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Abstract. This study focuses on developing a scheduling model for sequencing a set of jobs
with different release times in a single machine to meet non-similar due dates as well as to
reduce total sequence-dependent setup time. A constraint programming (CP) model is
proposed to solve the scheduling problem by minimizing makespan under multiple
constraints, namely release times, sequence-dependent setup time, and due dates. The
proposed constraint programming model is tested and compared with the baseline method
derived from as-is scheduling of alloy wheels manufactures. The computational experiments
show the proposed constraint programming model outperforms the baseline method in the
average improvement in makespan and total setup time. For small-size problems, the
proposed scheduling model were optimally solved in a short time, achieving the best average
improvement in makespan of 4.8826% and the best average improvement in total setup
time of 45.7924%. Despite increasing problem sizes, the proposed scheduling model's
computational time deteriorates but continues to provide the best solutions, achieving the
best average improvement in makespan of 7.4891% and the best average improvement in
total setup time of 55.4033%.
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1. Introduction

Production scheduling is a decision-making process at
the operation level [1] that plays an important role in the
context of manufacturing and production systems refers
to the process of allocating limited manufacturing
resources such as machines, to tasks or jobs [3] to specific
time periods to accomplish a set of manufacturing
processes in the plan to achieve certain objectives. It aims
to deal with resource utilization and timespan of the
manufacturing operations [4].

Scheduling is the most important function of
production planning and control activity in manufacturing
and engineering. This refers to the process of determining
the timing of an operation, that is, The process of
determining the starting and completion times for the
variety of jobs to be executed on the machine to meet the
desired delivery dates. The effect of scheduling decisions
has a significant impact on the productivity of a process.
By determining what to make, when to make, and in what
quantities, production scheduling aims to maximize
operational efficiency [5].

Real-world manufacturing environments are typically
complex systems that feature various constraints and
characteristics that correspond to fairly specific settings
found in related companies. The existing varieties of
manufactured products and numerous factors, such as
processing times, setup times, precedence relations among
jobs, due dates, etc., make scheduling a complex issue. The
best possible way for manufacturing companies to remain
competitive is through appropriate order sequencing [6].

The problem under consideration corresponds to a
real problem in an alloy wheel manufacturing company in
the automotive industry. Alloy wheels have a wide variety
of models that include sizes ranging from 12 to 24 inches,
unique patterns and 4 color variations of light color tones,
medium color tones, dark color tones and black colot.
Each model is considered an individual job to be
processed. Usually, multiple jobs are being produced
simultaneously, with the primary production processes
consist of casting, machining, and painting. In the casting
and machining processes, there are many identical parallel
machines in operation, each identical parallel machine is
capable of producing one job at a time. The vatiety of
different jobs that are manufactured on the same time.
The casting and machining process releases jobs of various
sizes and patterns that are unique but it is possible that
several jobs will be the same color in painting process.
Therefore, multiple jobs are released to painting process
at several times. Each job can start to be processed after
its release time. Jobs are the same color can be sequenced
by grouping jobs to reduce the setup time because of a
setup time is necessary whenever there is a switch from
processing a job in one type of setup to another. Jobs have
sequence-dependent setup times; they require setup times
that are dependent on the sequence in which they are
processed.

The sequencing method affects the scheduling
performance through the dispatching rules. Some

dispatching rules may result in a higher makespan, lead to
late delivery and cause high setup time.

This study aims to answer the questions of single
machine scheduling problem with constraints that are
frequently encountered in actual practice. The majority of
contributions to proposing a model involve sequencing
jobs with different release times to meet different due
dates and reduce setup time where setup times are
sequence-dependent. Many choice situations involve
several constraints. Determining a solution that satisfies all
constraints simultaneously can be challenging when some
constraints pull the solution in opposite directions. The
difficulty is to develop a model used for sequencing that
can handle several constraints. The improvement in
makespan is used to measure the effectiveness of the
scheduling model, which shows the gap between the
objective values of the schedules found by the scheduling
model (the optimal schedule) and the baseline scheduling
method (the manufacturer schedule).

The rest of the paper in the next section is organized
as follows. Section 2 presents a literature review. Section 3
analyzes the case problem with the baseline scheduling
method. In section 4, a constraint programming model for
makespan minimization in single machine scheduling with
release times, sequence-dependent setup times and due
dates are developed. In section 5, a difference in instance
sizes experiments and result analysis are conducted, and
the last section concludes the paper and considers future
works.

2. Literature Review

Single machine scheduling problem is one type of the
most important problems in production. It is the basic
building block to develop more comprehensive scheduling
models [7].

Single machine scheduling problems have received a
significant amount of attention in the literature. Using two
methods to solve a single machine sequencing problem:
exact and heuristic [6]. Various approaches are employed
in the single machine scheduling problem depends on
different factors. The present research study is interested
in a problem with minimizing makespan in the objective
function. Thus, the limitation of the review is previous
papers with minimized makespan objectives or previous
papers with constraints are relevant to the current
research.

