

Article

Cost-Effective IIoT Gateway Development Using
ESP32 for Industrial Applications

Paradon Boonmeeruka, Pichet Palratb, and Kiattisak Wongsopanakulc,*

Department of Electrical & Biomedical Engineering, Faculty of Engineering, Prince of Songkla University,
Songkhla, Thailand
E-mail: a6510120011@email.psu.ac.th, bpichet6276@gmail.com, c,*kiattisak.w@psu.ac.th (Corresponding
author)

Abstract. The Industrial Internet of Things (IIoT) connects industrial devices, such as
measuring equipment and production line machines, to the Cloud system via the internet,
creating a database for equipment data storage and performance analysis. Implementing an
IIoT system requires an IIoT Gateway to interface with industrial controllers using
protocols like Modbus TCP/IP or OPC UA, enabling data transmission to the Cloud. These
Gateways, often produced by PLC manufacturers, are typically expensive. This research
investigates using an ESP32 microcontroller as a cost-effective alternative to the Simatic
IOT2050 IIoT Gateway. The study focuses on connecting the Siemens Simatic S7-1200
12144C AC/DC/RLY PLC via Modbus TCP/IP and facilitating data transmission between
cloud systems using MQTT and REST API protocols. Results show that the IIoT Gateway's
response time for writing 16-bit payload data to the PLC via Modbus TCP/IP averages
0.0591 seconds. Additionally, the device supports data scaling from 16-bit Integer to 32-bit
Float for Modbus TCP/IP communication and converting 32-bit Float data to Message data
for transmission via MQTT to ThingSpeak Cloud and REST APIs to Blynk Cloud. This
approach offers a viable, cost-effective solution for IIoT implementations.

Keywords: ESP32 microcontroller, IIoT gateway, Modbus TCP/IP, MQTT and REST
API protocols.

ENGINEERING JOURNAL Volume 28 Issue 10
Received 20 May 2024
Accepted 20 October 2024
Published 31 October 2024
Online at https://engj.org/
DOI:10.4186/ej.2024.28.10.93

DOI:10.4186/ej.2024.28.10.93

94 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/)

1. Introduction

The Industrial Internet, also known as the Industrial
Internet of Things (IIoT), is a concept designed to
connect industrial devices, such as measuring equipment
or machines operating in production lines, to the Cloud
system via the internet network. This integration facilitates
the creation of a database to store data from equipment
and analyze the operational efficiency of machines [1]. The
IIoT concept has been applied across various domains [2].
For instance, in the agricultural sector, Y. Liu et al. [3]
proposed the use of IIoT technology, referred to in their
work as AIoT (Internet of Agricultural Things), to address
food safety and quality issues in a large country like China.
This technology enables the transfer of data from farmers'
farms to the Cloud system. An overview of the system
presented in their study is illustrated in (Fig. 1).

Fig. 1. An Overview of the Internet of Agricultural Things
(AIoT) System.

The application of the AIoT system in the agricultural
sector enables users to access high-quality information on
farmers' agricultural products, facilitating informed pur-
chasing and consumption decisions. Additionally, for
environmental control in plantation areas, J. Muang-
prathub et al. [4] proposed applying IIoT technology to
integrate data from measuring devices, such as
temperature sensors, humidity sensors, and soil moisture
sensors, into a web-based application system for pre-
dicting and controlling environmental conditions. This
system ensures optimal conditions for plant growth, in-
cluding appropriate soil moisture levels. Furthermore, it
allows operators to monitor and manage the plantation
environment remotely. The implementation of this system
has demonstrated effective soil moisture control con-
ducive to plant growth, cost reduction in cultivation, and
increased productivity for farmers. An overview of the
system used for environmental prediction and control is
illustrated in (Fig. 2).

In the field of smart grid systems, W. Li et al. [5]
proposed the application of IIoT technology combined
with machine learning and statistical models to develop a
Smart Energy Theft System (SETS) for detecting elec-
tricity theft. The system operates by collecting real-time

data from power meters and inputting it into machine
learning and statistical models to identify anomalies
indicative of energy theft by users. Simulation results
showed that the system achieved an accuracy of 99.96%
in detecting electricity theft.

Fig. 2. Overview of Environmental Prediction and
Control Systems.

O. Monnier [6] presents the application of IIoT
technology to provide electricity users with access to
information within the smart grid system. This enables
users to monitor electricity consumption in buildings or
homes and modify their usage behavior to achieve
efficient energy use.

In the medical field, M. S. Hossain et al. [7] presented
the use of IIoT technology in creating the HealthIIoT-
Enabled Monitoring system. This system collects health
data from users or patients, measured by an ECG sensor
and sensors within a smartphone, and sends it to the
Cloud system. An overview of the system is shown in
(Fig. 3). This system allows doctors or health professionals
to access patient health information stored on the Cloud
system to analyze and track the patient's condition in a
timely manner.

Fig. 3. Overview of HealthIIoT-Enabled Monitoring
System.

Data from field-level devices is sent to the Cloud
system according to the concept of the Industrial Internet
of Things (IIoT) system, which requires an IIoT Gateway
to connect to industrial controllers, such as programmable
controllers and Programmable Logic Controllers (PLCs),
through communication protocols like Modbus TCP/IP
or OPC UA [8]. This connection allows measuring devices,
actuators, and industrial controllers (PLCs) to exchange

DOI:10.4186/ej.2024.28.10.93

ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/) 95

data with Cloud systems, aligning with the IIoT system
concept. As a result, various PLC manufacturers recognize
the need for IIoT Gateways to connect industrial control
equipment and support communication with external
systems. For example, Mitsubishi has produced the PLC
iQ-R IoT Gateway, which supports industrial commu-
nication protocols such as OPC UA and Modbus TCP/IP,
and the basic communication protocol MQTT for sending
data to the Cloud. Allen Bradley has developed Open
Automation Software (OAS), allowing personal com-
puters or small single-board computers (e.g., Raspberry Pi)
to access data within Allen Bradley PLCs and send data to
the Cloud via the internet. Siemens has produced the IIoT
Gateway Simatic IOT2050, which supports industrial
communication protocols such as OPC UA, Modbus
TCP/IP, RTU, and the Siemens-specific S7 Protocol, as
well as basic communication protocols like MQTT and
REST API for Cloud data transmission. However, the
high cost of this industrial equipment limits access for
small industries.

