobs a common due date [13]. In the majority of cases, it 
is widely accepted to make the assumption that the 
assigned due date are not limited or constrained. However, 
in several practical cases, setting due dates too far into the 
future may violate early agreements between the 
manufacturer and customers [14]. The value of the due 
date in the relation to the problem data strongly impacts 
the accuracy of algorithms formulated for a problem type 
[15]. 

In all of the aforementioned research, manufacturing 
scheduling constraints are considered separately. To 

achieve better results, Integrated decision-making requires 
considering all production stages simultaneously [16]. 
Rosyidi et al. developed an integrated optimization model 
with the objective of maximizing total profit while 
considering several constraints of a large steel 
manufacturing company. The company manufactures a 
wide variety of steel products to fulfill a certain number of 
demand. Manufacturers increasingly require 
customization of their products to meet customer 
demands and distinguish from competition [17], which 
causes the production complexity. Because the production 
complexity is higher, it leads to greater diversity in the 
choice of job sequencing. It causes a delay in delivery. It is 
challenging to optimize a real-world problem that involves 
a large number of jobs. Choosing an appropriate 
optimization method can be challenging when dealing 
with a multi-constrained optimization problem [18]. Liu et 
al proposed an appropriate optimization method that can 
assist users in setting up the system scale more reasonably 
and reducing the system's disadvantages. It is evident that 
there are no simple principles for optimizing the 
production schedule based on different performance 
indicators [19]. 

In conclusion, Table 1 shows the related works are 
mainly focused on some aspects, which, as said above, are 
not considered in several constraints simultaneously that 
make the scheduling model more complex and challenging 
to solve with the objective is to minimize the makespan. 
The problem has not received much attention in the recent 
literature. Consequently, the literature motivated us to 
develop the scheduling model with the aim of producing 
solutions that are improved with excellent results for 
several constraints with the objective is to minimize the 
makespan. This work develops a scheduling model for 
sequencing different jobs with different release times in a 
single machine that minimizes the makespan to meet 
different due dates and to reduce setup time where setup 
times are sequence-dependent. It considers single machine 
scheduling using constraint programming to calibrate 
several constraints and then running an experiment, which 
allows analyzing the effect of several constraints on the 
performance of the scheduling model. Accordingly, 
considering several constraints make the problem realistic 
and more challenging from a modeling point of view.   
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Table 1. The primary characteristics of the models considered in the reviewed papers and in this research 

Model 
Features 

This 
research 

W
a
n

g
 e

t 
a
l.

 (
2
0
2
2)

 [
9
] 

T
o

k
sa

rı
 &

 T
o

ğ
a
, 

(2
0
2
2
) 

[2
0
] 

Y
a
n

g
 e

t 
a
l.

 (
2
0
2
2)

 [
2
1]

 

F
e
rn

a
n

d
e
z
-V

ia
g

a
s 

&
 

C
o

st
a
 (

2
0
2
1)

 [
8]

 

B
a
d

ri
 e

t 
a
l.

 (
2
0
2
1)

 [
2
2
] 

M
o

la
e
e
 e

t 
a
l.

 (
2
0
2
1)

 

[2
3
] 

L
u

n
a
rd

i 
e
t 

a
l.

 (
2
0
2
0)

 

[2
4
] 

Y
u

e
 e

t 
a
l.

 (
2
0
18

) 
[7

] 

H
e
rr

 &
 G

o
e
l 

(2
0
16

) 

[2
5
] 

K
ır

 &
 Y

a
zg

a
n

 (
2
0
16

) 

[2
6
] 

K
a
rr

a
y
 e

t 
a
l.

 (
2
0
15

) 
[2

7
] 

Problem size             

• Small             

• Medium             

• Large             

Time 
constraints 

            

• release 
times 

            

• sequence-
dependent 
setup 
times 

            

• due dates             
Objective 
function 

Min 
Makespan 

Min 
Makespan 

Min 
Makespan 

Min  
Total 

weighted 
completion 

time 

Min 
Makespan 

Min 
Makespan 

Min 
max 

tardiness 

Min 
Makespan 

Min 
max 

waiting 
time 

Min 
Total 

tardiness 

Min 
Total 

earliness 
and 
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Min 
Makespan, 

Cost, 
Time 

intervals 
Solution 
method 

            

• Heuristics             

• Hybrid             

• Exact             
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3. Problem Statement 
 
The problem under consideration corresponds to a 

real problem of an alloy wheel manufacturing company for 
the automotive industry. The manufacturing company 
starts the manufacturing process only after receiving 
orders from customers. The manufacturing company 
needs to guarantee a committed delivery due date for each 
job order, meaning that the customer of the job order 
must receive the products on or before this date. After the 
job orders are received, the manufacturer must determine 
which ones are to be sequenced. The current production 
time for the desired run is continuous. Continuous 
production means operating 24 hours per day, 7 days per 
week due to the aluminum melting furnace melting 
continuously for 24 hours. The jobs are the production of 
alloy wheels. There are 25-35 different jobs to produce per 
weeks in 4 different colors. Alloy wheel production 
involves several steps to create high-quality wheels. This 
study focus on the main process of a painting process are 
washing, powder spraying, paint spraying and clear 
powder spraying by simplify a long production line to a 
single machine as visualized in Fig. 1 for reducing a 
complex manufacturing process that involves multiple 
steps into a single machine [28]. This simplification can 
lead to easier planning. 
 