2.1. Single Machine Problems with Release Times

Many scheduling problems consider that the jobs are
available at time zero or the beginning of the time horizon,
thus ignoring any job release time. However, release times
are also very common in real-world manufacturing
scenarios [8]. They present a heuristic and a metaheuristic
algorithm for solving the challenging single-machine
scheduling problem with release dates and sequence-
dependent setup times to minimize the makespan. For
small-scale instances [9] proposed an effective branch and
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bound (B&B) algorithm integrated with an elaborately
designed pruning rule and a lower bound is developed to
achieve exact solutions for minimizing the sum of
makespan on multi-agent single-machine scheduling with
release dates. In the literature, there is increasing attention
to addressing the beginning of the time horizon is not
zero. Several of the research papers define release times as
release dates. Therefore, a job cannot be processed before
the release date, and those jobs are sequenced in the order
of their release dates.

2.2. Single Machine Problems with Sequence-
Dependent Setup Times

One of the most immediate consequences of a
changeover is the interruption of production. The time
allocated to adjusting settings is time that is not used for
the production of products. Production scheduling must
prioritize reducing unnecessary changeover from period
to period [10]. Traditionally, most papers solve this
scheduling problem without considering setup times or
including them in the processing times of the jobs, which
is valid only when the setup times are sequence-
independent. Despite, sequence-dependent setup times
are very common in scheduling problems involving the
real-world manufacturing systems (Fernandez-Viagas &
Costa, 2021) as e.g. painting process. The previous and
current jobs in the sequence belong to different setup
times and changing the positions of each job requires a
setup time. The purpose is to perform a scheduling with
the lowest setup time sum. According to [11], the
development of a single machine scheduling problem
where the jobs to be processed arrive the production
process with release times and the setup times are
sequence-dependent to obtain a sequence with minimum
makespan.

2.3. Single Machine Problems with Due Dates

Different performance measures have been studied.
Several production control systems are used to meet
customer demands and needs (C. Silva et al., 2017). Single
machine scheduling for make-to-order (MTO) must
address the company’s need for short delivery times and
on-time deliveries. Since meeting the due dates is
important in a competitive environment, due date related
performance measures are gaining importance [12]. The
most popular due date assignment policy is to assign all
jobs a common due date [13]. In the majority of cases, it
is widely accepted to make the assumption that the
assigned due date are not limited or constrained. However,
in several practical cases, setting due dates too far into the
future may violate eatrly agreements between the
manufacturer and customers [14]. The value of the due
date in the relation to the problem data strongly impacts
the accuracy of algorithms formulated for a problem type
[15].

In all of the aforementioned research, manufacturing
scheduling constraints are considered separately. To
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achieve better results, Integrated decision-making requires
considering all production stages simultaneously [10].
Rosyidi et al. developed an integrated optimization model
with the objective of maximizing total profit while
considering several constraints of a large steel
manufacturing company. The company manufactures a
wide variety of steel products to fulfill a certain number of
demand. Manufacturers increasingly require
customization of their products to meet customer
demands and distinguish from competition [17], which
causes the production complexity. Because the production
complexity is higher, it leads to greater diversity in the
choice of job sequencing. It causes a delay in delivery. Itis
challenging to optimize a real-world problem that involves
a large number of jobs. Choosing an appropriate
optimization method can be challenging when dealing
with a multi-constrained optimization problem [18]. Liu et
al proposed an appropriate optimization method that can
assist users in setting up the system scale more reasonably
and reducing the system's disadvantages. It is evident that
there are no simple principles for optimizing the
production schedule based on different performance
indicators [19].

In conclusion, Table 1 shows the related works are
mainly focused on some aspects, which, as said above, are
not considered in several constraints simultaneously that
make the scheduling model more complex and challenging
to solve with the objective is to minimize the makespan.
The problem has not received much attention in the recent
literature. Consequently, the literature motivated us to
develop the scheduling model with the aim of producing
solutions that are improved with excellent results for
several constraints with the objective is to minimize the
makespan. This work develops a scheduling model for
sequencing different jobs with different release times in a
single machine that minimizes the makespan to meet
different due dates and to reduce setup time where setup
times are sequence-dependent. It considers single machine
scheduling using constraint programming to calibrate
several constraints and then running an experiment, which
allows analyzing the effect of several constraints on the
performance of the scheduling model. Accordingly,
considering several constraints make the problem realistic
and more challenging from a modeling point of view.
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Table 1. The primary characteristics of the models considered in the reviewed papers and in this research
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3. Problem Statement

The problem under consideration cotresponds to a
real problem of an alloy wheel manufacturing company for
the automotive industry. The manufacturing company
starts the manufacturing process only after receiving
orders from customers. The manufacturing company
needs to guarantee a committed delivery due date for each
job order, meaning that the customer of the job order
must receive the products on or before this date. After the
job orders are received, the manufacturer must determine
which ones are to be sequenced. The current production
time for the desired run is continuous. Continuous
production means operating 24 hours per day, 7 days per
week due to the aluminum melting furnace melting
continuously for 24 hours. The jobs are the production of
alloy wheels. There are 25-35 different jobs to produce per
weeks in 4 different colors. Alloy wheel production
involves several steps to create high-quality wheels. This
study focus on the main process of a painting process are
washing, powder spraying, paint spraying and clear
powder spraying by simplify a long production line to a
single machine as visualized in Fig. 1 for reducing a
complex manufacturing process that involves multiple
steps into a single machine [28]. This simplification can
lead to easier planning.