This research article focuses on applying a micro-
controller (ESP32) as a replacement for the Siemens
Simatic IOT2050 IIoT gateway for connecting to indus-
trial control devices, such as the Siemens Simatic S7-1200
12144C AC/DC/RLY PLC. The ESP32 utilizes the
Modbus TCP/IP protocol for communication and
enables simultaneous data transmission to the cloud
system using multiple protocols, including MQTT and
REST API.

2. Review of Previous Studies

Driven by cost constraints, previous research has
explored using microcontrollers or small single-board
computers (SBCs) to develop IIoT gateways for data
exchange between field-level devices and cloud systems.
For example, C.-H. Chen et al. [9] presented an IIoT
gateway design utilizing a multi-MCU (multi-unit micro-
controller) or FPGA (Field-Programmable Gate Array)
for data transmission. Their work demonstrates the use of
Modbus RS-485 and Modbus 2.4 GHz RF protocols for
field device communication, along with TCP/IP for
communication between the gateway and the cloud
system. However, this approach can introduce latency
between devices. Their machine-to-machine response
time of 10.8 ms, while lower than the typical 30 ms for
IIoT gateways, comes at the cost of a lower maximum data
transmission speed (82.41 Mb/s) and higher power
consumption (1.5 W).

C. Liu et al. [8] present a service-oriented plug-and-
play (PnP) IIoT Gateway designed to transmit data from
field-level manufacturing equipment to a Cloud-based
time-series database (TSDB). This system utilizes the cen-
tral processor of a Raspberry Pi 3 Model B in conjunction
with RESTful APIs and Hypertext Transfer Protocol
(HTTP) for data transmission between field-level devices.
For transmitting data to the Cloud, the system employs
the Line Protocol Format, a text-based communication
protocol. The PnP IIoT Gateway demonstrates app-

lication flexibility by supporting industry-standard com-
munication protocols and open-source APIs or control
software, enabling seamless access to data from field-level
devices. This approach has been successfully applied to
monitor the operation of 3D printers and CNC machines.

R. M. Salem et al. [10] introduce a system designed for
monitoring parameters in wastewater treatment processes.
This system monitors temperature and pH values in
wastewater to regulate valves, thereby preventing the
discharge of untreated wastewater into the process and
issuing alerts to operators in case of anomalies. The
authors employ the NodeMcu ESP8266 as the central
processor for sensor data acquisition, utilizing a DS18B20
temperature sensor and an ADS1115 acidity sensor.
Additionally, the NodeMcu ESP8266 serves as a gateway
for data transmission between the Cloud system and the
sensors, facilitated by a wireless internet network and the
RESTful APIs communication protocol. The system
efficiently retrieves data from the wastewater treatment
process and transmits it to a Web Server for display, with
an upload time of approximately 5 seconds, enabling real-
time process monitoring. Furthermore, the system allows
operators remote control over valve operations for intro-
ducing wastewater into the process.

P. Nguyen-Hoang et al. [11] describe the imple-
mentation of a small single-board computer, Raspberry Pi,
for the development of an Open-Source Industrial IoT
Gateway. The device operates as an IIoT Gateway, lev-
eraging the compact form factor of a single-board com-
puter to establish connections with cloud systems using
the REST API communication protocol for data tran-
smission to AWS Cloud Services and the MQTT
communication protocol for data transmission to IBM
Watson Cloud Services. Additionally, the IIoT Gateway
device facilitates connections with industrial devices
through open communication protocols such as Modbus
TCP/IP and Modbus RTU, as well as closed commu-
nication protocols like Siemens' proprietary S7 Protocol.
Test results of the IIoT Gateway demonstrate an average
transmission time of approximately 13.44 ms for data
exchange with the PLC via the S7 Protocol commu-
nication call. Furthermore, data transmission using the
Modbus communication protocol, employed for data re-
ception from the Inverter, averages around 54.4 ms.
Sending data to Cloud systems via REST APIs and MQTT
communication protocols takes approximately 21.38 ms
and 11.95 ms, respectively.

S. Nuratch et al. [12] detail the utilization of a 16-bit
microcontroller in conjunction with a Wi-Fi Module to
develop an IIoT Gateway, alternatively referred to as a
Devices-to-Cloud Gateway in this article. The device
operates with a 16-bit microcontroller, specifically the
PIC24FJ48GA002 model, to interface with sensors and
actuators deployed in industrial settings. Data transmis-
sion occurs via standard current electrical signals (4 – 20
mA) and standard voltage (0 – 12 V, 0 – 24 V).
Furthermore, the device employs UART-to-RS485 com-
munication to interface with the power meter, utilizing the
Modbus-RTU communication protocol for data retrieval.

DOI:10.4186/ej.2024.28.10.93

96 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/)

For transmitting data to the Cloud system, the device
utilizes a Wi-Fi Module connected to the microcontroller
via the UART protocol, enabling connectivity to a local
wireless internet network for data transmission from the
IIoT Gateway device to the cloud system.

Y. Zhang et al. [13] present an IIoT Gateway designed
to manage data from industrial devices utilizing various
communication protocols and convert them into the
format compatible with MQTT communication, a
standard protocol for cloud-based data upload. The IIoT
Gateway operates through Concurrent Tasks, enhancing
device reliability and enabling real-time observation. Addi-
tionally, it ensures data exchange security with the Cloud
system through a Three-layer method. The central pro-
cessing unit selected for this application is the Raspberry
Pi 3B, connected to three Expansion Boards comprising
the NB-IoT ME3136 expansion port, Clock Holding Unit
module, and Power supply module. Performance testing
involves the use of a Process Control Experimental kit for
simulating detector operations. The results highlight the
IIoT Gateway's capability to access data from various
Filed Devices with different communication protocols
and transmit them securely to the Cloud system in real-
time, employing the three-layer method to ensure
encrypted data transmission, thereby enhancing data
exchange security.

