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Abstract. The supremacy of deep learning in artificial intelligence (AI) contexts, including image and speech 
recognition, computer vision, and medical imaging, among others, has established it as AI’s dominant 
approach. Several studies have been conducted on the use of deep learning in physiological signals, especially 
in ECG signals, in recent years, but there has been a lack of comprehensive review on the use of deep learning 
in ECG for biometric systems. This review is divided into two main sections: it provides a comprehensive 
bibliographic review of deep learning for ECG classification towards assisting in disease diagnosis in the first 
part while presenting an overview of the field, pioneers, and landmark studies. The second part offers 
comprehensive information on the subject, starting with the mathematical background of deep learning 
algorithms, the ECG signal processing, and the function of the heart. Using a PRISMA framework, 309 
research papers were initially identified through specified keywords. After applying inclusion criteria, 90 
articles were retained for detailed analysis, excluding 24 documents based on exclusion criteria EC1 and the 
remainder due to EC2. Key findings reveal that deep learning models achieve an average accuracy 
improvement of 10-15% over traditional methods, with convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) demonstrating superior performance in capturing complex ECG patterns. Through 
ECG databases, deep learning algorithms, assessment frameworks, metrics, and code availability, this review 
designs a systematic view from different perspectives to highlight the trends, challenges, and opportunities 
of deep learning for ECG arrhythmia classification. This paper’s goal is to contribute to the knowledge of 
both new and experienced researchers and practitioners in the field so that they can learn and understand the 
various processes involved in ECG signal processing using deep learning. 
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1. Introduction 
 
Background: Cardiovascular diseases (CVDs) 

represent one of the most prevalent and challenging 
chronic health issues globally, posing significant threats to 
human health and well-being [1]. These conditions 
encompass a spectrum of disorders affecting the heart and 
blood vessels, including coronary artery disease, heart 
failure, arrhythmias, and hypertension, often leading to 
severe complications if not addressed timely. The World 
Health Organization (WHO) estimates that CVDs are 
responsible for approximately 17.9 million deaths each 
year, accounting for 31% of all global deaths. Given this 
substantial impact, there is a critical need for effective 
diagnostic and management strategies to combat the 
burden of CVDs.[2]. At its core, an ECG functions as a 
noninvasive technique that records the heart's electrical 
activity over time. Through a series of electrodes attached 
to the skin, this method captures the rhythmic pattern of 
contractions and relaxations within the heart, providing 
insights into its performance. By observing the distinctive 
waves such as the P wave, T wave, and QRS complex, 
medical professionals can decipher vital information about 
heart functionality [3]. This interconnected relationship 
between the cardiovascular system and ECG signals 
makes them critical in identifying potential health 
concerns. Irregularities in these signals can point to 
various heart-related issues, such as arrhythmia, which in 
turn prompt the need for accurate classification and 
diagnosis [2]. In the rapidly evolving landscape of 
healthcare, the convergence of deep learning and medical 
diagnostics has brought forth groundbreaking 
advancements. One particularly compelling application is 
in the realm of electrocardiogram (ECG) classification [4].  

The Problem: Despite the critical role of ECGs in 
diagnosing cardiac conditions, traditional methods of 
ECG analysis often required meticulous manual 
examination by trained cardiologists. This process could 
be subjective, time-consuming, and prone to human error, 
leading to inconsistencies in diagnosis and potential delays 
in treatment. The manual analysis involves the visual 
inspection of ECG waveforms to identify irregularities, 
which may vary in appearance and complexity. This 
reliance on manual processes not only hampers efficiency 
but also poses challenges in handling large volumes of 
ECG data, which is increasingly common with the advent 
of digital health records and wearable health monitoring 
devices [5]. The complexity of ECG signals necessitates 
accurate classification to identify irregularities and ensure 
timely medical intervention. Various types of arrhythmias, 
ischemic events, and other cardiac anomalies present 
unique challenges for accurate detection and classification. 
The traditional rule-based algorithms, while useful, often 
lack the ability to generalize well across diverse patient 
populations and varying signal qualities. Consequently, 
there is a growing need for more advanced, automated, 
and reliable methods to enhance the diagnostic accuracy 
and efficiency of ECG interpretation. [6]. 