 
 
Fig. 1. Simplify a painting process line production to a 
single machine. 

 
The problem statement is described as follows: This 

study has focused on the scheduling model aiming to find 
a desired schedule with the best system performance 
under the assumption that model parameters are known 
and deterministic. Consider a sequencing problem that has 
a set of n jobs, Each job j (j = 1,…,n) has a known fixed 
processing time pj. The complexity of the problem 
consideration illustrates by an example of a production 
scheduling challenge tackled by an existing company. This 
company produces products of different sizes, patterns 
and colors. Thus, the setup time of job j on the single 
machine is sequence-dependent setup time. During a 
setup time no processing of jobs is possible, i.e.) non-
preemptive jobs. A set of jobs is processed in several 
production stages, but this work focuses on one stage that 
the jobs must be arranged in a sequence before assigning 
them to a single machine. Therefore, the release time of 
job rj is the completion time Cj of the previous stage, job j 
cannot be processed before its release time. A different 
due date dj is predefined. The objective of the scheduling 
model is to minimize the makespan while respecting the 

constraints : release time, sequence-dependent setup time 
and due date constraints. The scheduling model must be 
applied to determine good solutions to minimize 
makespan. A common, and quite popular, measure of the 
performance of any scheduling procedure, since it 
combines the desire to secure high utilization of the 
production resources, together with the desire to ensure 
early satisfaction of customer demand [29]. 

 
 
4. Constraint Programming Model 
 

In recent decades, industrial engineering focus on the 
development and implementation of production 
manufacturing scheduling systems. The focus mentioned 
arises due to the incorporation of automation in the 
planning process. Recent technological advances in 
computer software and hardware allow for reducing the 
computational time to find near-optimal solutions to 
complex problem. The proposed modeling approach 
solved the scheduling problem for many variables as well 
as all constraints in a short time period. 

Constraint Programming is a recent powerful 
programming paradigm with a great impact on several 
important areas such as combinatorial optimization 
problems, especially for complex problems that cannot be 
modeled easily [30]. It is a highly effective and easy-to-use 
technology for solving scheduling problems that has 
shown its capability and efficiency [31].  

This work presents a constraint programming (CP) 
model for makespan minimization in a single machine 
scheduling with release times, sequence-dependent setup 
times and due dates. For finding the optimal solution, the 
proposed modeling approach solved the scheduling 
problem for many variables as well as all constraints in a 
short time period. 

This facilitates the manufacturer to minimize the 
makespan of the manufacturing phase while considering 
the actual constraints on the overall production planning. 
Assignment, timing and sequencing decisions are derived 
from the CP model. 

The main modeling expression used is interval 
variable. It represents an interval of time during which an 
activity is executed, with its required reserved time in the 
schedule. Interval variables indicate the job operation to 
be processed on machine, with a start, duration, and end 
time. Start time is denoted by startOf and completion time 
by endOf. While sizeOf is given by the problem instance 
represents the processing time of the job. startOf and endOf 
are determined by the CP solver [32]. 

This model was developed using IBM Decision 
Optimization CPLEX Modeling for Python, also known 
as DOcplex supported by the IBM ILOG CPLEX 12.10 
optimization studio environment and solved using the CP 
solver and run on Intel® Core™  i5-4278U CPU @ 
2.60GHz running Windows 10. 
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The development model is based on a single machine 
with release times, sequence-dependent setup times and 
due dates problem can be formulated as a constraint 
programming problem as follows: 
Sets/Indexes. j, j’ : jobs to be sequenced. 
Parameters. processingTimesj  : processing time of the job j. 
releasetimej : release time of job j. duedatej: due date of job j. 
setupmatrixj,j’: changeover time between job j and job j’. 
Completion timej : completion of job j. 
Notation. Matrix elements are denoted as setupmatrixj,j’, 
where 

• j is the row index, for all jobs 

• j’ is the column index, for all jobs 

• setupmatrixj,j’  represents the setup time located in the 
j row and the j’ column 
Example : In the case of the number of jobs with 

value 5, the matrix is a 5x5 (5 rows, 5 columns), the 
element in the first row and third column is denoted as 
setupmatrix1,3  = S1. This means if job 3 is sequenced to 
follow job 1, the setup time value at this position is S1. 
It can be visualized as Fig. 2: 

 

    To j’ 

j setuptimej 
 From 

j 
1 2 3 4 5 

j1 S2  1 0 0 S1 S4 S3 

j2 S2  2 0 0 S1 S4 S3 

j3 S1  3 S2 S2 0 S4 S3 

j4 S4  4 S2 S2 S1 0 S3 

j5 S3  5 S2 S2 S1 S4 0 

 
Fig. 2. Example of Setupmatrixj,j’ 

 
Variables. processingTimesVarsj : interval variable that spans 
over all the processing times of job j. sequenceVarsj : 

sequence variable represents a sequencing of processing 
time interval variables associated with job j.  
 