A. Nugur et al. [14] describe the development of an
IoT gateway utilizing Network Address Translation (NAT)
devices and software for seamless data transmission to a
cloud-based Building Energy Management (BEM) system,
aimed at optimizing energy monitoring and management
within buildings. The gateway integrates BACnet, Modbus,
and HTTP RESTful communication protocols for data
exchange among various devices, including power meters,
plug loads, and lighting loads. The system was tested in a
laboratory environment, where it was demonstrated that
the response time between the 40 field devices and the
cloud BEM system was consistently less than 12 ms, a
response time deemed acceptable for energy monitoring
and control applications in building automation systems.

B.-Y. Ooi et al. [15] introduce a Collaborative IoT
gateway designed to manage IoT solution systems, inclu-
ding Sensor Node connections, Cloud system connections,
Gateway connections, and cost management for data
transmission between Cloud systems. The article outlines
the use of a Raspberry Pi3 with an external Wi-Fi network
interface for Gateway-to-Gateway commu-nication and a
cellular 4G modem for Cloud system con-nectivity. The
presented Gateway demonstrates a 75% reduction in data
usage costs or cellular network expenses associated with
data exchange between Cloud systems, with an error rate
in data transmission of less than 1.5%.

Drawing insights from existing literature, case studies,
and empirical investigations, it is apparent that in certain
instances, experiments have utilized microcontroller-
based devices to construct IIoT Gateways for data ex-
change between cloud systems, simultaneously facilitating
data acquisition from measuring devices and operational
control. However, such applications may not be suitable

for microcontrollers with limited multi-instruction
processing capabilities. Alternatively, some studies have
employed small single-board computer setups for IIoT
Gateway implementation. Nonetheless, this approach is
constrained by equipment costs, akin to IIoT Gateways
offered by PLC manufacturers, which often outperform
small single-board computer devices. Hence, this research
article leverages a low-cost microcontroller device, namely
the ESP32, to mitigate the challenge of processing
multiple instructions. The ESP32 serves as an
intermediary for data exchange between the Cloud system
and the PLC, functioning as a conduit for both data
retrieval from sensors and operational control, thus
underscoring the aim of this study.

3. Principles of Communication Protocols

3.1. Modbus TCP Protocol

Modbus TCP is an industrial communication protocol
that operates on TCP/IP and utilizes a Master-Slave
architecture. The protocol's framework comprises the
Modbus Application Protocol (MBAP Header), a 7-byte
header, and the Protocol Data Unit (PDU) for data
transmission [16]. The data format of the PDU is depicted
in (Fig. 4).

Transaction

Identifier
(2 bytes)

Protocol Identifier
(2 bytes)

Protocol Identifier
(2 bytes)

Unit Identifier
(1 byte)

Function Code
(1 byte)

Data

 MBAP Header PDU

Fig. 4. Data Format of Modbus TCP/IP Communication
Protocol.

As depicted in (Fig. 4), the Modbus TCP commu-
nication protocol follows a defined structure. It consists
of two primary components: the Modbus Application
Protocol (MBAP) Header and the Protocol Data Unit
(PDU). The MBAP Header is further divided into four
subfields. The second component, the PDU, is further
divided into two subfields. According to the Modbus
TCP/IP protocol, data access addresses can be specified
within a range of 0 to 65535 [17, 18].

3.2. SPI Protocol (Serial Peripheral- Interface)

The SPI operates as a synchronous communication
protocol, where data transmission between the Master and
Slave is regulated by the Master's clock signal. Utilizing 8-
bit Serial data, as depicted in (Fig. 5), the protocol's
structure illustrates its functioning. When the Master
intends to write data to the Slave, the Master's data
position shifts (Shift Register), informing the Slave
through an 8-Cycle Clock Pulses signal sent from the
MOSI port. Conversely, if the Slave intends to relay data
back to the Master, the process mirrors that of the Master,
with data transmitted via the MISO port. Illustrated in
(Fig. 6), the SPI communication protocol's connection
ports include Slave Select (SS) for Slave selection, Clock

DOI:10.4186/ej.2024.28.10.93

ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/) 97

(SCLK) for generating clock signals, MOSI for writing
data from the Master to the Slave, and MISO for the Slave
to relay data back to the Master [19].

Fig. 5. Data Format of SPI Interface Communication
Protocol.

SPI Master SPI Slave

SCK

MOSI

MISO

SS

Fig. 6. Data Transmission between Master and Slave in
SPI Interface Communication Protocol.

3.3. MQTT Protocol (Message Queue Telemetry

Transport)

MQTT functions as a communication protocol faci-
litating data transmission between Server and Client
through Publish and Subscribe messages, based on the
TCP/IP communication protocol. Comprising three key
components-Publisher or Producer, Broker, and Sub-
scriber or Consumer-the protocol's structure is depicted
in (Fig. 7). Operating on a Publish-Subscribe model, the
exchange format relies on Topics to access data locations,
with Subscribers referencing data locations on devices or
servers and Publishers pinpointing data locations within
devices or servers. The Broker or MQTT Server acts as an
intermediary, managing Topics between Publishers and
Subscribers. Operating as a bi-directional communication
protocol, data transmission size comprises a 2-byte header
and a payload size of up to 256 MB [20].

3.4. REST API (Representation State Transfer)

REST APIs function as a communication format that
enables clients to access and manage server data using the
HTTP (Hypertext Transfer Protocol). The architecture
supports four primary operations: GET for retrieving
data, POST for creating new data sets on the server, PUT
for updating existing data sets, and DELETE for
removing data. Clients access specific data by referencing
corresponding URLs. The communication format and
operational structure of REST APIs are depicted in Fig. 8
[21].

3.5. IEEE 802.11n Standard

IEEE 802.11n stands out as a standard in WiFi
Wireless Technology, facilitating data transmission via
frequencies of 2.4 GHz and 5.0 GHz, achieving a
maximum data transmission speed of 150 Mbit/s, and
boasting a device response time of 400 ns. This response
time surpasses that of older standards such as IEEE
802.11a and g, which typically have a response time of
around 800 ns. Moreover, in terms of bandwidth, data
transmission adhering to the IEEE 802.11n standard
utilizes a bandwidth of 40 MHz to support Multi-input
Multi-output (MIMO) capabilities. This represents a
bandwidth enhancement from the 20 MHz bandwidth
employed in older standards to 40 MHz as per the IEEE
802.11n standard, thereby facilitating data exchange rates
at the physical layer level of up to 600 Mbps [22, 23].

