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Abstract. Traditionally, autonomous vehicles (AVs) prioritize safety and efficiency when 
planning trajectories. However, the lack of human-like driving behaviors can limit user trust 
and acceptance. This can be attributed to difficulties in communication and interpreting the 
intentions of other road users, particularly during interactions like overtaking maneuvers. 
This study proposes the Flexible Virtual Reference Point (FVRP) concept, an enhancement 
to model-based trajectory planning that facilitates human-like behavior during overtaking 
maneuvers. FVRP decomposes complex overtaking maneuvers into distinct phases. Within 
each phase, the concept strategically positions virtual reference points by considering both 
driver comfort data and prevailing traffic constraints. These reference points are then 
connected to form a piecewise trajectory, ensuring the optimization of both safety and 
comfort during overtaking maneuvers involving a motorcycle (MC). The results 
demonstrate that FVRP successfully generates trajectories that achieve both safety and 
driver comfort across all experimental settings. Furthermore, the trajectories generated by 
FVRP exhibit characteristics that resemble human drivers, while maintaining safe and 
comfortable distances compared to those generated by driver behavior models and optimal 
control models. The success of FVRP concept in car-to-MC overtaking maneuvers suggests 
its potential for adaptation to other driving maneuvers where comfort and safety need to be 
balanced. 
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1. Introduction 
 
Safe and efficient autonomous driving necessitates a 

focus on both technical capabilities and human factors [1]. 
A critical component of achieving this goal is trajectory 
planning, where AVs determine their trajectories through 
the environment. While traditional approaches prioritize 
metrics like collision avoidance and efficiency, there's a 
growing interest in human-like trajectory planning, aiming 
to mimic the way humans navigate complex dynamic 
environments. 

Extensive research has been conducted on 
identifying feasible and optimal paths or trajectories for 
AVs [2-4]. These methods aim to ensure collision 
avoidance with other vehicles and obstacles and include 
techniques like graph search, incremental search, 
sampling-based algorithms, potential fields, cell 
decomposition, numerical optimization, and curve 
interpolation. 

Several studies have explored integrating driver 
characteristics into human-like trajectory planning. For 
instance, Dai et al. [5] proposed an optimal lane-change 
trajectory using road coordinate system and driver data. 
Their approach achieved human-likeness by considering 
lane-changing time and the slope of lane-changing 
trajectory. Similarly, Naidja et al. [6] employed clothoid 
interpolation for generating human-like trajectories at 
unsignalized intersections, while optimizing the path with 
a particle swarm optimizer. Other studies leveraged 
machine learning techniques: Zhao et al. [7] developed a 
preview-based model for negotiating curves using long 
short-term memory networks trained on driver data, and 
Nan et al. [8] utilized deep inverse reinforcement learning 
to generate data-driven trajectories for merging scenarios. 
Additionally, Liu et al. [9] implemented maximum entropy 
inverse reinforcement learning to model driver intention 
for left turns at unsignalized intersections. Furthermore, 
Fajen and Jansen [10] proposed a non-model approach 
using forward waypoints, and Cui et al. [11] presented a 
constraint-imitative method combining artificial potential 
fields and dynamic movement primitives. Notably, Chen 
et al. [12] proposed transforming the lane-change problem 
into a two-dimensional car-following problem. 

While safety remains a primary focus, with all these 
studies prioritizing collision avoidance, none explicitly 
consider human factors like driver comfort distances 
within the trajectory planning process. This omission of 
human factors might negatively impact user trust and 
ultimately hinder AV acceptance [13]. Conversely, 
research suggests that incorporating driver characteristics 
into trajectory planning is crucial for improving user 
acceptance of AVs [14]. 

Comfort is a key concept in human factors, impacting 
how people experience a system or environment. It is a 
complex and subjective feeling encompassing both 
positive (enjoyment) and negative (anxiety) aspects [15-16]. 
Traditionally, car ergonomics focused on physical comfort 
factors like seat vibration, noise, and temperature [17]. 
However, in AVs, the driver’s experience goes beyond 

ergonomics due to the lack of driver control. While recent 
research has addressed other driver physical comfort by 
incorporating constraints like jerk and acceleration [18-20], 
a crucial question remains unanswered: what is the ideal 
vehicle-to-vehicle distance gap for driver in AVs to feel 
safe and comfortable? 

By incorporating driver-preferred following distances 
into trajectory planning, human comfort levels can be 
improved [21]. Studies have investigated the gap 
acceptance chosen by drivers in various interactions, such 
as car-to-bicycle, car-to-pedestrian, and car-to-MC [13, 22-
24]. However, existing trajectory planning in AVs does not 
explicitly consider driver psychological comfort. This rich 
data offers an opportunity to enhance model-based 
trajectory planning with more human-like behaviors. 

This study aims to bridge the gap between model-
based trajectory planning and quantitative driver comfort 
zone by introducing the Flexible Virtual Reference Point 
(FVRP) approach. The constraints employed within this 
model will be derived from both driver comfort distance 
thresholds and traffic safety criteria. 

The key contribution of FVRP concept is enhancing 
model-based trajectory planning by decomposing 
complex overtaking maneuvers into distinct phases. 
Virtual reference points are then strategically positioned 
within each phase, considering both driver comfort data 
and prevailing traffic safety constraints. These reference 
points are subsequently connected to form a piecewise 
trajectory. This approach aims to preserve human-like 
driving behavior while ensuring adherence to safety. 

Prior to AV execution of the overtaking maneuver, a 
crucial safety check is implemented to guarantee safety. 
This verification process, which is another key 
contribution, utilizes the total longitudinal distance 
required for the entire maneuver. 

This work is structured as follows. Section 2 details 
the formulation of the car overtaking MC problem, the 
planning algorithm for coordinate assignment, trajectory 
generation, and the safety check condition. Section 3 
presents the experimental results and analyzes the 
effectiveness of the proposed concept. Section 4 
concludes the paper. 

 

2. Materials and Methods 
 
2.1. Psychology of Driving 

 
Driving can be conceptualized as a dynamic control 

process that demands constant adaptation to changing 
environmental conditions to achieve desired outcomes 
[25-26]. This aligns with the concept of task control, which 
involves managing and directing actions to maintain 
desired states despite external disturbances. Humans, as 
biological control systems, possess an inherent ability to 
execute this control function effectively while driving.  