The Proposed Solution: Deep learning, which falls 
under the umbrella of machine learning, has become a 
revolutionary force in the realm of ECG classification. By 
utilizing convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), deep learning models 
possess the ability to autonomously acquire and decipher 
complex patterns embedded within ECG waveforms [7]. 
This automation significantly accelerates the diagnostic 
process, ensuring quicker and more accurate results. Deep 
learning models excel in discerning complex patterns that 
might elude human observers [8]. By scrutinizing subtle 
variations in ECG signals, these models can pinpoint 
abnormalities with exceptional accuracy. This precision 
translates into more reliable diagnoses and timely 
interventions. Deep learning models exhibit an inherent 
adaptability. As they encounter more data, their 
performance tends to improve. This adaptability is 
particularly advantageous in the realm of ECG 
classification, where datasets [9] can vary significantly due 
to patient diversity and the dynamic nature of cardiac 
anomalies. However, while DL's potential for enhancing 
diagnostic accuracy is undeniable, its application within 
practical medical procedures remains limited. The 
transition from research settings to real clinical scenarios 
poses several hurdles, including the need for standardized 
protocols, robust models, and validated results. 

Objective of the Review: To address the intersection 
of these factors, this systematic review aims to provide a 
comprehensive overview of the landscape surrounding 
DL-based ECG classification. The review delves into 
multiple perspectives, including the composition of ECG 
databases, pre-processing techniques, DL methodologies, 
evaluation paradigms, performance metrics, and the 
availability of code for re-producibility. This review aims 
to consolidate findings from various research efforts to 
discern patterns, obstacles, and prospects within the field 
of deep learning (DL)-focused ECG categorization. It 
endeavors to highlight the progress achieved, identify 
ongoing challenges, and suggest avenues for future 
investigation. By conducting this comprehensive analysis, 
we aspire to enrich the discourse in medical technology 
and foster additional advancements in diagnosing and 
managing cardiac ailments. 

 

2. Part A: Bibliometric Analysis 
 

The bibliometric analysis carried out in this study was 
primarily done to address the following research questions 
(RQ): 

• What is the present-day inclination in scholarly 
publications regarding the utilization of deep 
learning for diagnosing illnesses through ECG 
classification? 

• What potential avenues for further research could 
be explored in this particular domain of science? 

In this study, an analysis of bibliographic databases 
was conducted, leading to the selection of three databases 
deemed the relevant most for the topic of research. These 
were the PubMed, IEE explore (accessed on 10 
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September 2023)) and Scopus 
(https://www.scopus.com/ (accessed on 10 September 
2023)) databases [10][11]. The search strategy and criteria 
were identical for these databases, resulting in 309 
documents from Scopus, PubMed contributed 75 and 296 
documents from IEEE Explore. Subsequently, the 
bibliographic data from Scopus was utilized for further 
analysis. The Scopus Content Coverage Guide [12] 
indicates that as of January 2020, it encompasses over 
5,000 publishers and boasts more than 25,000 titles those 
are active with a staggering 77 million publications. The 
archives of Scopus trace their origins to the year of 1788, 
boasting a wealth of knowledge with more than 6.6 million 
publications predating the 1970s [12]. The SCOPUS 
database is primarily dedicated to four distinct categories 
[12], namely health sciences (accounting for 30.4\% of 
content), physical sciences (constituting 28.0\%), social 
sciences (comprising 26.2\%), and life sciences (making 
up 15.4\%). 

In order to identify pertinent publications on ECG 
classification for disease diagnosis through the use of deep 
learning, we followed the methodology of PRISMA [13] 
for systematical reviews. Our search strategy was 
conceptualized around three essential keywords: ECG 
Classification, Electrocardiogram classification, and deep 
learning, which were interlinked with the conjunction OR, 
AND. The exact keyword string is ("ECG Classification" 
OR “Electrocardiogram classification”, AND "deep 
learning"). We then conducted a thorough search for these 
terms in the titles of publication, abstracts, or authors’ 
keywords, resulting in a vast compilation of documents. 
Our research was conducted in September 2023, and 
hence, publications published until the end of 2022 were 
considered. An exclusion criterion (EC) was established 
for the designated research period (2016-2023), as the 
primary aim of RQ 1 was to ascertain the progression of 
research throughout the years. To begin with, it is of 
utmost importance to highlight and underscore the fact 
that the process of selecting the manuscript was 
commenced with a meticulous and judicious consideration 
of not just one, but two criteria of inclusion (IC): 

• IC1 The string of search is (TITLE-ABS-
KEY("ECG Classification" OR 
"Electrocardiogram Classification" AND "Deep 
Learning")). 