Pubisher
MQTT

Broker

Message

Subscriber

Subscriber

Fig. 7. Structural Format of the MQTT Communication
Protocol.

Internet Network

GET POST DELETE

Client 1 Client 2 Client 3

GET POST DELETE

Server 1 Server 2 Server 3

Fig. 8. Data Exchange between Server and Client Utilizing
REST API Communication.

4. Design and Fabrication of IIoT Gateway

4.1. Designing Programs for IIoT Gateway

This section outlines the operation of the program
downloaded to the ESP32 microcontroller, which
functions as an IIoT Gateway. It facilitates data exchange
between the Siemens Simatic S7-1200 12144C

DOI:10.4186/ej.2024.28.10.93

98 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/)

AC/DC/RLY PLC via the Modbus TCP/IP commu-
nication protocol and the Cloud system using MQTT and
REST APIs. The program begins by defining the
necessary variables for data storage and specifying data
locations between the Server (IIoT Gateway) and Client
(PLC) to ensure proper data read/write operations,
adhering to the Modbus TCP/IP protocol standards.
Once the values and data locations are defined, the
program instructs the ESP32 microcontroller to establish
a connection to the wireless Internet using the IEEE
802.11n communication standard. This connection ena-
bles the device to access the Internet for uploading and
downloading data between the PLC and the Cloud system.
Upon successful connection to the wireless network, the
program directs the ESP32 to establish communication
with the PLC and retrieve data from the pre-defined data
locations. The retrieved data is then stored in the specified
variables within the ESP32 microcontroller. Since data
transmission between the PLC and the ESP32 uses the
Modbus TCP/IP communication protocol, the tran-
smitted data follows a structured format, as illustrated in
(Fig. 9) This structure includes a 16-bit Integer data
payload. The process variable data sent to the PLC from
the field devices is scaled using the equation Eq. (1). The
scaled data is then transferred to a 16-bit Integer variable
using the PLC’s Move function. This variable serves as the
designated location for accessing and exchanging data
between the devices using the Modbus TCP/IP protocol.

Transaction Identifier

(2 bytes)

Protocol Identifier

(2 bytes)

Protocol Identifier

(2 bytes)

Unit Identifier

(1 byte)

Function Code

(1 byte)

Data

(2 bytes)

16-bit data payload

Fig. 9. Data structure for reading and writing data between
devices (IIoT Gateway and PLC) using the Modbus
TCP/IP communication protocol.

= 100Datapayload PV (1)

From the equation, the Process Variable (PV)

represents the data received by the PLC from the field

device. The Data Payload, a 16-bit integer variable, is then

transmitted to the IIoT Gateway via the Modbus TCP/IP
communication protocol.

To convert data sent to the IIoT Gateway into 32-bit
Float type with two decimal places, the process begins by
receiving 16-bit Integer data from the PLC. The next step
involves converting this data into 32-bit Float using a
program method that scales the read data, as outlined in
Eq. (2). Once the conversion is complete, the resulting
data is stored in a predefined 32-bit Float variable. To
transmit this data to the Cloud system via the MQTT
communication protocol and REST APIs, it must first be
converted from 32-bit Float to text format using the
"Convert Floating-point number to character array"
function. The conversion process involves splitting the

floating-point number into two parts: the Integer part and
the Fractional part. For the Integer part, the data is divided
by the base number to determine the corresponding
ASCII value, following the example in Eq. (3), which is
used for IIoT Gateway data in decimal form. The same
method is applied to the Fractional part, but with an
additional step: multiplying the fractional data by the base
number raised to the power of the number of decimal
places, as described in Eq. (7), to convert it into an integer.
The values are then recalculated using Eq. (3). After
converting both the Integer and Fractional parts into
ASCII characters, the final step involves combining these
parts to create a new text-formatted data set. This process
is summarized in the illustration (Fig. 10), which provides
an overview of the "Convert Floating-point number to
character array" function.

32 (int)
100

Datapayload
bit Floating po Number− = (2)

The equation 32-bit (Floating-point Number)

signifies 32-bit Float data. This data is obtained by taking
the Data Payload received from the PLC and applying the
necessary scaling process.

123.4532-bit floating – Point Number

123 45.Integer part Fractional part

1 2 3 . 4 5Digit

49 50 51 46 52 53ASCII value

 Character Array

Fig. 10. The diagram illustrates the process of converting
a 32-bit Float data type into a text data type.

Integer
Digits

BaseNumber
= (3)

123
12.3 ; 3 3

10
Digit= = (4)

12
1.2 ; 2 2

10
Digit= = (5)

1
0.1 ; 1 1

10
Digit= = (6)

As shown in Eq. (4)–(6), the process of finding the

digits for each position is performed by dividing the value
by the base number. The calculation continues until the
result of the division equals zero, at which point the
process is considered complete.

DOI:10.4186/ej.2024.28.10.93

ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/) 99

Pr ecisionInteger Fractional BaseNumber= (7)

245 0.45 10= (8)

Equation Eq. (8) provides an example of the

calculation process used to convert a fractional number to
an integer, which is necessary for determining the position
of the number.

After completing the data type conversion process,
the next step involves uploading the process variable data,
now in text format, to the ThingSpeak Cloud system via
the MQTT communication protocol. The message format
used for data upload is illustrated in (Fig. 11). This
message structure consists of two key components: the
Topic, which identifies the data location on the Cloud
system, and the Data Payload, which contains the data to
be uploaded. Once the data is successfully uploaded to
ThingSpeak Cloud, the ESP32 microcontroller is
instructed to interact with the Blynk Cloud system via
REST APIs for both data upload and download
operations. For data upload to the Blynk Cloud system,
the message format is depicted in (Fig. 12). The message
structure is divided into three main sections: the first
specifies the Cloud system's access point, the second
determines the location for uploading data, and the third
is the data payload itself. Upon successful upload, the
program initiates the data download process from the
Cloud system. The download method follows similar
principles to the upload, but with a different message
structure. As shown in (Fig. 13), the message used for
downloading consists of two parts: the first specifies the
Cloud access location, and the second identifies the
location of the data to be retrieved.