Traditional driving models often prioritize task 
execution over the underlying motivations influencing 
driver behavior and performance [27]. Michon's 
hierarchical framework illustrates how high-level goals, 
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such as lane changes, guide lower-level control actions [28]. 
However, this model does not explain the origins of these 
high-level goals. Motivational theories attempt to fill this 
gap by identifying factors such as risk perception, 
tolerance, and avoidance [29-31] as key determinants of 
driver behavior. 

Driver motivation significantly influences the 
selection of control task reference values. Discomfort, 
perceived as an immediate threat, can override abstract 
risk assessments, prompting drivers to prioritize safety [29, 
31]. Ideally, drivers aim to balance task accomplishment 
with maintaining a psychological comfortable state, 
avoiding situations that could potentially lead to accidents 
or loss of control. This desired state of comfort and safety 
defines a 'comfort zone' within which drivers prefer to 
operate. For example, in a pedestrian overtaking scenario, 
the driver needs to maintain a safe lateral distance while 
overtaking, but this distance can vary depending on the 
presence of oncoming traffic as shown in Fig. 1. The term 
"comfort zone" in this study specifically denotes the 
psychological distance drivers prefer to maintain, rather 
than the physical comfort of passengers as defined by ISO 
2631 concerning vertical vibration. 
 
2.2. Problem Formulation 

 
Figure 2 illustrates the car overtaking MC scenario, 

considering left-hand traffic conventions as in Thailand. 
The ego vehicle (the vehicle with the control system) 
approaches a slower MC and needs to overtake under free 
traffic conditions. When a pre-defined following distance 
is reached, and the MC's speed is significantly lower than 
the ego vehicle's intended cruising speed, the system 
initiates the overtaking maneuver, assuming right-hand 
overtaking is permitted. 

The car overtaking MC maneuver can be defined 
using the four-phase model. As the ego vehicle 
approaches the MC from behind, Phase 1 (approaching) 
begins. This phase ends when the system decides to 
initiate a lane change for overtaking. Phase 2 (steering 
away) starts when the ego vehicle maneuvers laterally away 
from the MC and ends when it returns to a straight-line 
trajectory. Phase 3 (passing) allows the ego vehicle to 
safely pass the MC. Finally, Phase 4 (returning) begins 
when the ego vehicle steers back to its original lane 
position. This four-phase model provides a framework for 
applying the FVRP approach to generate human-like and 
comfortable overtaking trajectories. 

Before initiating the overtake maneuver, the 
following conditions are likely to be met: 

- The overtaken MC is traveling in a straight line. 
- The velocity of the overtaken MC (Vmc) is known, 

steady, and less than the ego vehicle speed (Vego). 
- The lateral position of the overtaken MC (Ymc) 

relative to the center of the left lane is known 
- The lane width (Wl) is known. 
- The dimensions of both the ego vehicle (Lego and 

Wego) and the MC (Lmc and Wmc) are known. 
- Real-time information about the relative position 

between the vehicles is available from onboard sensors. 
 

2.3. Overtaking Maneuver Data Collection 
 
To quantify driver comfort zones, specific gap 

measurements were defined around MC as shown in Fig. 
3: Gap1 and Gap2 for the longitudinal distance between MC 
and the following vehicle during Phase 1 and 2, GapLat for 
the lateral distance during the parallel phase, and Gap3 and 
Gap4 for the longitudinal distance between the vehicles 
during Phase 3 and 4. These longitudinal gaps, excluding 
GapLat, were calculated using time-to-collision metrics as 
shown in Eq. (1).  
 

 𝑇𝑇𝐶1 =
𝐺𝑎𝑝𝑖

∆𝑉
 (1) 

 

where i {1, 2, 3, 4} indicates the phase in which TTC is 
calculated; Gapi is the longitudinal distance in each phase 

as defined in Fig. 3, and V is the speed difference 
between the leading and following vehicles. 

A driving simulation experiment was conducted 
using a high-fidelity simulator at Smart Mobility Research 
Center, Chulalongkorn University equipped with a six-
degree-of-freedom motion platform and immersive 

 
Fig. 1. Sample of comfort zone in car overtaking a 
pedestrian adapted from [23]. 

 
Fig. 2. Four phases of the car overtaking motorcycle maneuver. 
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visuals displayed on three screens as shown in Fig. 4. The 
study simulated overtaking maneuvers on a four-lane, left-
hand traffic urban road with a central median. The 
dimensions of the simulated motorcycle and test vehicle 
were 0.84 by 2.10 m and 1.83 by 4.58 m, respectively. 36 
Thai participants, with an average age of 36.3 years and at 
least five years of driving experience, volunteered to take 
part in the experiment. After obtaining informed consent 
and completing a simulator familiarization process, 
participants were instructed to perform overtaking 
maneuvers at their preferred speeds. They were allowed to 
take breaks as needed throughout the experiment.  

 A series of driving scenarios were created to 
investigate the impact of motorcycle speed and position 
on overtaking behavior. Motorcycle speeds were set at 20, 
40, and 60 km/h, while lateral positions ranged from -1 to 
1.5 m in 0.5-m increments relative to the lane center. A 
total of 18 different scenarios were simulated, resulting in 
648 data sets when considering the number of 
participants. 

The simulated driving environment featured only the 
test vehicle and MC, creating an isolated overtaking 
scenario. Once the driver approached the simulated 
motorcycle, they initiated the overtaking maneuver. The 
driver's steering wheel angle, velocity, and vehicle speed 
were recorded at a sampling rate of 0.1 seconds 
throughout the overtaking process. 

2.4. Overtaking Maneuver Modelling 
 
The overtaking maneuvers were analyzed to inform 

trajectory planning. The maneuver was divided into 
sequential stages [32], similar to a double lane change as 
shown in Fig. 5. Steering wheel velocity was initially 
considered for phase identification but was found to be 
unreliable due to driver variability [33]. To address this, 
steering wheel velocity data was simplified into a three-
level system (-1, 0, 1) to accurately define the start and end 
of each overtaking phase as shown in Fig. 5. 

Following phase identification, regression models 
were developed to analyze the relationship between 
comfort zone parameters and motorcycle lateral position 
(Ymc) suggested in the study [24], as presented in Eq. (2) to 
(6). 
 