Painting process

Job out

Jobin ]

—~ ! Clear

{ N - Powder | _ Paint _ ear H

{ | | Washing o > i powder

N 1 SP] .l.\ I|]g ﬂl‘.v('.fl} lllg 51)[:‘}'111g :
i |

—3
]
.
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‘ Job out
:: \’ ’ : ‘

Fig. 1. Simplify a painting process line production to a
single machine.

The problem statement is described as follows: This
study has focused on the scheduling model aiming to find
a desired schedule with the best system performance
under the assumption that model parameters are known
and deterministic. Consider a sequencing problem that has
a set of 7 jobs, Each job j (7 = 1,...,n) has a known fixed
processing time p. The complexity of the problem
consideration illustrates by an example of a production
scheduling challenge tackled by an existing company. This
company produces products of different sizes, patterns
and colors. Thus, the setup time of job ; on the single
machine is sequence-dependent setup time. During a
setup time no processing of jobs is possible, i.e.) non-
preemptive jobs. A set of jobs is processed in several
production stages, but this work focuses on one stage that
the jobs must be arranged in a sequence before assigning
them to a single machine. Therefore, the release time of
job r;is the completion time (j of the previous stage, job /
cannot be processed before its release time. A different
due date 4; is predefined. The objective of the scheduling
model is to minimize the makespan while respecting the
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constraints : release time, sequence-dependent setup time
and due date constraints. The scheduling model must be
applied to determine good solutions to minimize
makespan. A common, and quite popular, measure of the
performance of any scheduling procedure, since it
combines the desire to secure high utilization of the
production resources, together with the desire to ensure
early satisfaction of customer demand [29)].

4. Constraint Programming Model

In recent decades, industrial engineering focus on the
development and implementation of production
manufacturing scheduling systems. The focus mentioned
arises due to the incorporation of automation in the
planning process. Recent technological advances in
computer software and hardware allow for reducing the
computational time to find near-optimal solutions to
complex problem. The proposed modeling approach
solved the scheduling problem for many variables as well
as all constraints in a short time period.

Constraint Programming is a recent powerful
programming paradigm with a great impact on several
important areas such as combinatorial optimization
problems, especially for complex problems that cannot be
modeled easily [30]. It is a highly effective and easy-to-use
technology for solving scheduling problems that has
shown its capability and efficiency [31].

This work presents a constraint programming (CP)
model for makespan minimization in a single machine
scheduling with release times, sequence-dependent setup
times and due dates. For finding the optimal solution, the
proposed modeling approach solved the scheduling
problem for many variables as well as all constraints in a
short time period.

This facilitates the manufacturer to minimize the
makespan of the manufacturing phase while considering
the actual constraints on the overall production planning.
Assignment, timing and sequencing decisions are derived
from the CP model.

The main modeling expression used is interval
variable. It represents an interval of time during which an
activity is executed, with its required reserved time in the
schedule. Interval variables indicate the job operation to
be processed on machine, with a start, duration, and end
time. Start time is denoted by sz27/Of and completion time
by endOf. While 5izeOf is given by the problem instance
represents the processing time of the job. star?Of and endOf
are determined by the CP solver [32].

This model was developed using IBM Decision
Optimization CPLEX Modeling for Python, also known
as DOcplex supported by the IBM ILOG CPLEX 12.10
optimization studio environment and solved using the CP
solver and run on Intel® Core™ i5-4278U CPU @
2.60GHz running Windows 10.
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The development model is based on a single machine
with release times, sequence-dependent setup times and
due dates problem can be formulated as a constraint
programming problem as follows:

Sets/Indexes. /, /’: jobs to be sequenced.
Parameters. processinglimes; : processing time of the job /.
releasetime;: release time of job /. duedate: due date of job j.
setupmatrix;;: changeover time between job ; and job /.
Completion time; : completion of job J.
Notation. Matrix elements are denoted as setupmatrix;,
where
e jis the row index, for all jobs
e /’is the column index, for all jobs
o setupmatrix;y represents the setup time located in the
Jjrow and the ;/’ column
Example : In the case of the number of jobs with
value 5, the matrix is a 5x5 (5 rows, 5 columns), the
element in the first row and third column is denoted as
setupmatrixc;s = S1. This means if job 3 is sequenced to
follow job 1, the setup time value at this position is S1.
It can be visualized as Fig. 2:

-

Toj

From

] setuptine 1 2 3 4 5

J1 S2 1 0 0 81 S4 S3
J2 S2 2 0 0 S1 S4 S3
J3 S1 3 S2 S22 0 S4 S3
J4 S4 4 §2 82 S1 0 S3
y2 S3 5 S2 §2 S1 §4 O

Fig. 2. Example of Setupmatrix;

Variables. processinglimesV ars;: interval variable that spans
over all the processing times of job j. sequencel ars; :

Table 2. Summary of input data.

sequence variable represents a sequencing of processing
time interval variables associated with job j.