Once the ESP32 Microcontroller receives data from
the Blynk Cloud system, the final step in the program
involves converting the data from text format to a 32-bit
float and scaling it to a 16-bit integer format before
sending it back to the PLC via the Modbus TCP/IP
communication protocol. In this step, the data payload
downloaded from the Blynk Cloud system is split into two
parts: Integer and Fractional, which are separated into
digits in character array format. After this separation, the
digits are converted to decimal numbers. The Integer part
is processed using Eq. (9), which calculates each digit
position and replaces the ASCII value to convert it into
decimal data. The digits are then combined using Eq. (10).
For the Fractional part, Eq. (15) calculates the digits and
Eq. (16) combines them. Once the Integer and Fractional
parts are converted, the next step is to merge them into a
32-bit float. This process is illustrated in Fig. G. After the
data has been successfully converted into a 32-bit float, the
final step involves scaling it to a 16-bit integer using Eq.
(11). This allows the data to be sent back to the PLC via
the Modbus TCP/IP communication protocol. The
complete operation of the IIoT Gateway program is
depicted in the diagram shown in (Fig. 16).

Topics (Header) Data payload

 Messages

Fig. 11. The figure illustrates the message format used for
uploading data to the ThingSpeak Cloud via the MQTT
communication protocol.

Location Identifier for Cloud Access Location Specifier for Data Writing Data payload

 Messages

Fig. 12. The figure illustrates the message format used for
uploading data to the Blynk Cloud via the REST APIs
communication protocol.

Location Identifier for Cloud Access Location Specifier for Data Reading

 Messages

Fig. 13. The figure illustrates the message format used for
downloading data from the Blynk Cloud system via the
REST APIs communication protocol.

NInteger Digit BaseNumber= (9)

1 2 3Integerpart Integer Integer Integer Integern= + + + (10)

2900 9 10= (11)

180 8 10= (12)

07 7 10= (13)

900 80 7 987Integerpart = + + = (14)

As outlined in Eq. (9), each position of the Integer is

calculated as the product of the digit and the base number
raised to the power of the digit’s position. Therefore, the
method for calculating each digit's position, as well as the
sum of the digits in the Integer part, follows the process
described in Eq. (11)-(14).

Digit
Fraction

NBaseNumber
= (15)

1 2Fractionpart Fraction Fraction Fractionn= + + (16)

6
0.6

110
= (17)

5
0.05

210
= (18)

0.6 0.05 0.65Fractionpart = + = (19)

As shown in Eq. (15), the method for calculating the

fraction at each position follows the equation where the
fraction at any position is equal to the digit divided by the
base number raised to the power of N, with N starting

DOI:10.4186/ej.2024.28.10.93

100 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/)

from 1. Therefore, the example calculation, including the
fraction part, is presented in Eq. (17)-(19).

() () 100Serverpayload Integer Serverpayload float= (20)

As shown in Eq. (20), the calculation method scales

data from a 32-bit floating-point format to a 16-bit integer

format for transmission back to the PLC via the Modbus
TCP/IP communication protocol. This is done by setting

the Serverpayload (16-bit Integer) equal to the

Serverpayload (32-bit Float) multiplied by 100, ensuring

that the payload sent back to the PLC represents a real
number with two decimal places.

 Character Array

 Integer part Fractional part

 Digit

57 56 55 46 54 53ASCII value

987.65

Character Array

Character Array

32-bit floating – Point Number

9 8 7 . 6 5Digit

987 65.Integer part Fractional part

Fig. 14. The diagram illustrates the process of converting
data from text format to 32-bit float format.

4.2. Design and Assembly Procedures for Construc-

ting an IIoT Gateway

The illustration (Fig. 17) displays the device con-
nection for constructing an IIoT Gateway, comprising
equipment such as the LM2596S DC-DC Step-Down
module, utilized to reduce the DC voltage from 24 VDC
to 5 VDC for powering various devices. For establishing
connectivity between the IIoT Gateway and PLC via the
Modbus TCP/IP communication protocol, the Internet
Module ENC28J60 facilitates the connection to the PLC,
incorporating functionalities for interfacing with a micro-
controller (ESP32) to enable data exchange between the
ESP32 (Server) and PLC (Client) through the SPI In-
terface communication protocol. The IIoT Gateway's
central processing unit relies on the ESP32 micro-
controller, serving as the central processing unit and faci-

litating connection to a local wireless internet network
compliant with the IEEE 802.11n standard, enabling data
transmission and reception between Cloud systems via
MQTT and REST API communication protocols upon
integrating all modules, depicted in the illustration (Fig.
17). Consequently, the IIoT Gateway depicted in this
research article is illustrated in (Fig. 18), showcasing the
connectivity of each module within the IIoT Gateway,
while (Fig. 19) presents the external structure of the IIoT
Gateway outlined in this study.

5. Methodology of Testing

5.1. Testing Methodology for Response Time Evalu-

ation of IIoT Gateway

In the testing process for evaluating the Response
Time of the IIoT Gateway (Server), the overall test setup
is shown in the illustration (Fig. 20), which includes three
components. First, the IIoT Gateway (Server); second, the
Siemens Simatic S7-1200 12144C AC/DC/RLY PLC,
acting as a client to retrieve data and wait for the IIoT
Gateway to write data back. The data format used for
testing, depicted in (Fig. 9), follows the Modbus TCP
communication protocol with a 16-bit (Word) data
payload. The third component is a computer with the TIA
Portal IDE software installed, used to adjust the data
retrieval frequency of the client to assess the impact of
different request frequencies from the server. Three
frequencies were tested: 10Hz, 2Hz, and 1Hz. This setup
also evaluates the time taken by the IIoT Gateway to send
data back to the client. Initially, the client sends a data
request as shown in (Fig. 9) to the IIoT Gateway. Upon
receiving the request, the IIoT Gateway returns the 16-bit
data payload to the client, allowing for Response Time
evaluation. The TIA Portal software plots a graph
comparing the client's data retrieval time with the time it
takes for the IIoT Gateway to return the data. The
Response Time is calculated by determining the difference
between these two time points, as described in Eq. (21)-
(22). This process is repeated five times at each frequency.
The testing diagram for evaluating the Response Time of
the IIoT Gateway is shown in (Fig. 15).

responseTime T= (21)

T t treceive request= − (22)

As per Eq. (21) – (22), the Response Time is calculated

as the difference in time T , where trequest represents

the time when the Client initiates data retrieval from the

DOI:10.4186/ej.2024.28.10.93

ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/) 101

Table 1. The Data Addresses on Server and Client Devices.