• IC2 The language of research articles should be 
written in English. 

The parameters of exclusion (EC) serve to establish 
which publications ought to be dismissed from the 
research assemblage. In this endeavor, we have stipulated 
two distinct ECs: 

• EC1 Reviews and conference reviews, books and 
book chapters, letters and notes. 

• EC2 The research articles with less than 3 
citations per annum. 

 
 

Fig. 1. PRISMA framework for the selection of 
appropriate articles. 

 
 
 
Table 1. Summary bibliometric-statistics of the relevant 
publications on ECG Classification for the application of 
disease diagnosis acquired by the discussed strategy of 
search. 

 
Results & Main Information 

Time_Span 2016-2023 
Sources 63 

Total no.of Documents 90 
Average-years from publication 2.5 
Average-citations per document 50.34 

Average-citations per year per doc 17.72 
References 122 

Document types 
Article 83 

Conference Paper 7 
Authors and collaboration 

Authors 411 
Authors of single-authored documents 1 

Co-Authors per Doc 5.11 
International co-authorships percentage 32.22 

 
 
 

The initial exclusion criteria (EC) led to the 
elimination of articles and conference papers potentially 
deemed as central to scientific contributions. Documents 
not encompassed may have lacked sufficient novelty 
concerning the research topic. The second EC acted as a 
measure of significance, selecting only publications with a 
high citation count for detailed bibliometric analysis. This 
entire process is depicted in Fig. 1. 

The bibliometric study was carried out with the R 
programming language, utilizing the bibliometrix_package. 
As an open-source tool for R, bibliometrics enables 
detailed analyses of scientific mapping.[14]. 

 
2.1. Descriptive Bibliometric Analysis 
 

Table 1 displays a summary of the descriptive-
bibliometric-statistics for the data set (Fig. 1). The search 
approach produced 90 pertinent papers on the 
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categorization of ECGs or electrocardiograms for the 
diagnosis of diseases using deep learning, which were 
found in 63 sources (Table 1). In general, there were 50.34 
citations per document or 17.72 citations per document 
every year. There were a total of 122 documents cited in 
the chosen articles. Journal articles made up the majority 
of the publications that matched the search method (83), 
and conference papers made up a very small portion (7). 
There were only 5 articles written by a single author, and 
each document had an average of 4.21 co-authors. 

According to Bradford’s law [15], the main sources of 
relevant documents were IEEE_Access, 
IEEE_Journal_of_Biomedical_and_Health_Informatics and 
Computers_in Biology_and_Medicine, which published major 
part of the articles as given in Table 2. 

 
2.2. Analysis of Authors  
 

The highly significant scribes, ranked in order of their 
total citations and respective bibliometric data, can be 
found in Table 3. Hammad M emerged as the preeminent 
author, having garnered a remarkable 156 citations 
through his profound contributions in 4 distinct 
publications. In hot pursuit, Normainia S claimed the 
second spot with an impressive count of 103 citations, 
while simultaneously proving his productivity with 3 
notable publications. The most prolific wordsmith of 
them all, Acharya UR, effortlessly claimed the title by 
authoring a staggering 3 publications with 66 citations. 

The research elucidates the scientific output 
throughout the duration of the study, as illustrated in 
Table 1, focusing on the top 10 writers in terms of article 
quantity and total citation count per annum. The graphical 
representation in Fig. 2 showcases this information. 
Notably, the author with the highest number of citations 
also demonstrates an unwavering dedication to the field, 
evident through the longevity of their contributions, 
beginning in 2018 and culminating with their most recent 
publication in 2022. It is intriguing to observe that the 
author who is cited second most frequently is also the 
second most persistent, as evidenced by their publication 
of articles from 2018 to 2022. It is notable that certain 
authors featured in Fig. 2 are absent from Table 3, and this 
discrepancy is attributable to the sorting process utilized 
in Fig. 2 which involved the standardization of citations 
per annum. Consequently, some authors have recently 
produced valuable articles with commendable citation 
rates, yet their cumulative citation count has not yet 
reached a sufficiently high threshold to warrant inclusion 
in Table 3. 

Table 4 encompasses the foremost documents 
ascertained through worldwide citations. Table 4 pertains 

to the publications that were chosen based on the search 
approach, organized according to global citations. 