 𝑇𝑇𝐶1 = 1.04𝑌𝑚𝑐 + 7.12 (2) 
 

 𝑇𝑇𝐶2 = 0.28𝑌𝑚𝑐 + 1.59 (3) 
 

 𝐺𝑎𝑝𝐿𝑎𝑡 = −0.31𝑌𝑚𝑐 + 0.95 (4) 
 
 𝑇𝑇𝐶3 = 0.29𝑙𝑜𝑔𝑒(𝑌𝑚𝑐 + 1.5) (5) 
 
 𝑇𝑇𝐶4 = −0.46𝑌𝑚𝑐 + 5.2 (6) 
 
where −1.5 ≤ 𝑌𝑚𝑐 ≤ 1.5 

 
 

Fig. 5. Ideal time course of double-lane change 
maneuver and steering wheel velocity signal 
transformation. 

 
 

Fig. 4. Driving simulator. 

 
Fig. 3. Comfort distances around MC. 
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The vehicle's trajectory was also modelled as a 
segmented path consisting of four distinct sections aligned 
with the overtaking maneuver phases as depicted in Fig. 5. 
While Phase 1 and 3 were represented as straight lines, 
Phase 2 and 4 were modelled using polynomial curves 
representing average trajectories of the data as shown in 
Fig 6 to 7 becoming Eq. (7) to (8) respectively. 
 
 𝑌𝑃ℎ2 = 3.2𝑥2 − 2.2𝑥3 (7) 
 
 𝑌𝑃ℎ4 = 1 − 0.2𝑥 − 2.7𝑥2 + 2𝑥3      (8) 
 
2.5. Trajectory Planner Design Using Virtual 

Reference Points with Driver Comfort Zones 
and Safety Constraints 

 
Prior to initiating the overtaking maneuver, a 

reference trajectory is generated for the ego vehicle. This 
planning method utilizes virtual reference points 
strategically positioned relative to MC. These points offer 
flexibility by adapting to both quantified driver comfort 
data and established traffic safety constraints. 

The core function of the planner involves comparing 
the quantified driver comfort distances (TTC1, TTC2, 
GapLat, TTC3, and TTC4) against established safety criteria 
detailed in Table 1. A potential safety concern arises in 
Phase 3, as highlighted in the study [24]. Drivers typically 
maintain a smaller lateral gap between the ego vehicle and 
MC during this phase. There is currently no international 
standard for a safe passing gap. While some countries have 
specific regulations, there is a lack of uniformity. Thailand 

and Japan lack legislation on minimum safe gaps when 
passing cyclists or motorcyclists. Some US states have 
adopted a "three-foot law". Certain European countries 
mandate a minimum clearance of 1.5 m. Australia uses a 
tiered system: 1 m for passing speeds up to 60 km/h and 
1.5 m for speeds exceeding 60 km/h [36]. Due to the lack 
of a universal standard and the observed driver behavior 
in Phase 3, this study adopts the Australian safety criteria 
[36] as it represents a balanced approach among the 
existing regulations.  

To achieve a balance between safety and the lateral 
comfort distances, the planner optimizes the distance 
between the side of the MC and the side of the ego vehicle 
(GapOpt) using Eq. (9). 
 

𝐺𝑎𝑝𝑂𝑝𝑡 = max(𝐺𝑎𝑝𝑉 , 𝐺𝑎𝑝𝐿𝑎𝑡)         (9) 

 

where 𝐺𝑎𝑝𝑉 = {
1, 𝑉𝑒𝑔𝑜 ≤ 60𝑘𝑚/ℎ

1.5, 𝑉𝑒𝑔𝑜 > 60𝑘𝑚/ℎ
   

 
The larger value between GapLat and GapV is chosen 

for GapOpt. In simpler terms, if the safety criterion dictates 
a larger gap than the driver's comfort distance, GapOpt 
prioritizes safety by adopting the GapV value (which can 
be either 1 m or 1.5 m based on the Australian standards). 
This may necessitate the ego vehicle to move laterally 
further to create a safe gap during overtaking. The GapOpt 
value calculated from Eq. (9) is then used to modify driver 
comfort distances in subsequent equations which define 
the reference points P1 to P4 guiding the ego vehicle's 
trajectory during the overtaking maneuver as depicted in 
Fig. 8 as follows. 
 
2.5.1  Point P1 
 

The first virtual reference point, P1, defines the ego 
vehicle's desired position at the conclusion of Phase 1. 
This point is strategically located at the center of the lane 
(0 m lateral distance) with a longitudinal distance 
determined by TTC1 associated with Phase 1. To achieve 
a balance between ensuring safety and maintaining driver 
comfort, Eq. (2) is modified by incorporating the GapOpt 
calculated from Eq. (9). The modified equation is 
presented below.  
 

 𝑇𝑇𝐶1 = 1.04(𝑌𝑚𝑐 + 𝐺𝑎𝑝𝑂𝑝𝑡 − 𝐺𝑎𝑝𝐿𝑎𝑡) + 7.12 (10) 

 

 
 

Fig. 6. Normalized steering curves in Phase 2. 

Table 1. Traffic safety criteria for overtaking maneuvers. 
 

Parameters Criteria References 

TTC1 ≥ 4s [34]-[35] 
TTC2 -  
GapLat ≥ 1.0 m up to 60 km/h 

≥ 1.5 m above 60 km/h 
[36] 

TTC3 ≥ 0s [37] 
TTC4 -  

 
 

 

Fig. 7. Normalized steering curves in Phase 4. 
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2.5.2  Point P2 
 

The second virtual reference point, P2, defines the 
ego vehicle's desired position at the end of Phase 2. This 
point is determined by both its longitudinal and lateral 
displacements. The lateral position of P2 is defined by the 
ego vehicle's lateral offset (Yego) in m, as calculated in Eq. 
(11). This offset value dictates the lateral movement of the 
ego vehicle away from MC during Phase 2. 
 

 𝑌𝑒𝑔𝑜 = min(𝑌𝑚𝑐 + 𝐺𝑎𝑝𝑂𝑝𝑡 +
𝑊𝑒𝑔𝑜+𝑊𝑚𝑐

2
,𝑊𝑙) (11) 

 
where Wego = ego car width in m, Wmc = MC width in m, 
Wl = lane width in m.  

The lateral offset of the ego vehicle Yego at point P2 is 
critical for safe lane utilization during overtaking. A crucial 
safety check is also implemented: if the calculated Yego 
exceeds the lane width Wl, it is capped at Wl. This ensures 
that the ego vehicle's lateral movement remains within the 
designated lane and avoids potentially encroaching on 
oncoming traffic or a physical traffic island in the case of 
a four-lane road. 