Server, and treceive represents the time when the Server

completes writing data back to the Client. The calculation
begins from the moment the Client starts retrieving data,
and the Response Time is determined by subtracting the
data retrieval initiation time from the data writing
completion time.

5.2. Testing Data Flow between Cloud Systems via

MQTT Communication Protocol and REST
APIs

This experimental procedure delineates a method for

testing data uploading to the ThingSpeak Cloud system
using the MQTT communication protocol, along with
testing data transmission between controllers using the
Blynk Cloud system as a medium for data exchange via the
REST APIs communication protocol. An overview of the
experiment is depicted in the illustration (Fig. 21 and Fig.
22). The experiment methodology relies on the Factory IO
simulation program to simulate the operation of Field
Devices, such as water level sensors or flow control valves.
These devices connect to the PLC, set as the Client, and
to the IIoT Gateway, set as the Server, via Ethernet Port
for reading and writing data between devices using the
Modbus TCP/IP protocol. The server and client devices
utilized in the experiment are outlined in (Table 1). For
control, the Node-Red program is employed to create
three sections within the control segment. The first
section displays the water level height and is utilized to set
the Setpoint to control the height of the water level inside
the tank. The second section controls and displays the
flow rate of water out of the tank. Lastly, a section shows
the amount of water inside the tank, as illustrated in
(Fig. 23). Additionally, all three control sections facilitate
data transmission between Field Devices using the REST
APIs communication protocol, leveraging the Blynk
Cloud system for data exchange.

Start

Configure Data Retrieval

Frequency from IIoT

Gateway

Transmit Data Packet to

Retrieve Information from

IIoT Gateway

IIoT Gateway Transmits

Data to Client

Plot graph comparing

Client's Data Packet

initiation time with IIoT

Gateway's Data

Transmission time to

Client.

Repeat Response Time

Evaluation of IIoT Gateway

5 times.

Calculate the difference

between the Client's data

retrieval start time and the

IIoT Gateway's data return

time to estimate Response

Time.

Yes

No

Fig. 15. The diagram illustrates the procedure for testing
and evaluating the Response Time of the IIoT Gateway.

Data Name Data Type
Data Address

(Server)
Mode

Data Address
(Client)

Water Level Int 16-bit 0 Read/Write 40001
Flow Rate Int 16-bit 1 Read/Write 40002
Volume Int 16-bit 2 Read/Write 40003
Setpoint Int 16-bit 3 Read/Write 40004
Drain Valve Int 16-bit 4 Read/Write 40005

DOI:10.4186/ej.2024.28.10.93

102 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/)

Defining Variables and Assigning Data

Addresses for Information Exchange

Between Server and Client Utilizing the

Modbus TCP/IP Protocol.

Establishing Connectivity to Wireless

Internet Network Utilizing the IEEE

802.11n Standard.

Fetching Data from the Client,

Specifically the PLC.

Converting Data from 16-bit Integer to

32-bit Float and Formatting into Text.

Transmitting Data to the ThingSpeak

Cloud via the MQTT Protocol.

Transmitting and Fetching Data from

the Blynk Cloud via the REST APIs

Protocol.

Converting Text Data to 32-bit Float,

scaling it to 16-bit Integer, and

Transmitting the Data back to the PLC.

Setup Program Cycle

IIoT Gateway (Microcontroller ESP32)

Programmable Logic Controller (PLC)Modbus TCP/IP

Modbus TCP/IP

Fig. 16. Diagram Illustrating the Operation of the IoT Gateway Program.

Fig. 17. The diagram depicts the interconnected modules within the IIoT Gateway.

Fig. 18. The Components of the IIoT Gateway.

Fig. 19. The external architecture of the IIoT Gateway.

IIoT Gateway

DOI:10.4186/ej.2024.28.10.93

ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/) 103

Table 2. IIoT Gateway Response Time at Different Request Frequencies.

Request Frequency

Response Time (sec.)
Average

Response Time
(sec.)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

10 Hz 0.0773 0.0363 0.0545 0.0818 0.0591 0.0618

2 Hz 0.0626 0.0582 0.0447 0.0402 0.0447 0.0501

1 Hz 0.0629 0.0584 0.0629 0.0674 0.0761 0.0655

Switch L2

IIoT Gateway

IP Address 192.168.0.100

PLC

IP Address 192.168.0.2

Computer

IP Address 192.168.0.10

IIoT Gateway

Modbus TCP/IP

Modbus TCP/IP

TCP/IP

Fig. 20. Diagram Illustrating Response Time Testing of
the IoT Gateway.

Fig. 21. Overview of Test Preparation for the IIoT Gate-
way.

6. Results of the Tests

6.1. Response Time Evaluation Results of the IIoT

Gateway

As shown in (Fig. 24 - 26), the graph illustrates the
data retrieval process between the Client (PLC) and the
Server (IIoT Gateway). The blue line represents the data

sent back to the Client, while the red line indicates the data
request initiated by the Client. In the graph, the X-axis
represents time, and the Y-axis represents the data
transmitted from the Server to the Client. The test data

Switch L2

Computer
IP Address 192.168.0.10 PLC

IP Address 192.168.0.2

IIoT Gateway

IP Address 192.168.0.100

Modbus TCP/IP

Modbus TCP/IP

Internet Network

MQTT

ThingSpeak Cloud
Blynk Cloud

REST APIs

Internet Network

REST APIs
Control Panel

IIoT Gateway

TCP/IP

Access point 1

Access point 2

Fig. 22. Overview Diagram of Testing Traffic between the
IIoT Gateway and Cloud via MQTT Communication
Protocol and REST APIs.

follows the standard Modbus TCP/IP communication
protocol with a 16-bit payload, as depicted in (Fig. 9). The
test results are summarized in (Table 2). For a data request
frequency of 10 Hz, the IIoT Gateway took an average of
approximately 0.0618 seconds to respond. For frequencies
of 2 Hz and 1 Hz, the average response times were
approximately 0.0501 seconds and 0.0655 seconds,
respectively. It is observed that changing the data request
frequency has a minimal effect on the IIoT Gateway’s
response time across different frequencies. Thus, the IIoT
Gateway developed using the ESP32 microcontroller
demonstrates an average response time of approximately
0.0591 seconds when communicating via the Modbus
TCP/IP protocol with a 16-bit payload.