Objective. The main objective of the proposed 
scheduling model is to minimize the makespan Cmax, (1) 
that is, the time of completion of the last job j. 

minimize max (endOf(Completion timej)) ∀j ∈ jobs   (1) 
 

 

Constraints. Constraint (2) the duration of each 
processing time depends on the job assigned to it. 
 

processingTimeVarsj = sizeOf(processingTimej) ∀j ∈ jobs 
(2) 

 
Constraint (3)  each job j cannot start to be processed 
before its release time.  

startOf(processingTimeVarsj) >= releasetimej ∀j ∈ jobs  (3) 

Constraint (4) avoids lateness of job j. 

endOf(processingTimeVarsj) - duedatej <= 0 ∀j ∈ jobs  (4) 
 

Constraint (5) possible values are all of the sequence of 
job j. 

sequenceVarsj = sequenceVar(processingTimeVarsj)  

          ∀j ∈ jobs  (5) 
 

Constraint (6) avoids overlapping the execution of jobs 
and simultaneously inserts the corresponding changeover 
time between consecutive jobs. All the job variables not 
overlap with each other which ensures the interval 
variables in the sequence do not overlap. 

noOverlap(sequenceVarsj,setupmatrixj,j’) ∀j ∈ jobs  (6) 
 

 
 
Table 2. Summary of input data. 

 
 

Number of 
jobs 

j 

Time 

duedatej 

dj 

releasetimej 

rj 

[LB,UB] 

setuptimej 

stj 

processingTimesj 

pj 

5 [D1,D2] 

[0,< duedatej dj] [S1,S2,S3,S4] 200 

10 [D1,D2,D3] 
15 [D1,D2,D3,D4] 
20 [D1,D2,D3,D4,D5] 
25 [D1,D2,D3,D4,D5,D6] 
30 [D1,D2,D3,D4,D5,D6,D7] 
35 [D1,D2,D3,D4,D5,D6,D7,D8] 
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Setup codes  S1  S2  S3  S4 Processing Times  

 
Fig. 3. The example schedule created by (1) the proposed scheduling model; (2) the baseline scheduling method, using 
the same input data. 
 

5. Numerical Experiments 
 

Experiments are conducted on instances derived from 
instances of a practical problem in alloy wheel production 
that motivated the research. The evaluation aims to 
highlight the difficulty of solving the problem and 
compare the performance of our proposed scheduling 
model with the baseline scheduling method is derived 
from the manufacturer's scheduling method based on 
common dispatching rules to generate a schedule as the 
earliest due date rule (EDD).  
 
5.1. Generating Input Data 
 

The jobs are the production of alloy wheels. There 
are 25-35 different jobs to produce in 4 different colors. 
Product variety and sequencing scheduling have a large 
impact on performance. The manufacturer gets orders in 
the form of a set of  n jobs, denoted by job j (j = 1,…,n) 
that fixed processing times pj on a single machine because 
of each job is produced in batches, with one pallet 
containing approximately 50 pieces of alloy wheel. The 
release times rj are given. Different jobs are ready to start 
at different release times on the different days. Note that 
the more dispersed the release jobs are, the more 
challenging the instances are. 

 
 shows a summary of input data that a list of jobs 

must be assigned due dates, release times, setup times, and 
processing times are generated randomly referred to as a 
scenario in the following. All jobs [5,10,15,20,25,30,35] 
with the same processing time equally. Error! Reference 
source not found. shows sample of a set of jobs due dates 
and release times were created. The due dates dj are 
generated randomly from integer uniform distribution 
within a range and then use that to make a choice from a 
set of due date. Estimate the shortest and longest possible 
durations within which jobs can be feasibly completed 
under the scenario of a tight due dates for demonstrating 
the impact of due dates constraints on a scheduling model.  

In a day consisting of 1,440 minutes, approximately 
5 to 7 jobs can be produced. The committed due date 
agreed upon with the customer is specified by the day. 
However, the due date for running a model is based on 
the range of times between the minimum time required 
before starting the processing of a job and the time 
required to complete each job varies depending on the 
number of jobs with values 5 – 35. The release times rj of 
the jobs were created within a range based on the nature 
of the job process time.  