Objective. The main objective of the proposed
scheduling model is to minimize the makespan Cya, (1)
that is, the time of completion of the last job /.

minimize max (endOf(Completion timey)) Vj € jobs (1)

Constraints. Constraint (2) the duration of each
processing time depends on the job assigned to it.

processingLimel ars; = sizeOf{processingTime;) Vi € jobs
@

Constraint (3) each job j cannot start to be processed
before its release time.

startOf{processing Limel ars;) >= releasetime; Vj € jobs (3)
Constraint (4) avoids lateness of job /.

endOf{processingLimel/ ars)) - duedatey <= 0 Vj € jobs (4)

Constraint (5) possible values are all of the sequence of

job j.

sequencel’ars; = sequencel” ar(processing Limel ars))
Vi € jobs (5)

Constraint (6) avoids ovetlapping the execution of jobs
and simultaneously inserts the corresponding changeover
time between consecutive jobs. All the job variables not
overlap with each other which ensures the interval
variables in the sequence do not overlap.

noOverlap (sequencel ars; setupmatrix;;) VJ € jobs (6)

Time
Number of ; p - -
jobs duedate; releasetime; setuptime; processing Times;
j d; L st Pi
[LB,UB]
5 [D1,D2]
10 [D1,D2,D3]
15 [D1,D2,D3,D4]
20 [D1,D2,D3,D4,D5] [0,< duedate; d [S1,52,583,54] 200
25 [D1,D2,D3,D4,D5,D6]
30 [D1,D2,D3,D4,D5,D6,D7]
35 [D1,D2,D3,D4,D5,D6,D7,D§]
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Fig. 3. The example schedule created by (1) the proposed scheduling model; (2) the baseline scheduling method, using

the same input data.
5. Numerical Experiments

Experiments are conducted on instances derived from
instances of a practical problem in alloy wheel production
that motivated the research. The evaluation aims to
highlight the difficulty of solving the problem and
compare the performance of our proposed scheduling
model with the baseline scheduling method is derived
from the manufacturer's scheduling method based on
common dispatching rules to generate a schedule as the
eatliest due date rule (EDD).

5.1. Generating Input Data

The jobs are the production of alloy wheels. There
are 25-35 different jobs to produce in 4 different colots.
Product variety and sequencing scheduling have a large
impact on performance. The manufacturer gets orders in
the form of a set of # jobs, denoted by job j (j = 1,...,n)
that fixed processing times p; on a single machine because
of each job is produced in batches, with one pallet
containing approximately 50 pieces of alloy wheel. The
release times 7; are given. Different jobs are ready to start
at different release times on the different days. Note that
the more dispersed the release jobs are, the more
challenging the instances are.

shows a summary of input data that a list of jobs
must be assigned due dates, release times, setup times, and
processing times are generated randomly referred to as a
scenario in the following. All jobs [5,10,15,20,25,30,35]
with the same processing time equally. Error! Reference
source not found. shows sample of a set of jobs due dates
and release times were created. The due dates 4 are
generated randomly from integer uniform distribution
within a range and then use that to make a choice from a
set of due date. Estimate the shortest and longest possible
durations within which jobs can be feasibly completed
under the scenario of a tight due dates for demonstrating
the impact of due dates constraints on a scheduling model.

In a day consisting of 1,440 minutes, approximately
5 to 7 jobs can be produced. The committed due date
agreed upon with the customer is specified by the day.
However, the due date for running a model is based on
the range of times between the minimum time required
before starting the processing of a job and the time
required to complete each job varies depending on the
number of jobs with values 5 — 35. The release times 7;0f
the jobs were created within a range based on the nature
of the job process time.

The setup times s% are generated randomly from
uniform distributions between 4 types [S1,52,83,54]. For
instance, the number of instances would require
generating 1,000 different instances that can be solved
when the constraint is not very strict for each number of
jobs with uniform distribution.

5.2. Comparison of Computational Time

The complexity of the problem e.g., the number of
jobs size, multiple constraints can greatly influence the
computational time. Instances that are more difficult to
solve lead to increased computational time. A sample of
10 instances from each of the number of jobs with values
5, 10, 15, 20, 25, 30, and 35 was selected to test the
computational time of instance-solving with different time
limits.

To evaluate the proposed scheduling model when
increasing CPU time limits.

Table 3 shows the solution found by the proposed
scheduling model with a CPU time limits of 10 seconds
and 3,600 seconds. The table shows the average gap with
bound for the different CPU time limits. In the case of
optimality, gap with bound equal 0%. These figures
suggest that reasonable quality solutions are found
relatively quickly. Computational time results indicated
that the CPU time limit 10 seconds performs equal to the
CPU time limit 3,600 seconds with respect to the
considered performance measures. It is clearly
demonstrated that the number of jobs with values 5, 10,
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15 can be optimally solved in the CPU time limit 10
seconds.

Interesting aspects were observed in the case of the
number of jobs with value 20. When -considering
extending the time allocated for solving to find an optimal
solution from 10 seconds to 3,600 seconds. The proposed
scheduling model can find more optimal solutions on
number of jobs with a value 20 when the solving time is
extended. However, when dealing with larger number of
jobs where the proposed scheduling model requires more
than 3,600 seconds just to find a feasible solution.