DOI:10.4186/ej.2024.28.10.93

104 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/)

Fig. 23. Control Panel Interface in the Node-Red Program.

Fig. 24. Graph illustrating IIoT Gateway Response Time at 1 Hz Request Frequency.

Fig. 25. Graph illustrating IIoT Gateway Response Time at 2 Hz Request Frequency.

DOI:10.4186/ej.2024.28.10.93

ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/) 105

Fig. 26. Graph illustrating IIoT Gateway Response Time at 10 Hz Request Frequency.

6.2. Data Transmission Test Results Between Cloud

Systems Using MQTT Protocol and REST APIs

The test results are segmented into two components:
one encompasses the data upload to ThingSpeak Cloud,
while the other pertains to data transmission between the
Control Panel and the IIoT Gateway, employing Blynk
Cloud as an intermediary for data exchange. The test data
is categorized into two groups, each serving distinct
purposes on the control panel. One group mirrors the
dataset sent to ThingSpeak Cloud, encompassing para-
meters such as water level, flow rate, and water volume.
These data, of 32-bit Float type, are derived by scaling the
16-bit Integer data obtained from the PLC during the
transmission test between the Control Panel and the IIoT
Gateway, utilizing Blynk Cloud alongside the REST API
communication protocol. The second group of data
comprises Setpoint and Drain Value, which are utilized for
process control. The illustration (Fig. 27) depicts the
upload of PLC data to the designated storage area on
ThingSpeak Cloud through the MQTT communication
protocol. Concurrently, the test results for data tran-
smission between the control panel and IIoT Gateway,
employing the REST API communication protocol with
Blynk Cloud, are presented in the illustrations (Fig. 28 -
29). Regarding the data transmitted back to the PLC for
operational control subsequent to the IIoT Gateway's data
reception, it assumes the format of a sequence of messages
adhering to the REST API protocol standards. The device
undertakes the task of formatting this data, converting it
into a 32-bit Float format, and subsequently scaling it
as16-bit Integers before dispatching it back to the PLC via
the Modbus TCP/IP communication protocol. Upon
receipt, the PLC further scales the data to 32-bit REAL
format to facilitate additional process control based on the
received data from the IIoT Gateway. This process,
including the data scaling procedure, is elucidated in the
illustration (Fig. 30).

Fig. 27. Test Results Illustrating the Transmission of 32-
Bit Float Data to the ThingSpeak Cloud System via the
MQTT Protocol.

DOI:10.4186/ej.2024.28.10.93

106 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/)

Fig. 28. Visualization of Field Devices data, encompassing measurement and process control data, within the controls
on the Node-Red program.

Fig. 29. Transmission of data to the Blynk Cloud system utilizing the REST API communication protocol.

Fig. 30. Implementation of PLC program: Converting 16-bit Integer data from IIoT Gateway to 32-bit REAL format
via Modbus TCP/IP protocol.

DOI:10.4186/ej.2024.28.10.93

ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/) 107

7. Conclusion

According to the objective of this research, the aim
was to develop an Industrial IIoT Gateway based on the
ESP32 microcontroller as a low-cost alternative to the
high-cost Industrial IIoT Gateway (SIMATIC IOT2050).
This article presents a method of designing a C language-
based program to create an ESP32 microcontroller
control system that functions as an IIoT Gateway,
facilitating data exchange between field devices (PLC
Siemens Simatic S7-1200 12144C AC/DC/RLY) via the
Modbus TCP/IP protocol and cloud systems using
MQTT and REST APIs. The article also describes the
development of a prototype IIoT Gateway and evaluates
its performance in terms of response time for data
exchange between the IIoT Gateway and the PLC, as well
as its capability for simultaneous data exchange with the
cloud system via MQTT and REST APIs. The response
time tests indicated that changes in client data retrieval
frequency had minimal impact on the IIoT Gateway's
response time. The device demonstrated an average
response time of approximately 0.0591 seconds for
exchanging 16-bit payload data via the Modbus TCP/IP
protocol. The IIoT Gateway successfully supported data
type conversions, such as converting 16-bit integer data to
32-bit float and then to text format for uploading to
ThingSpeak and Blynk cloud systems via MQTT and
REST APIs. Furthermore, the device could download
data from the Blynk Cloud system, convert text data back
to 32-bit float, and scale it to 16-bit integer format for
communication with the PLC via Modbus TCP/IP. In
terms of cost, the ESP32-based IIoT Gateway provided a
cost reduction of approximately 66.69 times compared to
the SIMATIC IOT2050 (based on 2024 online prices).
However, the ESP32-based solution has limitations in the
number of communication protocols it supports, offering
only Modbus TCP/IP for field devices and MQTT/REST
APIs for cloud systems. Additionally, the ESP32
microcontroller, with its Xtensa® dual-core 32-bit LX6
processor at 240 MHz, lacks the processing power of the
ARM TI AM6528 GP used in the SIMATIC IOT2050,
which operates at 1.1 GHz. To improve the system’s
efficiency, future developments should focus on
expanding protocol support, such as incorporating OPC
UA for enhanced scalability and real-time data access.
Additionally, exploring microcontrollers with capabilities
closer to the SIMATIC IOT2050 but with lower costs
could further enhance the system's industrial applicability.

References

[1] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson,

“The industrial internet of things (IIoT): An analysis
framework,” Computers in Industry, vol. 101, pp. 1-12,
2018.

[2] P. K. Malik et al., “Industrial Internet of Things and
its applications in industry 4.0: State of the art,”
Computer Communications, vol. 166, pp. 125-139, 2021.