The setup times stj are generated randomly from 
uniform distributions between 4 types [S1,S2,S3,S4]. For 
instance, the number of instances would require 
generating 1,000 different instances that can be solved 
when the constraint is not very strict for each number of 
jobs with uniform distribution.  

 
5.2. Comparison of Computational Time 
 

The complexity of the problem e.g., the number of 
jobs size, multiple constraints can greatly influence the 
computational time. Instances that are more difficult to 
solve lead to increased computational time. A sample of 
10 instances from each of the number of jobs with values 
5, 10, 15, 20, 25, 30, and 35 was selected to test the 
computational time of instance-solving with different time 
limits. 

To evaluate the proposed scheduling model when 
increasing CPU time limits.  

Table 3 shows the solution found by the proposed 
scheduling model with a CPU time limits of 10 seconds 
and 3,600 seconds. The table shows the average gap with 
bound for the different CPU time limits. In the case of 
optimality, gap with bound equal 0%. These figures 
suggest that reasonable quality solutions are found 
relatively quickly. Computational time results indicated 
that the CPU time limit 10 seconds performs equal to the 
CPU time limit 3,600 seconds with respect to the 
considered performance measures. It is clearly 
demonstrated that the number of jobs with values 5, 10, 
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15 can be optimally solved in the CPU time limit 10 
seconds. 

Interesting aspects were observed in the case of the 
number of jobs with value 20. When considering 
extending the time allocated for solving to find an optimal 
solution from 10 seconds to 3,600 seconds. The proposed 
scheduling model can find more optimal solutions on 
number of jobs with a value 20 when the solving time is 
extended. However, when dealing with larger number of 
jobs where the proposed scheduling model requires more 
than 3,600 seconds just to find a feasible solution.  

In comparison, Table 4 shows the gap between the 
size of jobs running with the proposed scheduling model 
and the time required to solve the optimal solution. 

As the number of jobs increases from 5 to 35, the 
solving time rises relatively with 0.0130 – 3,600 seconds. 
DOcplex.CP takes a long time to give the optimal 
solution. Therefore, DOcplex.CP could not show results 
immediately in a short time. 

The CPU time limit 10 seconds is allocated to solve 
the problem, with the expectation of being able to solve 
all the instances. 
 

Table 3. Summary of average gap with bound results by 
the proposed scheduling model of 10 instances for each 
number of jobs with increasing CPU time limits.  

Number of jobs 

Computational time 

10  
seconds 

 
3,600 seconds 

Avg. 
gap with bound 

(%) 
 

Avg. 
gap with 

bound (%) 

5 0.0000  0.0000 
10 0.0000  0.0000 
15 0.0000  0.0000 
20 0.0394  0.0000 
25 0.0319  0.0286 
30 0.0335  0.0332 
35 0.0255  0.0255 

 
Table 4. Summary of average computational time results 
of the proposed scheduling model of 10 instances for each 
number of jobs with no time limit.  

Number of 
jobs 

Avg.  
gap 
with 

bound 
(%) 

Avg.  
Computational  

time 
(seconds) 

5 0.0000 0.0130 

10 0.0000 0.0697 

15 0.0000 0.3068 

20 0.0000 282.6580 

25 0.0286 >3,600 

30 0.0332 >3,600 

35 0.0255 >3,600 

 
5.3. The Baseline Scheduling Method 

 
In the actual world, production schedulers are faced 

with the challenges of creating a reasonable schedule to 
deal with multiple constraints. 

 The manufacturer defines the baseline scheduling 
method steps are shown in   

Therefore, sorting setup time for all of the jobs 
included in the group of common due dates is sequence-
dependent. Eventually, assigning procedure is a sequence 
of job assignments to a single machine and considering the 
sequence-dependent setup time of the job sequence for 
minimizing total setup time.  

For more explanation of the baseline scheduling 
method, Error! Not a valid bookmark self-reference. 
shows the example schedule created by the baseline 
scheduling method. Example. Consider the baseline 
schedule in which the number of jobs = 10. The steps of 
the baseline scheduling method can be presented as 
follows: 

First, Generate a sequence of the job based on 
ascending order of due date (Earliest due date: EDD).  

For example, D1 :  The job is only J1 with the release 
times rj = 1,200, D2 : The set of jobs is [J2,J3,J4,J5,J6] with 
the release times rj = [1,390, 970, 1,150, 1,350, 1,810] and 
D3 : The set of jobs is [J7,J8,J9,J10] with the release times 
rj = [1,890, 2,180, 2,520, 2,550]. After sorting the set of 
unscheduled jobs in ascending order based on their due 
dates. J0 is the one job on the earliest due date of D1 

among all the jobs. So, the first job of the sequence is J0 
and the sequencing procedure on D1 is complete.  
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Table 5. The baseline scheduling method. 
 