The research conducted by HANNUN AY et al [16] 
garnered the highest number of citations on a global scale. 
Within the examined listing of documents (Fig. 1), the 
study carried out by XIA Y, et al [17] was held in high 
regard, attracting significant attention from the broader 
scientific community, with a total of 221 global citations. 
Notably, the more recent investigation by FAN X [18] on 
collaborative representation for ECG recording should be 
emphasized, as it received considerable acclaim 
internationally. 
 
 
Table 2. The most relevant sources according to 
Bradford's Law [15] are  presented in descending order 
with number of documents. 

 

Ran
k 

Name of Source Docume
nts 

Zon
e 

1 IEEE_ACCESS 5 1 

2 IEEE_JOURNAL.OF 
BIOMEDICAL.AND.HE
ALTH INFORMATICS 

5 1 

3 COMPUTERS_IN 
BIOLOGY_AND 

MEDICINE 

4 1 

4 BIOMEDICAL_SIGNAL 
PROCESSING_AND 

_CONTROL 

3 1 

5 EXPERT SYSTEMS 
WITH APPLICATIONS 

3 1 

6 PHYSIOLOGICAL 
MEASUREMENT 

3 1 

7 ARTIFICIAL_ 
_INTELLIGENCE IN 

MEDICINE 

2 1 

8 BIOCYBERNETICS 
AND BIOMEDICAL 

ENGINEERING 

2 1 

9 COMPUTER.METHODS 
AND PROGRAMS IN 

BIOMEDICINE 

2 1 

10 COMPUTERS, 
MATERIALS AND 

CONTINUA 

2 1 
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Table 3. The most-relevant-sources according to Bradford's Law [15] are  presented in descending order with no.of 
documents. 

 
AUTHOR SCOPUS ID H-INDEX TOTAL 

CITATIONS 
NO.OF 

PUBLICATION 
FIRST 

PUBLICATION 
(YEAR) 

HAMMAD M 57194656523 18 156 4 2017 

NORMAINIA S 26639610000 17 103 3 2008 

ACHARYA UR 7004510847 115 66 3 1978 

LI Q 57221613252 25 42 2 2008 

ZHANG Y  16177024400 46 17 1 1990 

AFGHAH F 25928232700 22 44 2 2008 

BAALMAN SWE 57198490021 8 44 2 2017 

BLEIJENDAAL 
H 

57217050003 6 44 2 2020 

CHEN X  57192255114 29 24 1 2001 

CLIFFORD GD 7004468844 59 42 2 2001 

DARMAWAHYUNI 
A 

57212509655 12 83 2 2019 

 BAALMAN SWE  57198490021   8  44 2  2017 

 ELEGENDY IA  56545658900  15  20  2 2015 

 FIRDAUS F  56582818700  11  83  2 2016  

KHAN MA  57215096761 8 12 1 2018 

LI H  55707705400  13 12 1 2000 

LI Z  57212027319 5 17 1 2019 

LIU C  25724384300 23 35 1 2005 

 LOPES RR  57191221093 5 44 2 2016 

MOUSAVI S  56378061800  15 44 2 2014 

 

 
Fig. 2. According to the no.of articles (N. articles) and the total no.of citations per annum (TC per year), the top 10 
writers in the area have produced the most scientific work during the course of the research. The bibliometrix R-package 
was used to construct the figure [14]. 
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Table 4. The top 10 documents with the highest number of global citations. 
 

Paper DOI Ref Global Citations TC per Year 

10.1038/s41591-018-0268-3 [16] 1383 276.60 

10.1016/j.compbiomed.2017.12.007 [17] 221 36.83 

10.1109/JBHI.2018.2858789 [18] 199 33.18 

10.1109/JBHI.2018.2871510 [19]  145 29 

10.1088/1361-6579/aad9ed [20] 99 16.5 

10.7717/peerj.7731 [21] 84 16.80 

10.1016/j.knosys.2021.107187 [9] 83 27.67 

10.1007/s11042-020-08769-x [22] 82 20.50 

10.1109/ICIRCA48905.2020.9183244 [23] 80 20 

10.1155/2018/7354081 [24] 80 13.33 

 
 

Figures 3 and 4 exhibit the temporal evolution of 
research on ECG classification using deep learning for 
disease diagonosis. Figure 4 is constructed based on the 
author's choice of keywords, while Fig. 3 is based on the 

keywords found in the document titles. For Fig. 3, the 
most frequent trend topics per annum are presented. It is 
worth noting that no trivial keywords were excluded, and 
no manual filtering was performed. 