[3] Y. Liu, W. Han, Y. Zhang, L. Li, J. Wang, and L.
Zheng, “An Internet-of-Things solution for food
safety and quality control: A pilot project in China,”
Journal of Industrial Information Integration, vol. 3, pp. 1-
7, 2016.

[4] J. Muangprathub, N. Boonnam, S. Kajornkasirat, N.
Lekbangpong, A. Wanichsombat, and P. Nillaor,
“IoT and agriculture data analysis for smart farm,”
Computers and Electronics in Agriculture, vol. 156, pp.
467-474, 2019.

[5] W. Li, T. Logenthiran, V.-T. Phan, and W. L. Woo,
“A novel smart energy theft system (SETS) for IoT-
based smart home,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 5531-5539, 2019.

[6] O. Monnier, “A smarter grid with the Internet of
Things,” Texas Instruments, pp. 1-11, 2013.

[7] M. S. Hossain and G. Muhammad, “Cloud-assisted
Industrial Internet of Things (IIoT)–Enabled
framework for health monitoring,” Computer
Networks, vol. 101, pp. 192-202, 2016.

[8] C. Liu, Z. Su, X. Xu, and Y. Lu, “Service-oriented
industrial internet of things gateway for cloud
manufacturing,” Robotics and Computer-Integrated
Manufacturing, vol. 73, p. 102217, 2022.

[9] C.-H. Chen, M.-Y. Lin, and C.-C. Liu, “Edge
computing gateway of the industrial internet of
things using multiple collaborative microcontrollers,”
IEEE Network, vol. 32, no. 1, pp. 24-32, 2018.

[10] R. M. Salem, M. S. Saraya, and A. M. Ali-Eldin, “An
industrial cloud-based IoT System for real-time
monitoring and controlling of wastewater,” IEEE
Access, vol. 10, pp. 6528-6540, 2022.

[11] P. Nguyen-Hoang and P. Vo-Tan, “Development an
open-source industrial IoT gateway,” in 19th
International Symposium on Communications and
Information Technologies (ISCIT), 2019, IEEE, pp. 201-
204.

[12] S. Nuratch, “The IIoT devices to cloud gateway
design and implementation based on microcontroller
for real-time monitoring and control in automation
systems,” in 12th IEEE Conference on Industrial
Electronics and Applications (ICIEA), 2017, IEEE, pp.
919-923.

[13] Y. Zhang, W. Sun, and Y. Shi, “Architecture and
Implementation of Industrial Internet of Things
(IIoT) Gateway,” in 2nd International Conference on Civil
Aviation Safety and Information Technology (ICCASIT,
2020), IEEE, pp. 114-120.

[14] A. Nugur, M. Pipattanasomporn, M. Kuzlu, and S.
Rahman, “Design and development of an IoT
gateway for smart building applications,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 9020-9029,
2019.

[15] B.-Y. Ooi, Z.-W. Kong, W.-K. Lee, S.-Y. Liew, and
S. Shirmohammadi, “A collaborative IoT-gateway
architecture for reliable and cost effective
measurements,” IEEE Instrumentation & Measurement
Magazine, vol. 22, no. 6, pp. 11-17, 2019.

DOI:10.4186/ej.2024.28.10.93

108 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/)

[16] L. Xuan and L. Yongzhong, “Research and
implementation of Modbus TCP security
enhancement protocol,” Journal of Physics: Conference
Series, vol. 1213, no. 5, p. 052058, 2019.

[17] M. Faisal, A. A. Cardenas, and A. Wool, “Modeling
Modbus TCP for intrusion detection,” in IEEE
Conference on Communications and Network Security
(CNS), 2016, pp. 386-390.

[18] V. G. Găitan and I. Zagan, “Modbus protocol
performance analysis in a variable configuration of
the physical Fieldbus architecture,” IEEE Access, vol.
10, pp. 123942-123955, 2022.

[19] N. Anand, G. Joseph, S. S. Oommen, and R.
Dhanabal, “Design and implementation of a high
speed serial peripheral interface,” in International
Conference on Advances in Electrical Engineering (ICAEE),
2014, IEEE, pp. 1-3.

[20] B. Mishra and A. Kertesz, “The use of MQTT in
M2M and IoT systems: A survey,” IEEE Access, vol.
8, pp. 201071-201086, 2020.

[21] L. Li, W. Chou, W. Zhou, and M. Luo, “Design
patterns and extensibility of REST API for
networking applications,” IEEE Transactions on
Network and Service Management, vol. 13, no. 1, pp. 154-
167, 2016.

[22] F. Tramarin, S. Vitturi, M. Luvisotto, and A. Zanella,
“On the use of IEEE 802.11 n for industrial
communications,” IEEE Transactions on Industrial
Informatics, vol. 12, no. 5, pp. 1877-1886, 2015.

[23] C.-Y. Wang and H.-Y. Wei, “IEEE 802.11 n MAC
enhancement and performance evaluation,” Mobile
Networks and Applications, vol. 14, pp. 760-771, 2009.

Paradon Boonmeeruk He received a B.S. degree in Electronics Engineering Technology Instrumentation and Control
from King Mongkut's University of Technology North Bangkok in 2020. He is currently pursuing a master's degree in
Electrical & Biomedical Engineering at the Faculty of Engineering, Prince of Songkla University, Songkhla, Thailand.

Pichet Palrat He received a B.S. degree in Electrical & Biomedical Engineering from the Faculty of Engineering, Prince
of Songkla University, Songkhla, Thailand, in 2023.

Kiattisak Wongsopanakul He received a B.S. degree in Electrical Engineering from the Faculty of Engineering, Prince
of Songkla University, Songkhla, Thailand, an M.S. degree in Electrical Engineering from the New York Institute of
Technology, USA, and an M.S. degree in Business Administration from the Faculty of Management Sciences, Prince of
Songkla University, Songkhla, Thailand. He earned his Ph.D. degree in Electrical Engineering from Wayne State
University, USA. At present, Dr. Kiattisak Wongsopanakul serves as a lecturer in Electrical & Biomedical Engineering
at Prince of Songkla University, Songkhla, Thailand.