In comparison, Table 4 shows the gap between the
size of jobs running with the proposed scheduling model
and the time required to solve the optimal solution.

As the number of jobs increases from 5 to 35, the
solving time rises relatively with 0.0130 — 3,600 seconds.
DOcplex.CP takes a long time to give the optimal
solution. Therefore, DOcplex.CP could not show results
immediately in a short time.

The CPU time limit 10 seconds is allocated to solve
the problem, with the expectation of being able to solve
all the instances.

Table 3. Summary of average gap with bound results by
the proposed scheduling model of 10 instances for each
number of jobs with increasing CPU time limits.

Computational time

10 3,600 seconds
Number of jobs seconds
Avg. Avg.
gap with bound gap with

(%) bound (%)
5 0.0000 0.0000
10 0.0000 0.0000
15 0.0000 0.0000
20 0.0394 0.0000
25 0.0319 0.0286
30 0.0335 0.0332
35 0.0255 0.0255

Table 4. Summary of average computational time results
of the proposed scheduling model of 10 instances for each
number of jobs with no time limit.

Avg. Av.
Number of gap Computational
jobs with time
bound
%) (seconds)
5 0.0000 0.0130
10 0.0000 0.0697
15 0.0000 0.3068
20 0.0000 282.6580
25 0.0286 >3.600
30 0.0332 >3,600
35 0.0255 >3,600

5.3. The Baseline Scheduling Method

In the actual world, production schedulers are faced
with the challenges of creating a reasonable schedule to
deal with multiple constraints.

The manufacturer defines the baseline scheduling
method steps are shown in

Therefore, sorting setup time for all of the jobs
included in the group of common due dates is sequence-
dependent. Eventually, assigning procedure is a sequence
of job assignments to a single machine and considering the
sequence-dependent setup time of the job sequence for
minimizing total setup time.

For more explanation of the baseline scheduling
method, Error! Not a valid bookmark self-reference.
shows the example schedule created by the baseline
scheduling method. Example. Consider the baseline
schedule in which the number of jobs = 10. The steps of
the baseline scheduling method can be presented as
follows:

First, Generate a sequence of the job based on
ascending order of due date (Fatliest due date: EDD).

For example, D1 : The job is only J1 with the release
times 77 = 1,200, D2 : The set of jobs is [J2,]3,]4,]5,] 6] with
the release times 7 = [1,390, 970, 1,150, 1,350, 1,810] and
D3 : The set of jobs is [J7,]8,]9,]10] with the release times
r = 11,890, 2,180, 2,520, 2,550]. After sorting the set of
unscheduled jobs in ascending order based on their due
dates. JO is the one job on the eatliest due date of D1
among all the jobs. So, the first job of the sequence is JO
and the sequencing procedure on D1 is complete.
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Creating schedule by the baseline scheduling method

1. Set of jobs = alist of jobs sorted by ascending order of due date 4 based on earliest due date: EDD
2. for all job j in Set of jobs

3 for all job j in set of common due dates 4

4. Generate a sequence of the job based on ascending order of release time 7
5 endfor

6.  endfor

7. for all job j in Set of jobs

8 for all job j in set of common due dates 4

9. Add setup time of job j to set of setup time without duplicates

10. for Setup time in set of setup time

11. If Setup time of job j = Setup time in set of setup time

12. Grouping job

13. endif

14. endfor

15. endfor

16. endfor

Then, sort the next set of unscheduled jobs on D2 by
release times in ascending order. A sequence of jobs on
D2 is [J3,]4,]5,)2,J6]. Afterward, consider the setup time
depends on the sequence of jobs on D2 by setup codes
that operations with the same white color belong to the
job.

First, sequencing procedure is referred to as priority
rules for sequencing or dispatching jobs to a single
machine. The manufacturer often only needs to decide the
scheduling of jobs when making production plans,
ignoring the impact of many factors on production. They
are assigned the smallest due dates in the earliest due date
rule (EDD) order. The earliest due date rule (EDD) is
widely used as a heuristic approach for production
schedules because of its simplicity. However, this
approach has the limitation that the rules with the best
performance differ according to the shop conditions [33].
EDD orders the jobs in the order of increasing due dates
for single-machine scheduling problems. So, a job that is
due first is started used when companies are sensitive to
due date changes. Then, sorting procedure is sorting
release time jobs on a common due date by ascending.
Jobs are arranged from lowest to highest release time.
Subsequently, the time required to perform a setup activity
is called setup time. If the required time for the setup

activities can change according to the processing sequence
of jobs, setup times become sequence-dependent [34].

Therefore, sorting setup time for all of the jobs
included in the group of common due dates is sequence-
dependent. Eventually, assighing procedure is a sequence
of job assignments to a single machine and considering the
sequence-dependent setup time of the job sequence for
minimizing total setup time.

For more explanation of the baseline scheduling
method, Error! Not a valid bookmark self-reference.
shows the example schedule created by the baseline
scheduling method. Example. Consider the baseline
schedule in which the number of jobs = 10. The steps of
the baseline scheduling method can be presented as
follows:

First, Generate a sequence of the job based on
ascending order of due date (Fatrliest due date: EDD).