Creating schedule by the baseline scheduling method 

1. Set of jobs =  a list of jobs sorted by ascending order of due date dj  based on earliest due date: EDD 
2. for  all job j in Set of jobs 
3.  for all job j in set of common due dates dj  

4.   Generate a sequence of the job based on ascending order of release time rj 
5.  endfor   
6. endfor    
7. for  all job j in Set of jobs 
8.  for all job j in set of common due dates dj 
9.   Add setup time of job j to set of setup time without duplicates 
10.   for Setup time in set of setup time 
11.    If   Setup time of job j = Setup time in set of setup time 
12.     Grouping job 
13.    endif  
14.   endfor   
15.  endfor    
16. endfor     

 
 

Then, sort the next set of unscheduled jobs on D2 by 
release times in ascending order. A sequence of jobs on 
D2 is [J3,J4,J5,J2,J6]. Afterward, consider the setup time 
depends on  the sequence of jobs on D2 by setup codes 
that operations with the same white color belong to the 
job.  

. 
 First, sequencing procedure is referred to as priority 

rules for sequencing or dispatching jobs to a single 
machine. The manufacturer often only needs to decide the 
scheduling of jobs when making production plans, 
ignoring the impact of many factors on production. They 
are assigned the smallest due dates in the earliest due date 
rule (EDD) order. The earliest due date rule (EDD) is 
widely used as a heuristic approach for production 
schedules because of its simplicity. However, this 
approach has the limitation that the rules with the best 
performance differ according to the shop conditions [33]. 
EDD orders the jobs in the order of increasing due dates 
for single-machine scheduling problems. So, a job that is 
due first is started used when companies are sensitive to 
due date changes. Then, sorting procedure is sorting 
release time jobs on a common due date by ascending. 
Jobs are arranged from lowest to highest release time. 
Subsequently, the time required to perform a setup activity 
is called setup time. If the required time for the setup 

activities can change according to the processing sequence 
of jobs, setup times become sequence-dependent [34].  

Therefore, sorting setup time for all of the jobs 
included in the group of common due dates is sequence-
dependent. Eventually, assigning procedure is a sequence 
of job assignments to a single machine and considering the 
sequence-dependent setup time of the job sequence for 
minimizing total setup time.  

For more explanation of the baseline scheduling 
method, Error! Not a valid bookmark self-reference. 
shows the example schedule created by the baseline 
scheduling method. Example. Consider the baseline 
schedule in which the number of jobs = 10. The steps of 
the baseline scheduling method can be presented as 
follows: 

First, Generate a sequence of the job based on 
ascending order of due date (Earliest due date: EDD).  

For example, D1 :  The job is only J1 with the release 
times rj = 1,200, D2 : The set of jobs is [J2,J3,J4,J5,J6] with 
the release times rj = [1,390, 970, 1,150, 1,350, 1,810] and 
D3 : The set of jobs is [J7,J8,J9,J10] with the release times 
rj = [1,890, 2,180, 2,520, 2,550]. After sorting the set of 
unscheduled jobs in ascending order based on their due 
dates. J0 is the one job on the earliest due date of D1 

among all the jobs. So, the first job of the sequence is J0 
and the sequencing procedure on D1 is complete.  
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Table 5. The baseline scheduling method. 
 

Creating schedule by the baseline scheduling method 

1. Set of jobs =  a list of jobs sorted by ascending order of due date dj  based on earliest due date: EDD 
2. for  all job j in Set of jobs 
3.  for all job j in set of common due dates dj  

4.   Generate a sequence of the job based on ascending order of release time rj 
5.  endfor   
6. endfor    
7. for  all job j in Set of jobs 
8.  for all job j in set of common due dates dj 
9.   Add setup time of job j to set of setup time without duplicates 
10.   for Setup time in set of setup time 
11.    If   Setup time of job j = Setup time in set of setup time 
12.     Grouping job 
13.    endif  
14.   endfor   
15.  endfor    
16. endfor     

 
 

Then, sort the next set of unscheduled jobs on D2 by 
release times in ascending order. A sequence of jobs on 
D2 is [J3,J4,J5,J2,J6]. Afterward, consider the setup time 
depends on  the sequence of jobs on D2 by setup codes 
that operations with the same white color belong to the 
job.  

While setup time is represented in various colors : 
[yellow, orange, blue, yellow, yellow] then set of setup time 
without duplicates : [yellow, orange, blue]. Next, grouping 
jobs in order of set of setup time without duplicates. So, 
the sequence of jobs on D2 is [J3,J2,J6,J4,J5] with the 
sequence of setup codes : [yellow, yellow, yellow, orange, 
blue].  

The step was repeated for a sequence of jobs on D3 
in the same way as on D2. The whole job is scheduled to 
be completed by the baseline scheduling method. 
 