Similar to P1, the longitudinal distance of P2 is based 
on the TTC2 associated with Phase 2. To achieve the 
optimal balance between safety and comfort distances, Eq. 
(3) is modified by incorporating the GapOpt value obtained 
from Eq. (9). The resulting modified equation is presented 
below. 
 

 𝑇𝑇𝐶2 = 0.28(𝑌𝑚𝑐 + 𝐺𝑎𝑝𝑂𝑝𝑡 − 𝐺𝑎𝑝𝐿𝑎𝑡) + 1.59 (12) 

 
2.5.3  Point P3 
 

The third virtual reference point, P3, defines the 
desired position of the ego vehicle at the end of Phase 3. 
Similar to P2, its location is determined by both 
longitudinal and lateral components. P3 inherits the lateral 
offset Yego calculated in Eq. (11). This offset maintains a 
consistent lateral distance between the ego vehicle and MC 
throughout Phases 2 and 3. 

Unlike P1 and P2, P3 utilizes the quantified driver 
comfort TTC3 value associated with Phase 3. As noted in 
the study [24], TTC3 values typically range from -0.4 to 0.4 
s. While there is no established safety standard for TTC3 
in the context of overtaking a slower motorcycle [37], a 

value of zero seconds might be considered acceptable. 
However, to prioritize rider comfort and avoid aggressive 
maneuvers during overtaking, this study adopts a fixed 
buffer of 0.4 s for TTC3. This choice is made in the 
absence of specific research on motorcyclist perception 
during overtaking maneuvers. Additionally, this value 
remains within the range of driver comfort identified in 
the study [24]. 
 

2.5.4  Point P4 
 

Finally, the fourth virtual reference point, P4, is 
positioned in line with the lane center (0 m lateral distance) 
and utilizes an optimum TTC4. To achieve the optimal 
balance between safety and comfort distances, Eq. (6) is 
modified by incorporating the GapOpt value obtained from 
Eq. (9). The resulting modified equation is presented 
below. 
 
 𝑇𝑇𝐶4 = −0.46(𝑌𝑚𝑐 + 𝐺𝑎𝑝𝑂𝑝𝑡 − 𝐺𝑎𝑝𝐿𝑎𝑡) + 5.2 (13) 

 
In conclusion, the positions of P1 to P4 are 

summarized in Table 2. 
 

Table 2.  Positions of virtual reference points P1 to P4. 
 

Point 
Positions 

Longitudinal (s) Lateral (m) 

P1 TTC1 0 
P2 TTC2 Yego 
P3 TTC3 = 0.4 Yego 
P4 TTC4 0 

 
2.6. Decision Making Conditions to Engage 

Overtaking Maneuver 
 

Following the assignment of reference point 
coordinates (P1-P4), a critical safety check is performed to 
ensure the ego vehicle can execute the overtaking 
maneuver safely. This verification process utilizes the total 
longitudinal distance required for the entire maneuver 
(Dego,tot) as defined in Eq. (14). Essentially, Dego,tot represents 
the minimum free space needed for the ego vehicle to 
complete the overtaking maneuver within the lane 
boundaries as shown in Fig. 2. 
 

 
Fig 8. Schematic of virtual reference points in overtaking maneuver. 
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 𝐷𝑒𝑔𝑜,𝑡𝑜𝑡 = 𝑉𝑒𝑔𝑜 (
𝑇𝑇𝐶1+𝑇𝑇𝐶4

3.6
+

𝐿𝑒𝑔𝑜+𝐿𝑚𝑐

𝑉𝑒𝑔𝑜−𝑉𝑚𝑐
) (14) 

 

where Vego = ego vehicle speed in km/h, Vmc = MC speed 
in km/h, Lego = ego car length in m, Lmc = MC length in m. 

The planner compares the ego vehicle's front 
headway (available longitudinal distance in front of the ego 
vehicle) with Dego,tot. If the front headway is greater than 
Dego,tot, it indicates sufficient space for safe overtaking, and 
the maneuver can proceed. Conversely, if the front 
headway is less than Dego,tot (i.e., insufficient space), the ego 
vehicle must maintain its position behind MC to avoid a 
collision. This prioritizes safety by ensuring the ego vehicle 
only attempts overtaking when there's adequate space 
within the traffic flow. 
 
2.7. Trajectory Generation for Overtaking Maneuver 
 

Once the planner confirms the overtaking 
maneuver's feasibility (sufficient space available), the 
trajectory for the ego vehicle is generated. This trajectory 
planning utilizes a piecewise approach, where a two-point 
boundary value problem is solved at each relevant time 
step. This iterative process ensures the generated 
trajectory adheres to the defined reference points (P1-P4) 
and adheres to safety and comfort considerations 
throughout the overtaking maneuver. 
 
2.7.1  Piecewise trajectory between point P1 and P2 
 

Following the definition of reference point P1 and P2 
in Phase 2, a smooth geometric curve is required to 
connect them, ensuring a comfortable and controlled 
overtaking maneuver. Eq. (7) was used to construct a 
piecewise trajectory between P1 and P2. This specific 
polynomial is modified to be Eq. (15) - (17) with constant 
ego vehicle speed (Vego). This approach ensures a natural 
transition between the initial and intermediate overtaking 
stages. 
 

 𝑥𝑃ℎ2(𝑡) =
𝑉𝑒𝑔𝑜

3.6
𝑡, 0 ≤ 𝑡 ≤ 𝑇𝑃ℎ2 (15) 

 

 𝑦𝑃ℎ2(𝑡) = 𝑌𝑒𝑔𝑜 (−2.2 (
𝑡

𝑇𝑃ℎ2
)
3

+ 3.2 (
𝑡

𝑇𝑃ℎ2
)
2

) (16) 

 
 𝑇𝑃ℎ2 = 𝑇𝑇𝐶1 − 𝑇𝑇𝐶2 (17) 
 
2.7.2  Piecewise trajectory between point P2 and P3 
 

During Phase 3, the ego vehicle's movement dictates 
a simpler trajectory compared to the initial turn (P1 to P2) 
for overtaking. While Phase 1 and 2 focus on the initial 
turn maneuver, Phase 3 (P2 to P3) involves maintaining a 
safe parallel distance alongside MC. The total duration of 
this straight movement is determined by the relative 
movement between the ego vehicle and MC including the 
previously established quantified driver comfort values for 
TTC2 and TTC3. Eq. (18) - (20) are directly utilized within 

control algorithms to ensure this safe parallel movement 
is maintained throughout Phase 3. 
 