For example, D1 : The job is only J1 with the release
times 7; = 1,200, D2 : The set of jobs is [J2,]3,]4,]5,] 6] with
the release times 7; = [1,390, 970, 1,150, 1,350, 1,810] and
D3 : The set of jobs is [J7,]8,]9,]10] with the release times
r = 11,890, 2,180, 2,520, 2,550]. After sorting the set of
unscheduled jobs in ascending order based on their due
dates. JO is the one job on the eatliest due date of D1
among all the jobs. So, the first job of the sequence is JO
and the sequencing procedure on D1 is complete.
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Table 5. The baseline scheduling method.

Creating schedule by the baseline scheduling method

1. Set of jobs = alist of jobs sorted by ascending order of due date 4 based on earliest due date: EDD
2. for all job j in Set of jobs

3 for all job j in set of common due dates 4

4. Generate a sequence of the job based on ascending order of release time 7
5 endfor

6.  endfor

7. for all job j in Set of jobs

8. for all job j in set of common due dates 4

9. Add setup time of job j to set of setup time without duplicates

10. for Setup time in set of setup time

11. If Setup time of job j = Setup time in set of setup time

12. Grouping job

13. endif

14. endfor

15. endfor

16. endfor

Then, sort the next set of unscheduled jobs on D2 by
release times in ascending order. A sequence of jobs on
D2 is [J3,]4,]5,)2,J6]. Afterward, consider the setup time
depends on the sequence of jobs on D2 by setup codes
that operations with the same white color belong to the
job.

While setup time is represented in various colors :
[yellow, orange, blue, yellow, yellow] then set of setup time
without duplicates : [yellow, orange, blue]. Next, grouping
jobs in order of set of setup time without duplicates. So,
the sequence of jobs on D2 is [J3,]2,]6,]4,]5] with the
sequence of setup codes : [yellow, yellow, yellow, orange,
blue].

The step was repeated for a sequence of jobs on D3
in the same way as on D2. The whole job is scheduled to
be completed by the baseline scheduling method.

5.4. Computational Experiment Results

In this section, the quality of the proposed scheduling
model was tested with a CPU time limit of 10 seconds
allocated on randomly generated instances by comparing
the scheduling solution with the baseline scheduling
method. A set of 1,000 different instances with a larger
number of jobs is considered to show the potential of the
scheduling model.

A comparison of results shows the performance of
the proposed scheduling model and the baseline
scheduling method in the same instances.

Due to the difference in the instance sizes,

Table 6 shows that the baseline scheduling method is
not capable of solving all instances; it can solve some
instances but not all. The more it decreases when the
number of jobs increases. While the proposed scheduling
model is capable of solving numerous instances, with its
efficiency gradually decreasing as the number of jobs
increases.

A comparison of results shows a greater number of
solved instances in the proposed scheduling model than
the baseline scheduling method (more unsolved problems
in the baseline scheduling method).

Table 6. Number of solved instances.

Number of solved instances

Number of The baseline The proposed
jobs scheduling scheduling
method model
5 990 1,000
10 691 869
15 466 731
20 412 705
25 380 665
30 359 633
35 318 626

Fig. 4 shows the possible results on the types of
solutions include optimal solutions, feasible solutions, and
no solutions. The proposed scheduling model is capable
of solving a greater number of optimal solutions
compared to the baseline scheduling method.

Besides, The proposed scheduling model finds
solutions that are not only feasible but also best solutions
in terms of the objective.

For every instances that model tries to solve. When
focusing exclusively on solutions found. The baseline
scheduling method finds the optimal solution with a lower
percentage average than the proposed scheduling model.
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The baseline scheduling method

Number of solutions found

%Optimal solution

Number of jobs Total. Optimal solutions Feas.lble No solutions found
number of solutions found solutions
5 1,000 648 342 10 64.80%
10 869 330 361 309 37.97%
15 731 106 360 534 14.50%
20 705 67 345 588 9.50%
25 665 44 336 620 6.62%
30 633 50 309 641 7.90%
35 626 31 287 682 4.95%

Table 8. %Optimal solution found by the proposed scheduling model.

The proposed scheduling model

Number of solutions found

Number of jobs Total. Optimal solutions Be.st No solutions “eOptimal solution found
number of solutions found solutions
5 1,000 1,000 - - 100%
10 869 869 - 131 100%
15 731 731 - 269 100%
20 705 547 158 295 77.59%
25 665 310 355 335 46.62%
30 633 256 377 367 40.44%
35 626 285 341 374 45.53%
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Solutions found by the baseline method

1,000{ 10
800
600
400
200
"% 10 15 20 25 30 35

Number of jobs

Number of solutions found

Solutions found by the proposed scheduling model

1,000

800
it 158
355

377
400
200
0

5 10 15 20 25 30

Number of solutions found

35
Number of jobs
Optimal solutions Optimal solutions
Feasible solutions Best solutions
No solutions No solutions

Fig. 4. Comparison of solutions found by (1) the baseline scheduling method compared with; (2) the proposed
scheduling model.
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Fig. 5. Sample results in gantt diagram of (1) the proposed scheduling model compared with; (2) the baseline scheduling

method.