5.4. Computational Experiment Results 

 
In this section, the quality of the proposed scheduling 

model was tested with a CPU time limit of 10 seconds 
allocated on randomly generated instances by comparing 
the scheduling solution with the baseline scheduling 
method. A set of 1,000 different instances with a larger 
number of jobs is considered to show the potential of the 
scheduling model. 

A comparison of results shows the performance of 
the proposed scheduling model and the baseline 
scheduling method in the same instances.  

Due to the difference in the instance sizes,  

Table 6 shows that the baseline scheduling method is 
not capable of solving all instances; it can solve some 
instances but not all. The more it decreases when the 
number of jobs increases. While the proposed scheduling 
model is capable of solving numerous instances, with its 
efficiency gradually decreasing as the number of jobs 
increases.  

A comparison of results shows a greater number of 
solved instances in the proposed scheduling model than 
the baseline scheduling method (more unsolved problems 
in the baseline scheduling method). 

Table 6. Number of solved instances.  

Number of 
jobs 

Number of  solved instances 

The baseline 
scheduling  

method 

 The proposed 
scheduling 

model 

5 990  1,000 
10 691  869 
15 466  731 
20 412  705 
25 380  665 
30 359  633 
35 318  626 

 

Fig. 4 shows the possible results on the types of 
solutions include optimal solutions, feasible solutions, and 
no solutions. The proposed scheduling model is capable 
of solving a greater number of optimal solutions 
compared to the baseline scheduling method.  

Besides, The proposed scheduling model finds 
solutions that are not only feasible but also best solutions 
in terms of the objective.  

For every instances that model tries to solve. When 
focusing exclusively on solutions found. The baseline 
scheduling method finds the optimal solution with a lower 
percentage average than the proposed scheduling model. 
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Table 7. %Optimal solution found by the baseline scheduling method. 

 

Table 8. %Optimal solution found by the proposed scheduling model. 
 

  The baseline scheduling method 

  Number of solutions found 
%Optimal solution 

found Number of jobs 
Total  

number  of solutions found 
Optimal solutions 

Feasible 
solutions 

No solutions 

5 1,000 648 342 10 64.80% 

10 869 330 361 309 37.97% 

15 731 106 360 534 14.50% 

20 705 67 345 588 9.50% 

25 665 44 336 620 6.62% 

30 633 50 309 641 7.90% 

35 626 31 287 682 4.95% 

  The proposed scheduling model 

  Number of solutions found 

%Optimal solution found 
Number of jobs 

Total  
number  of solutions found 

Optimal solutions 
Best 

solutions 
No solutions 

5 1,000 1,000 - - 100% 

10 869 869 - 131 100% 

15 731 731 - 269 100% 

20 705 547 158 295 77.59% 

25 665 310 355 335 46.62% 

30 633 256 377 367 40.44% 

35 626 285 341 374 45.53% 
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   Optimal solutions         Optimal solutions 
 Feasible solutions       Best solutions 
 No solutions       No solutions 

 
Fig. 4. Comparison of solutions found by (1) the baseline scheduling method compared with; (2) the proposed 
scheduling model. 
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Fig. 5. Sample results in gantt diagram of (1) the proposed scheduling model compared with; (2) the baseline scheduling 
method. 
 
 

Table 7 and Table 8 shows that the baseline 
scheduling method has a percentage average in finding the 
optimal solution in the number of jobs with values 5, 10, 
15, 20, 25, 30 and 35 are  64.80%, 37.97%, 14.50%, 9.50%, 
6.62%, 7.90% and 4.95% compare with a percentage 
average in finding the optimal solution by the proposed 
scheduling model in the number of jobs with values  
5,10,15,20,25,30 and 35 are 100%, 100%, 100%, 77.59%, 
46.62%, 40.44%, 45.53%. 

The classification of problems into small-size 
instances and large-size instances depends on %Optimal 
solution found. The proposed scheduling model is able to 
find optimal solutions with 100 percentage average for the 
number of jobs with values  5,10, and 15 , it implies that 
these are considered small-size instances.  Therefore, the 
number of jobs with values 20,25,30 and 35 are classified 
as large-size instances implying that the proposed 
scheduling model includes a greater number of decision 
variables and constraints. The experiments conducted for 
the small and larger number of job size instances are 
presented in 5.4.1 and  5.4.2.  
 
5.4.1. Experiments with small-size instances 
 

Three different values for a number of jobs with 
values 5, 10, and 15 were considered for small-size 
instances. Fig. 5 presents the same data but with a 
switched methodology to schedule to highlight the better 
performance of makespan. When jobs are available for 
processing at different release times. The proposed 
scheduling model uses the constraint programming (CP) 
to solve instances by taking constraints as input and then 
searching for solutions involves satisfying all the 
constraints simultaneously. In contrast, the baseline 
method is designed to solve a problem sequentially, 
following the steps of the procedure that focuses on due 

date constraint first to avoid delays that cause several 
complications afterward and considers other constraints 
after an arrangement of due date.  