 𝑥𝑃ℎ3(𝑡) =
𝑉𝑒𝑔𝑜

3.6
𝑡, 0 ≤ 𝑡 ≤ 𝑇𝑃ℎ3 (18) 

 
 𝑦𝑃ℎ3(𝑡) = 𝑌𝑒𝑔𝑜 (19) 

 

 𝑇𝑃ℎ3 = 𝑇𝑇𝐶2 + 𝑇𝑇𝐶3 +
𝐿𝑒𝑔𝑜+𝐿𝑚𝑐

𝑉𝑒𝑔𝑜−𝑉𝑚𝑐
 (20) 

 
2.7.3  Piecewise trajectory between point P3 and P4 
 

Similar to the initial turn (P1 to P2), Phase 4 of the 
overtaking maneuver necessitates a controlled return to 
the original lane center. To achieve a smooth and 
comfortable lane re-entry trajectory, Eq. (8) was used to 
construct a piecewise trajectory between P3 and P4. This 
specific polynomial is detailed in Eq. (21) - (23). This 
approach prioritizes driver comfort during the final stage 
of the overtaking maneuver while ensuring a safe return to 
the designated lane. 
 

 𝑥𝑃ℎ4(𝑡) =
𝑉𝑒𝑔𝑜

3.6
𝑡, 0 ≤ 𝑡 ≤ 𝑇𝑃ℎ4 (21) 

 

𝑦𝑃ℎ4(𝑡) = 𝑌𝑒𝑔𝑜 (2 (
𝑡

𝑇𝑃ℎ4
)
3

− 2.7 (
𝑡

𝑇𝑃ℎ4
)
2

− 0.2
𝑡

𝑇𝑃ℎ4
+ 1)(22) 

 
 𝑇𝑃ℎ4 = 𝑇𝑇𝐶4 − 𝑇𝑇𝐶3 (23) 
 
2.8. Overtaking Scenario Setup 
 

The overtaking maneuvers were simulated on a 
virtual urban road with a left-hand traffic configuration, as 
depicted in Fig. 1. Both lanes were designed for 
unidirectional traffic, with each lane having a width Wl of 
3 m. The MC dimensions were set to a width Wmc of 0.71 
m and a length Lmc of 1.92 m. The ego vehicle, on the other 
hand, had a width Wego of 1.8 m and a length Lego of 4.9 m. 

To analyze the effectiveness of the overtaking 
algorithm under diverse conditions that apply the 
Australian safety regulations for overtaking cyclists, the 
MC's lateral position Ymc relative to the lane center was 
varied systematically. The position Ymc ranged from -1 m 
(far left) to 1 m (far right) in increments of 1 m. The MC 
maintained a constant speed Vmc of 20 and 40 km/h 
throughout the simulations. The ego vehicle's speed Vego 
was set to either 60 km/h or 80 km/h steady throughout 
the maneuvers, simulating different overtaking velocity 
differentials. This variation in the ego vehicle’s speeds 
allows us to assess the algorithm's performance in 
scenarios relevant to the Australian safety guidelines for 
safe overtaking distances. 
 
3. Results and Discussion 

 
This section focuses on verifying the two key 

objectives of the trajectory planning algorithm through 
simulations using the FVRP planner: performance under 
various conditions and comparison with existing models. 



DOI:10.4186/ej.2024.28.10.77 

84 ENGINEERING JOURNAL Volume 28 Issue 10, ISSN 0125-8281 (https://engj.org/) 

The first objective is to validate the planner's ability to 
function effectively under different scenarios involving 
varying MC speeds, MC lateral positions, and ego vehicle 
speeds in aspects of trajectory, safety, psychological and 
physical comfort. The second objective involves 
comparing the FVRP planner's trajectory planning results 
with those generated by two established models: the driver 
behavior model and the optimal control model. 

 
3.1. Evaluation of FVRP Trajectory Planning 

 
Figures 9 and 10 illustrate the trajectory planning 

outcomes achieved using the FVRP concept for Vmc of 20 
km/h and 40 km/h, respectively. Each graph depicts the 
trajectories of both the ego vehicle and the MC, 
highlighting their positions when they reach reference 
points P1 to P4. These results demonstrate the FVRP 
planner's capability to generate collision-free trajectories in 
all simulated conditions.  

A critical aspect of the FVRP planner lies in its 
selection of the optimal lateral gap GapOpt between the ego 
vehicle and the MC. This selection process strives to strike 
a balance between driver comfort and established safety 
regulations. In Fig. 9a and 10a, a higher GapOpt values are 
chosen from GapLat, resulting in larger lateral offsets for 
the ego vehicle Yego which are less than Wl of 3 m. This 
prioritizes driver comfort by creating a more spacious 
overtaking maneuver. However, in most other scenarios, 
the GapV plays a more significant role in determining 
GapOpt in Fig. 9b, 9d, 9e, 10b, 10d, and 10e. The lateral 
offset Yego values of those cases still stay within Wl of 3 m. 

Consequently, the ego vehicle executes partial lane 
changes while maintaining a safe distance from the MC. In 
Fig. 9c, 9f, 10c, and 10f, prioritizing safety with higher 
GapV would have led to a Yego values exceeding Wl. To 
ensure safe operation and prevent the ego vehicle from 
exceeding lane boundaries, the planner automatically caps 
Yego at 3 m. This capping mechanism triggers full lane-
change maneuvers for the ego vehicle, allowing it to safely 
overtake the MC within the lane's limitations. 

Table 3 summarizes the total longitudinal distances 
traveled by the ego car (Dego,tot) and MC (Dmc,tot) for the 
entire overtaking maneuver across all simulated conditions, 
along with the corresponding total maneuver times (Ttot). 
As expected, the total distances traveled by both the ego car 
Dego,tot and the MC Dmc,tot were consistently higher for 
MC speeds of 40 km/h compared to 20 km/h. However, 
the increase of Dego,tot was minimal, while Dmc,tot roughly 
doubled. These differences are directly attributable to the 
relative speed variations between the ego vehicle and the 
MC. The total maneuver times ranged from 12.3 s to 14.2 
s across all scenarios. 