Table 7 and Table 8 shows that the baseline
scheduling method has a percentage average in finding the
optimal solution in the number of jobs with values 5, 10,
15, 20, 25, 30 and 35 are 64.80%, 37.97%, 14.50%, 9.50%,
6.62%, 7.90% and 4.95% compare with a percentage
average in finding the optimal solution by the proposed
scheduling model in the number of jobs with values
5,10,15,20,25,30 and 35 are 100%, 100%, 100%, 77.59%,
46.62%, 40.44%, 45.53%.

The classification of problems into small-size
instances and large-size instances depends on %Optimal
solution found. The proposed scheduling model is able to
find optimal solutions with 100 percentage average for the
number of jobs with values 5,10, and 15 , it implies that
these are considered small-size instances. Therefore, the
number of jobs with values 20,25,30 and 35 are classified
as large-size instances implying that the proposed
scheduling model includes a greater number of decision
variables and constraints. The experiments conducted for
the small and larger number of job size instances are
presented in 5.4.1 and 5.4.2.

5.4.1. Experiments with small-size instances

Three different values for a number of jobs with
values 5, 10, and 15 were considered for small-size
instances. Fig. 5 presents the same data but with a
switched methodology to schedule to highlight the better
performance of makespan. When jobs are available for
processing at different release times. The proposed
scheduling model uses the constraint programming (CP)
to solve instances by taking constraints as input and then
searching for solutions involves satisfying all the
constraints simultaneously. In contrast, the baseline
method is designed to solve a problem sequentially,
following the steps of the procedure that focuses on due

date constraint first to avoid delays that cause several
complications afterward and considers other constraints
after an arrangement of due date.

The baseline scheduling method prioritizes jobs
based on their due dates. Jobs with the eatliest due dates
are scheduled first. If jobs are not available on time, a
decision in the baseline scheduling method has to wait for
jobs to be released. Compared with the proposed
scheduling model, sequencing jobs based on their due
dates might not be necessary. When jobs are available on
time, If sequencing of jobs does not lead to delays in the
completion of other jobs, then it will be sequenced.

This is the reason why its results for the proposed
scheduling model are better than the baseline scheduling
method.

Experiment results show that the solution found by
the proposed scheduling model. There are three categories
of an average improvement in makespan.

1. The proposed scheduling model is capable of
finding a solution for a number of jobs with values 5, 10,
and 15 with 10, 178, 265 instances, whereas the baseline
scheduling method lacks this ability.

2. The proposed scheduling model outperforms the
baseline scheduling method in finding the optimal
solutions. Due to the difference in instance sizes, the
values of makespan vary wildly between instances.
Therefore, experimental tests are executed to compare the
values of makespan. Since the 5,10 and 15-job instances
of the proposed scheduling model are all solved to
optimality in a short time. An improvement of the
makespan measured are 3.4555%, 3.0731%, and 4.8826%
are shown in Table 9 .

3. The proposed scheduling model and the baseline
scheduling method find solutions of equal value of
makespan for a number of jobs with values 5, 10, and 15
with 648, 330, 106 instances. This result indicates that the
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baseline scheduling method has the potential to be
compared to the proposed scheduling model.

Table 9 clearly shows that the proposed scheduling
model outperformed the baseline scheduling method.
Improvement results indicated that the proposed
scheduling model performs better than the baseline
scheduling method with respect to the considered
performance measures.

Table 9. Summary of average results for optimal solutions
solved by the proposed scheduling model on small-size
instances compared with the baseline scheduling method.

Total
Number
Number number P Improve-ment
of of © of average
. . optimal
jobs optimal . makespan
. solutions
solutions
5 1,000 342 3.4555%
10 869 361 3.0731%
15 731 360 4.8826%

Furthermore, an appealing aspect to consider is setup
time are visualized in Fig. 5. The setup time occurs when
jobs are processed and a setup of a time precedes the
processing of jobs. Itis sequence-dependent if its duration
depends on the jobs of both the current and the
immediately preceding jobs, and is sequence-independent
if its duration depends solely on the current jobs to be
processed. No job processing is possible on a machine
while a setup is being performed on the machine. If the
sequence of the jobs are the same setup time. All the jobs
of the same setup time become available for processing
and leave the machine together. Start time of the first job
is scheduled by the scheduling model starts before start
time of the first job is scheduled by the baseline schedule
method and fewer changeover times after that at the end
of the job sequencing gives a smaller sum of completion
time. Sequence of jobs may lead to events that some jobs
delay. If a job is delivered after the due date, customer
dissatisfaction might lead to a penalty for the company and
the possibility of reputational damage [14].

The proposed scheduling model has the ability to
reduce the total setup time. Fig. 5 shows the fact that there
are tremendous savings when setup times are explicitly
incorporated in scheduling decisions in the manufacturing
environment. The benefits of the proposed scheduling
model involving combine setup times. The setup time
between jobs involves the changing of colors, which
indicates the significance of setup times.

Appropriate sequencing of the proposed scheduling
model leads to a potential for savings in setups from
maximum 10 time-setup to 5 time-setup. The complete
schedule determined by the proposed scheduling model
resulted in a smaller makespan than the makespan
determined by the baseline scheduling method. The
proposed scheduling model provides a better solution to
sequence jobs when facing several constraints.