The baseline scheduling method prioritizes jobs 
based on their due dates. Jobs with the earliest due dates 
are scheduled first. If jobs are not available on time, a 
decision in the baseline scheduling method has to wait for 
jobs to be released. Compared with the proposed 
scheduling model, sequencing jobs based on their due 
dates might not be necessary. When jobs are available on 
time, If sequencing of jobs does not lead to delays in the 
completion of other jobs, then it will be sequenced.  

This is the reason why its results for the proposed 
scheduling model are better than the baseline scheduling 
method. 

Experiment results show that the solution found by 
the proposed scheduling model. There are three categories 
of an average improvement in makespan. 

1. The proposed scheduling model is capable of 
finding a solution for a number of jobs with values 5, 10, 
and 15 with 10, 178, 265 instances, whereas the baseline 
scheduling method lacks this ability.  

2. The proposed scheduling model outperforms the 
baseline scheduling method in finding the optimal 
solutions. Due to the difference in instance sizes, the 
values of makespan vary wildly between instances. 
Therefore, experimental tests are executed to compare the 
values of makespan. Since the 5,10 and 15-job instances 
of the proposed scheduling model are all solved to 
optimality in a short time. An improvement of the 
makespan measured are 3.4555%, 3.0731%, and 4.8826% 
are shown in Table 9 .  

3. The proposed scheduling model and the baseline 
scheduling method find solutions of equal value of 
makespan for a number of jobs with values 5, 10, and 15 
with 648, 330, 106 instances. This result indicates that the 
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baseline scheduling method has the potential to be 
compared to the proposed scheduling model. 

Table 9 clearly shows that the proposed scheduling 
model outperformed the baseline scheduling method. 
Improvement results indicated that the proposed 
scheduling model performs better than the baseline 
scheduling method with respect to the considered 
performance measures. 
 
Table 9. Summary of average results for optimal solutions 
solved by the proposed scheduling model on small-size 
instances compared with the baseline scheduling method. 

Number  
of  

jobs 

Total 
number  

of 
optimal  

solutions 

Number  
of 

optimal  
solutions 

Improve-ment  
of average 
makespan 

5 1,000 342 3.4555% 

10 869 361 3.0731% 

15 731 360 4.8826% 

 
Furthermore, an appealing aspect to consider is setup 

time are visualized in Fig. 5. The setup time occurs when 
jobs are processed and a setup of a time precedes the 
processing of jobs. It is sequence-dependent if its duration 
depends on the jobs of both the current and the 
immediately preceding jobs, and is sequence-independent 
if its duration depends solely on the current jobs to be 
processed. No job processing is possible on a machine 
while a setup is being performed on the machine. If the 
sequence of the jobs are the same setup time. All the jobs 
of the same setup time become available for processing 
and leave the machine together. Start time of the first job 
is scheduled by the scheduling model starts before start 
time of the first job is scheduled by the baseline schedule 
method and fewer changeover times after that at the end 
of the job sequencing gives a smaller sum of completion 
time. Sequence of jobs may lead to events that some jobs 
delay. If a job is delivered after the due date, customer 
dissatisfaction might lead to a penalty for the company and 
the possibility of reputational damage [14].  

The proposed scheduling model has the ability to 
reduce the total setup time. Fig. 5 shows the fact that there 
are tremendous savings when setup times are explicitly 
incorporated in scheduling decisions in the manufacturing 
environment. The benefits of the proposed scheduling 
model involving combine setup times. The setup time 
between jobs involves the changing of colors, which 
indicates the significance of setup times.  

Appropriate sequencing of the proposed scheduling 
model leads to a potential for savings in setups from 
maximum  10 time-setup to 5 time-setup. The complete 
schedule determined by the proposed scheduling model 
resulted in a smaller makespan than the makespan 
determined by the baseline scheduling method. The 
proposed scheduling model provides a better solution to 
sequence jobs when facing several constraints. 

In conclusion, Table 10 clearly demonstrates the 
effectiveness of the proposed scheduling model in 
reducing the total setup time for the number of jobs with 
values 5, 10 and 15. The total setup time has been 
decreased by 6.4419%, 26.0663% and 45.7924%.  
Summary of average total setup time improvement results 
for optimal solutions solved by the proposed scheduling 
model on small-size instances compared with the baseline 
scheduling method  

Table 10. Summary of average total setup time 
improvement results for optimal solutions solved by the 
proposed scheduling model on small-size instances 
compared with the baseline scheduling method. 