Beyond the considerations of MC position and lane 
width discussed in Section 2.5, safe overtaking maneuvers 
in real-world scenarios necessitate sufficient headway in 
both the original and target lanes for successful 
completion, as shown in Table 3. If insufficient headway 
exists, the AV prioritizes following the MC. To ensure 
safety during overtaking, the AV should establish two 
crucial distances: pre-maneuver distance separating the 
AV from the MC before initiating the maneuver at P1 and 
post-maneuver following distance maintaining a safe 

 
Fig. 9. Overtaking trajectories using FVRP at MC speed of 20 km/h. 
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following gap from any preceding vehicle after completing 
the lane change (e.g., the three-second rule [38]). The 
combined distance required for these maneuvers can 
reach nearly 400 m at an ego car speed of 80 km/h. 
However, typical long-range automotive radars used in 
advanced driver-assistance systems have a maximum 
detection range up to 250 m for objects directly in front 
of the vehicle [39]. This limitation necessitates the 
development of more capable long-range automotive 
radar systems with the ability to detect a vehicle in front 
through both sides of MC for proper overtaking planning 
and execution. 

Table 4 analyzes the safety of overtaking trajectories 
generated by the FVRP concept against TTC and lateral 
gap criteria as listed in Table 1. The results demonstrate 
that FVRP effectively maintains safe headways 
throughout critical phases of the overtaking maneuver. 
Specifically, TTC1 values, which represent TTC during the 
initial turn phase (Phase 1), consistently exceed 4 s, 
indicating a safe buffer zone. Similarly, TTC3 values, which 
represent TTC during the cutting-in phase (Phase 4), 
remain above 0 s, ensuring safety during this crucial stage 
of overtaking. The most significant safety concerns arose 
regarding lateral gaps. FVRP generally adhered to the 

 

 
Fig. 10. Overtaking trajectories using FVRP at MC speed of 40 km/h. 
 

Table 3. Total longitudinal distances and times of complete maneuver for ego car and MC for all simulated conditions. 
 

Cases 
Dego,tot (m) Dmc,tot (m) Ttot (s) 

Fig. Vego (km/h) Vmc (km/h) Ymc (m) 

9a 60 20 -1 206 68 12.3 
9b 60 20 0 216 72 13.0 
9c 60 20 1 230 76 13.6 
9d 80 20 -1 272 68 12.3 
9e 80 20 0 287 73 13.2 
9f 80 20 1 314 74 13.4 

10a 60 40 -1 216 145 13.0 
10b 60 40 0 226 151 13.6 
10c 60 40 1 236 158 14.2 
10d 80 40 -1 277 140 12.6 
10e 80 40 0 292 149 13.4 
10f 80 40 1 301 151 13.6 
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regulations, except in cases with Ymc of 1 m. This 
discrepancy is likely caused by the limitation of keeping 
lateral offset Yego within the lane width of 3 m.  

Driver physical comfort is also a crucial factor in 
evaluating autonomous driving behavior. The overtaking 
trajectories generated by the FVRP concept were 
implemented in CarSim software to simulate autonomous 
trajectory tracking. A path follower driver model in 
CarSim was employed within the simulation to control the 
ego vehicle's movement along the planned trajectory. 
During this simulation, the lateral acceleration 
experienced by the ego vehicle was collected. Literature 
[40] suggests that lateral accelerations around 1 m/s² are 
generally considered physically comfortable for human 
drivers under normal conditions. 

Table 5 summarizes the maximum lateral 
accelerations (ay,max) observed. In all scenarios, the 
maximum lateral acceleration values remained well below 
the 1 m/s² comfort threshold, indicating a comfortable 
driver experience throughout the overtaking maneuver. 
The peak lateral accelerations were similar for both MC 
speeds of 20 km/h and 40 km/h. This observation can be 

attributed to the fact that the peak lateral accelerations 
occurred during the returning phase (Phase 4), where the 
planned trajectories between Point P3 and P4 exhibited a 
similar shape for both speeds and were shorter compared 
to the trajectories between Point P1 and P2.  
 

3.2. Comparison With Other Methods 
 

The performance of FVRP concept was evaluated by 
comparing its results with two established models: a driver 
behavior model (DBM) based on Eq. (2) to (8) and an 
optimal control model (OCM) from [19] that minimizes 
total kinetic energy. Notably, the DBM and OCM can also 
be implemented within the four-phase overtaking 
framework.  

To ensure a fair comparison, the OCM was 
configured specifically. It prioritized lateral gaps that 
considers Australian safety regulations while adhering to 
the Wl limitation for lateral offset Yego. This configuration 
also aligns with Australian safety guidelines for overtaking 
maneuvers. The comparison was done at Vmc of 40 km/h 
only. For a more balanced comparison, the longitudinal 
positions of points P2 and P3 were set at 0 s for both TTC2 
and TTC3 in the OCM. This replicates the settings used in 
the original study [19], which focused solely on 
minimizing total kinetic energy during overtaking without 
incorporating driver behavior considerations. Finally, a 
maximum lateral acceleration of 1 m/s² (obtained from 
[40]) was used as a parameter for the OCM calculations.  

Figure 11 compares the overtaking trajectories 
generated by the FVRP concept, DBM, and OCM. The 
FVRP and DBM trajectories exhibit a high degree of 
similarity, particularly in terms of overall path and timing. 
This suggests that the FVRP method effectively replicates 
natural driver behavior during overtaking maneuvers. 
However, some key differences emerge in the lateral offset 
Yego and the longitudinal distance TTC3 during the ego 
vehicle's passing phase (Phase 3). Notably, the FVRP 
trajectories consistently maintain higher values for both 
Yego and TTC3. This prioritizes driver comfort by creating 
a larger lateral buffer between the ego vehicle and the MC, 

Table 4: Safety evaluation on FVRP trajectories 
 

Cases TTC1 (s) TTC3 (s) GapOpt (m) 

Vego (km/h) Vmc (km/h) Ymc (m) Criteria Results Criteria Results Criteria Results 