In conclusion, Table 10 clearly demonstrates the
effectiveness of the proposed scheduling model in
reducing the total setup time for the number of jobs with
values 5, 10 and 15. The total setup time has been
decreased by 6.4419%, 26.0663% and 45.7924%.
Summary of average total setup time improvement results
for optimal solutions solved by the proposed scheduling
model on small-size instances compared with the baseline
scheduling method

Table 10. Summary of average total setup time
improvement results for optimal solutions solved by the
proposed scheduling model on small-size instances
compared with the baseline scheduling method.

Number  Total number Improvements of
of of average total setup
jobs optimal solutions time
5 1,000 6.4419%
10 869 26.0663%
15 731 45.7924%

5.4.2. Experiments with larger number of jobs instances

Four different values for number of jobs with values
20, 25, 30 and 35 were considered for a larger number of
jobs instances. In the 1,000 different larger number of jobs
instances, the proposed scheduling model could not prove
the optimality of all instances in a short time. Considering
the scheduling model, testing shows that the proposed
scheduling model using CP model is not very usable for
larger instances.

Therefore, a time limitation has been set for solving.
A time limitation was imposed 10 seconds. However, the
proposed scheduling model outperformed the baseline
scheduling method.

These experiments conclude that the proposed
scheduling model offers a very good quality solution
despite a time limitation.

Experiments show that the solution found by the
proposed scheduling model. There are three categories of
an average improvement in makespan.

1. The proposed scheduling model is capable of
finding a solution for a number of jobs with values 20, 25,
30 and 35 with 250, 151, 107, 143 instances, whereas the
baseline scheduling method lacks this ability.

2. The proposed scheduling model outperforms the
baseline scheduling method in finding the optimal
solutions. Due to the difference in instance sizes, the
values of makespan vary wildly between instances.
Therefore, experimental tests are executed to compare the
values of makespan. Since the 20,25,30 and 35-job
instances of the proposed scheduling model are all solved
to optimality in a short time. An improvement of the
makespan measured are 6.5654%, 7.4891%, 6.9290% and
7.2210% are shown in Table 11.

3. The proposed scheduling model and the baseline
scheduling method find solutions of equal value of
makespan for a number of jobs with values 20, 25, 30 and
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35 with 67, 44, 50, 31 instances. This result indicates that
the baseline scheduling method has the potential to be
compared to the proposed scheduling model.

Table 11. Summary of average results for optimal
solutions solved by the proposed scheduling model on
larger number of jobs instances compared with the
baseline scheduling method

Total Number
Number Improve-ment
number of
of . . of average
. of optimal  optimal
jobs . . makespan
solutions  solutions
20 547 230 6.5654%
25 310 115 7.4891%
30 256 99 6.9290%
35 285 111 7.2210%

A common scenatio in manufacturing, where the
setup time increases with the number of jobs. Multiple
jobs, Different types require different setup time, Between
these jobs, changeover must be altered. The more job
changes there are, the more cumulative setup time will
accrue.

In conclusion, Table 12 cleatly demonstrates the
effectiveness of the proposed scheduling model in
reducing the total setup time for the number of jobs with
values 20, 25, 30 and 35. The total setup time has been
decreased by 54.1047%, 53.4973%, 46.6404%, 55.4033%.

Table 12. Summary of average total setup time
improvement results for optimal solutions solved by the
proposed scheduling model on larger number of jobs
instances compared with the baseline scheduling method

Number Total Improvement of
number
of . average total setup
. of optimal .
jobs . time
solutions
20 547 54.1047%
25 310 53.4973%
30 256 46.6404%
35 285 55.4033%

6. Conclusion and Future Work

This paper focused on developing the scheduling
model for sequencing a set of jobs with different release
times in a single machine that minimizes the makespan to
meet different due dates and to reduce setup time where
setup times are sequence-dependent. In conclusion, The
proposed scheduling model is effective, relevant, and can
be used for the problem with better efficiency than the
baseline scheduling method. This paper's most significant
contribution is applying the proposed model to real-world
production scenarios. Initially, the proposed scheduling
model using constraint programming was proposed to

DOI:10.4186/¢.2024.28.11.81

optimally solve the problem. The benefit of using the
proposed scheduling model is significant as it can generate
optimal solution on small-size instances and best solutions
on a larger number of jobs instances. However, the
constraint programming model is suitable only for specific
instance sizes. On a larger number of jobs instances can
provide the best solutions but computation time increases
when the number of jobs increases. The constraint
programming alone could not handle large-sized instances
and improved slower, but it guarantees improvement until
an optimal solution is found. When dealing with large-
sized instances, It's important to noticed that there is
usually a trade-off between solution accuracy and
computation time. Depending on the proposed
scheduling model, it might be more beneficial to get a
near-optimal solution quickly than to spend a significantly
longer time aiming for the optimal solutions. Future
studies will focus on the development of heuristics to deal
with the considered problem to find accurate solutions
more quickly. Furthermore, the solution approach is fast
enough to be used in practical scenarios where larger
instances must be solved within a few minutes and can
casily be adapted to be used for different scenarios.
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