Number  
of  

jobs 

Total number  
of  

optimal solutions 

Improvements of 
average total setup 

time 

5 1,000 6.4419% 

10 869 26.0663% 

15 731 45.7924% 

 
5.4.2. Experiments with larger number of jobs instances 

 
Four different values for number of jobs with values 

20, 25, 30 and 35 were considered for a larger number of 
jobs instances. In the 1,000 different larger number of jobs 
instances, the proposed scheduling model could not prove 
the optimality of all instances in a short time. Considering 
the scheduling model, testing shows that the proposed 
scheduling model using CP model is not very usable for 
larger instances. 

Therefore, a time limitation has been set for solving. 
A time limitation was imposed 10 seconds. However, the 
proposed scheduling model outperformed the baseline 
scheduling method.  

These experiments conclude that the proposed 
scheduling model offers a very good quality solution 
despite a time limitation. 

Experiments show that the solution found by the 
proposed scheduling model. There are three categories of 
an average improvement in makespan. 

1. The proposed scheduling model is capable of 
finding a solution for a number of jobs with values 20, 25, 
30 and 35 with 250, 151, 107, 143 instances, whereas the 
baseline scheduling method lacks this ability.  

2. The proposed scheduling model outperforms the 
baseline scheduling method in finding the optimal 
solutions. Due to the difference in instance sizes, the 
values of makespan vary wildly between instances. 
Therefore, experimental tests are executed to compare the 
values of makespan. Since the 20,25,30 and 35-job 
instances of the proposed scheduling model are all solved 
to optimality in a short time. An improvement of the 
makespan measured are 6.5654%, 7.4891%, 6.9290% and 
7.2210% are shown in Table 11. 

3. The proposed scheduling model and the baseline 
scheduling method find solutions of equal value of 
makespan for a number of jobs with values 20, 25, 30 and 
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35 with 67, 44, 50, 31 instances. This result indicates that 
the baseline scheduling method has the potential to be 
compared to the proposed scheduling model. 
 
Table 11. Summary of average results for optimal 
solutions solved by the proposed  scheduling model on 
larger number of jobs instances compared with the 
baseline scheduling method 
 

Number  
of  

jobs 

Total  
number  

of optimal  
solutions 

Number  
of 

optimal  
solutions 

Improve-ment  
of average 
makespan 

20 547 230 6.5654% 

25 310 115 7.4891% 

30 256 99 6.9290% 

35 285 111 7.2210% 

 
A common scenario in manufacturing, where the 

setup time increases with the number of jobs. Multiple 
jobs, Different types require different setup time, Between 
these jobs, changeover must be altered. The more job 
changes there are, the more cumulative setup time will 
accrue. 

In conclusion, Table 12 clearly demonstrates the 
effectiveness of the proposed scheduling model in 
reducing the total setup time for the number of jobs with 
values 20, 25, 30 and 35. The total setup time has been 
decreased by 54.1047%, 53.4973%, 46.6404%, 55.4033%. 
 
Table 12. Summary of average total setup time 
improvement results for optimal solutions solved by the 
proposed scheduling model on larger number of jobs 
instances compared with the baseline scheduling method 
 

Number  
of  

jobs 

Total  
number  

of optimal  
solutions 

Improvement of 
average total setup 

time 

20 547 54.1047% 

25 310 53.4973% 

30 256 46.6404% 

35 285 55.4033% 

 

6. Conclusion and Future Work 
 
This paper focused on developing the scheduling 

model for sequencing a set of jobs with different release 
times in a single machine that minimizes the makespan to 
meet different due dates and to reduce setup time where 
setup times are sequence-dependent. In conclusion, The 
proposed scheduling model is effective, relevant, and can 
be used for the problem with better efficiency than the 
baseline scheduling method. This paper's most significant 
contribution is applying the proposed model to real-world 
production scenarios. Initially, the proposed scheduling 
model using constraint programming was proposed to 

optimally solve the problem. The benefit of using the 
proposed scheduling model is significant as it can generate 
optimal solution on small-size instances and best solutions 
on a larger number of jobs instances. However, the 
constraint programming model is suitable only for specific 
instance sizes. On a larger number of jobs instances can 
provide the best solutions but computation time increases 
when the number of jobs increases. The constraint 
programming alone could not handle large-sized instances 
and improved slower, but it guarantees improvement until 
an optimal solution is found. When dealing with large-
sized instances, It's important to noticed that there is 
usually a trade-off between solution accuracy and 
computation time. Depending on the proposed 
scheduling model, it might be more beneficial to get a 
near-optimal solution quickly than to spend a significantly 
longer time aiming for the optimal solutions. Future 
studies will focus on the development of heuristics to deal 
with the considered problem to find accurate solutions 
more quickly. Furthermore, the solution approach is fast 
enough to be used in practical scenarios where larger 
instances must be solved within a few minutes and can 
easily be adapted to be used for different scenarios.  
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