60 20 -1 ≥ 4 6.1 ≥ 0 0.4 ≥ 1.0 1.26 
60 20 0 ≥ 4 7.2 ≥ 0 0.4 ≥ 1.0 1.00 
60 20 1 ≥ 4 8.3 ≥ 0 0.4 ≥ 1.0 0.75 
80 20 -1 ≥ 4 6.3 ≥ 0 0.4 ≥ 1.5 1.50 
80 20 0 ≥ 4 7.7 ≥ 0 0.4 ≥ 1.5 1.50 
80 20 1 ≥ 4 8.3 ≥ 0 0.4 ≥ 1.5 0.75 
60 40 -1 ≥ 4 6.1 ≥ 0 0.4 ≥ 1.0 1.26 
60 40 0 ≥ 4 7.2 ≥ 0 0.4 ≥ 1.0 1.00 
60 40 1 ≥ 4 8.3 ≥ 0 0.4 ≥ 1.0 0.75 
80 40 -1 ≥ 4 6.3 ≥ 0 0.4 ≥ 1.5 1.50 
80 40 0 ≥ 4 7.7 ≥ 0 0.4 ≥ 1.5 1.50 
80 40 1 ≥ 4 8.3 ≥ 0 0.4 ≥ 1.5 0.75 

 

Table 5. Maximum lateral accelerations observed on 
FVRP trajectories. 
 

Cases ay,max (m/s2) 

Vego 
(km/h) 

Vmc 
(km/h) 

Ymc        
(m) 

Criteria Results 

60 20 -1 1 0.04 
60 20 0 1 0.06 
60 20 1 1 0.08 
80 20 -1 1 0.05 
80 20 0 1 0.07 
80 20 1 1 0.10 
60 40 -1 1 0.04 
60 40 0 1 0.06 
60 40 1 1 0.08 
80 40 -1 1 0.05 
80 40 0 1 0.07 
80 40 1 1 0.10 
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as well as allowing for a longer and potentially smoother 
overtaking maneuver during Phase 3.  

In contrast, the OCM trajectories in Fig. 10 show 
significant deviations, particularly in their starting and 
ending points. The OCM maneuvers begin later and end 
earlier compared to the FVRP and DBM approaches. This 
difference can be attributed to the inherent asymmetry 
lane changing in human overtaking maneuvers. The OCM, 
on the other hand, prioritizes a more symmetrical 
approach, focusing solely on minimizing total kinetic 
energy, which may not always align with real-world driving 
behavior. 

Table 7 summarizes the total longitudinal distances 
traveled by the ego car (Dego,tot) and MC (Dmc,tot) across the 
three methods for the complete maneuver, along with the 
total maneuver times (Ttot). FVRP and DBM exhibited 
similar path lengths for both vehicles, while OCM 
prioritized efficiency consistently achieving both the 
shortest distances and time spending. Total maneuver 

times generally decreased with increasing ego car speed 
except for OCM's Ttot, suggesting a complex interplay 
between speed, lateral positions, and OCM's control 
strategy.  

Table 8 analyzes the safety of overtaking trajectories 
generated by the three methods against TTC and lateral 
gap criteria as listed in Table 1. FVRP and DBM 
maintained safe headways throughout Phase 1, with TTC1 
exceeding 4 s. Conversely, OCM exhibited lower TTC1 
values in some cases, potentially leading to collisions if an 
unforeseen event involving MC occurs. DBM displayed a 
safety limitation in specific scenarios (Ymc = -1 m, Vego = 
60 and 80 km/h) with TTC3 dropping below 0 s at the end 
of Phase 3. This highlights a potential risk of unsafe 
cutting-in behavior when relying solely on driver data. 

The most significant safety concerns arose regarding 
lateral gaps. When compared to Australian safety 
regulations, DBM trajectories frequently violated these 
criteria due to inherent unsafe driver behavior patterns. 

 
Fig. 11. Comparison of overtaking trajectories across three methods. 

Table 7. Total longitudinal distances and times of complete maneuver for ego car and MC across three models. 
 

Cases FVRP DBM OCM 

Vego 
(km/h) 

Ymc   
(m) 

Dego,tot 
(m) 

Dmc,tot 
(m) 

Ttot       
(s) 

Dego,tot 
(m) 

Dmc,tot 
(m) 

Ttot       
(s) 

Dego,tot 
(m) 

Dmc,tot 
(m) 

Ttot       
(s) 

60 -1 217 145 13.0 217 145 13.0 110 73 6.6 
60 0 226 151 13.6 225 150 13.5 140 93 8.4 
60 1 237 158 14.2 235 157 14.1 160 107 9.6 
80 -1 280 140 12.6 273 137 12.3 154 77 6.9 
80 0 298 149 13.4 289 144 13.0 194 97 8.7 
80 1 302 151 13.6 300 150 13.5 200 100 9.0 
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Both FVRP and OCM generally adhered to the regulations, 
except in cases with Ymc of 1 m. This discrepancy is likely 
caused by the limitation of keeping lateral offset Yego within 
the lane width of 3 m.  

Table 9 summarizes the results for maximum lateral 
acceleration obtained from the simulations. In all cases, 
the actual values remained below the 1 m/s² physical 
comfort threshold. Interestingly, FVRP and DBM 
trajectories yielded similar peak lateral accelerations, while 
OCM consistently produced the highest values. This 
difference can be attributed to OCM's shorter steering and 
lane return phases, resulting in more abrupt maneuvers. 

The observed variations in maximum lateral 
acceleration between OCM and DBM in Table 9 suggest 
that overtaking trajectories might not be solely optimized 
for minimum total kinetic energy, which falls into the 
physical facet of car occupants. These findings align with 
previous research [17], which suggests that drivers might 
rely more on psychological factors and visual cues during 
overtaking maneuvers. These factors can include various 
parameters like headway distances, obstacle proximity 
during braking, and vehicle speed. This emphasizes the 
importance of incorporating driver behavior patterns into 
trajectory planning algorithms for autonomous vehicles.  

The proposed FVRP concept demonstrates several 
advantages over the other two models in achieving a 
balance between the safety and driver psychological 
comfort distances during overtaking maneuvers. Unlike 
the other models that might prioritize one aspect over the 
other, FVRP integrates both factors from the very 
beginning of the planning process. This is achieved by 
incorporating quantified driver psychological comfort 
zone data into the FVRP framework. This data allows the 

algorithm to adapt in situations where the safety and 
psychological comfort objectives might conflict. As a 
result, the FVRP concept can generate overtaking 
trajectories that prioritize safety while still considering 
driver psychological comfort preferences. Furthermore, 
the FVRP concept has the potential for broader 
applicability in car-MC overtaking scenarios beyond the 
situations considered in this study. For instance, the 
framework could be adapted to address overtaking 
maneuvers when MC is parked at the outermost lane or 
brakes in both the innermost and outermost lanes, as 
observed in [23]. 

In contrast, DBM and some Artificial Neural 
Network (ANN) approaches like in literature [7-9] rely 
solely on driver data, which may contain inherent unsafe 
behaviors, especially in complex maneuvers as noted in 
[24, 42]. Modifying such data to eliminate these risks can 
be challenging. While some studies attempt to address this 
by training ANNs with pre-screened safe driving data [8], 
the resulting data set might be insufficient for robust 
training. Additionally, OCM, solely focused on minimizing 
total kinetic energy, lacks the ability to directly incorporate 
the safety and psychological comfort considerations 
without the traffic safety criteria and driver data.  

Despite its advantages, the FVRP approach has some 
potential drawbacks. Firstly, the reliance on average driver 
data might result in trajectories that deviate from individual 
preferences. This can occur due to the inherent differences 
between averaged comfort zones and those of specific 
users, potentially leading to discomfort and reduced trust in 
the AV as noted in [5]. Modifying trajectories to meet 
individual needs can also be challenging for ordinary users, 
as it might require a deep understanding of the overtaking 
maneuver itself. Additionally, user-requested modifications 
might sometimes violate safety constraints, which cannot 
be compromised. 

The FVRP concept's reliance on driver data for 
quantifying comfort zone preferences presents a crucial 
drawback. This data can exhibit significant variations across 
different regions and countries due to several factors such 
as variations between left-hand and right-hand traffic 
configurations, lane widths, the total number of lanes, etc. 
As also highlighted in [24], driver behavior during 
overtaking maneuvers can differ substantially between 
countries like Japan and Thailand. Consequently, the 
overtaking trajectories generated in this study, based on a 

Table 9. Maximum lateral accelerations on trajectories 
across three methods. 
 

Cases ay,max (m/s2) 

Vego 
(km/h) 

Ymc 
(m) 

Criteria FVRP DBM OCM 

60 -1 1 0.04 0.04 0.06 
60 0 1 0.06 0.06 0.07 
60 1 1 0.08 0.08 0.11 
80 -1 1 0.05 0.04 0.08 
80 0 1 0.07 0.06 0.09 
80 1 1 0.10 0.09 0.11 

 

Table 8. Safety analysis on trajectories across three methods. 
 

Cases TTC1 (s) TTC3 (s) GapOpt (m) 

Vego 
(km/h) 

Ymc 
(m) 

Criteria FVRP DBM OCM Criteria FVRP DBM OCM Criteria FVRP DBM OCM 

60 -1 4 6.1 6.1 2.7 0 0.4 -0.2 0 1 1.26 1.26 1.26 
 0 4 7.2 7.1 3.6 0 0.4 0.1 0 1 1.00 0.95 1.00 
 1 4 8.3 8.2 4.2 0 0.4 0.3 0 1 0.75 0.64 0.75 

80 -1 4 6.3 6.1 3.2 0 0.4 -0.2 0 1.5 1.50 1.26 1.50 
 0 4 7.7 7.1 4.0 0 0.4 0.1 0 1.5 1.50 0.95 1.50 
 1 4 8.3 8.2 4.2 0 0.4 0.3 0 1.5 0.75 0.64 0.75 
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dataset collected from a sample of Thai drivers, might not 
be directly applicable in other countries. This necessitates 
new data collection efforts specific to the target region or 
country for deployment of the FVRP concept. 
Furthermore, the FVRP approach, currently focused on 
overtaking maneuvers, might require adaptation for 
broader applicability in various driving maneuvers beyond 
overtaking. 
 
3.3. Limitations of This Study 

 

This study acknowledges several limitations that 
present opportunities for future research. These limitations 
are discussed as follows. 

- The model relies on predefined rules and parameters, 
limiting its adaptability to unseen scenarios or variations in 
driving conditions. 

- The model's reliance on pre-defined reference points 
might restrict its ability to respond dynamically to real-time 
changes in traffic conditions such as swerving maneuvers 
by MC. 

- While the model incorporates some aspects of driver 
behavior, it does not fully capture the complexities and 
variations in human decision-making. 

- The model's performance relies on several 
assumptions, such as the accuracy of the initial model 
parameters such as MC size and the consistency of driver 
behavior. 

- The effects of encountering multiple MCs during 
overtaking maneuvers. 

- The effects of other vehicles present in the scene on 
the overtaking behavior. 

- The impact of narrower road lanes on overtaking 

strategies. 
There are several techniques and methods to address 

the limitations of the model presented in this study. Here 
are some potential approaches: 

- Hybrid Approach by integrating the rule-based 
model with machine learning techniques to leverage the 
strengths of both approaches. For example, use machine 
learning to refine model parameters or to handle 
unexpected scenarios. 

- Utilize advanced sensor fusion techniques to 
improve the model's perception of the environment. By 
combining data from multiple sensors, the model can better 
anticipate and respond to dynamic situations. 

- Incorporate driver models that capture individual 
differences in driving behavior to improve the model's 
generalizability. This can be achieved through clustering or 
personalization techniques. 
 

4. Conclusions 
 

This research introduces the FVRP framework for 
generating human-like and safe overtaking trajectories for 
AVs in car-MC overtaking scenarios. By decomposing the 
complex overtaking maneuver into distinct phases and 
defining virtual reference points based on driver 
psychological comfort and safety considerations, the 

FVRP approach offers a structured method for trajectory 
planning. This framework integrates elements of 
engineering, psychology, and human-computer interaction 
to create a more naturalistic and safe overtaking strategy 
for AVs. 

Compared to existing methods like DBM and OCM, 
FVRP offers distinct advantages. It can preserve human 
driver characteristics, such as asymmetric lane-change 
maneuvers and partial lane-change behaviors, while 
maintaining the flexibility to prioritize safety by replacing 
comfort distances with stricter safety constraints when 
necessary. 

The effectiveness of the proposed FVRP algorithm in 
real-world overtaking scenarios is influenced by several 
factors that necessitate further refinement.  These 
challenges include the presence and behavior of other 
MCs and vehicles, unpredictable swerving maneuvers by 
MC riders, variations in MC size due to modifications or 
cargo, and narrow lane widths. 
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