 
 
 

 
 
Fig. 3.  The emergence of the theme as provided by the subjects of interest. The most popular trend topics' usage over 
time is depicted in the graph. Utilising the bibliometrix R-pack, the figure was produced. 
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Fig. 4. The topic indicated by the title keywords is elaborated upon with a graph that tracks the occurrence frequency 
of these keywords over time, developed through the bibliometrix R-package. [14]. 
 

The tree map depicted in Fig. 5 provides a lucid 
understanding of the patterns and forthcoming scientific 
studies in the realm of ECG classification using deep 
learning for disease diagnosis. The figure was derived by 
employing the document title keywords, in a similar 
manner as displayed in Fig. 4, however, in this case, the 

cumulative frequency across the analyzed time period was 
taken into account. The relative size of the words in the 
map was determined by their respective frequencies, 
thereby ensuring that the most frequently occurring 
keywords were represented with more prominent 
characters. 

 
Fig. 5. A TreeMap was generated through the bibliometrix package in R, illustrating the most commonly occurring 
keywords in the titles of the examined papers, where the dimension of each term corresponds to its occurrence rate. 
 
 

Figures 4 and 5 analysis reveals a current pattern 
in the evolution of representation-based approaches. 
Terms like dictionary, low-rank, spare, cooperation, joint, 

and joint can be used to describe these strategies. As a 
result, Part B of this study includes a unique section 
devoted to these techniques. 
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3. Part B: The Expansion of Deep Learning 
 

Deep learning (DL), a new version of artificial neural 
networks (ANNs), falls under the broader categories of 
machine learning (ML) and artificial intelligence (AI).[25]. 
AI is firstly defined back in 1950s, during which 
researchers believed that computers had the potential to 
perform tasks comparable to human intelligence. Of 
particular significance, in 1950, Alan Turing posed the 
thought-provoking query, "Can machines exhibit thinking 
capabilities?" This inquiry set forth a trajectory that create 
a best way to the development of algorithms, progressing 
from knowledge-based systems to ML algorithms [26]. 
Claude Shannon and IBM's John McCarthy hosted a 
symposium on artificial intelligence (AI) at Dartmouth 
College in the United States in 1956. This event marked 
the origin and introduction of the term "Artificial 
Intelligence", which was subsequently employed in the 
2nd conference. AI refers to the emulation of human 
intelligence on computer systems, aimed at replicating 
human cognitive abilities [25], [27],[28]. This entails the 
creation of computer systems capable of executing tasks 
at a level comparable to, or even surpassing, human 
capabilities. Consequently, Artificial Intelligence (AI) 
concerns itself with the mechanization of human intellect 
in order to enable machines to perform tasks with a level 
of intelligence akin to that of humans [26],[29][30]. 

The machine learning paradigm proved to be 
advantageous in mitigating the limitations of symbolic 
artificial intelligence, It was unable to manage specific 
rules needed to solve more complex and ambiguous issues, 
such computer vision, text classification, pattern 
recognition,  image processing, audio recognition, and 
natural language processing. By feeding data with labelled 
responses into the system, the machine learning system is. 
"trained" to gain knowledge (much like people learn by 
experience), in contrast to the symbolic AI, which mapped 
input data to output data according to a predetermined set 
of rules. Without explicit programming, computers may 
learn new things thanks to machine learning (ML) [26], 
[31]. The procedure of learning involves adapting the 
parameters of the model so that it can perform a specific 
task. With this skill, an artificial intelligence (AI) system 
may improve its capacity to make precise predictions on 
fresh data by extracting pertinent insights. from raw. data 
and producing insights rely on. input-output linkages [32]. 
Widely used machine learning (ML) methods encompass 
decision trees (DT), multi-layer perceptron (MLP), k-
nearest neighbours (KNN), support vector machines 
(SVM), among others. Consequently, ML presents a 
pathway towards realizing the ultimate aim of artificial 
intelligence (AI), which is to automate cognitive human 
functions explicitly. The connection among artificial 
neural networks (ANN), deep learning (DL), machine 
learning (ML), and AI is illustrated in Fig. 6. 

When it pertains to the execution of tasks, the primary 
distinction between humans and machines lies in their 
level of intellect. Humans possess the ability to acquire 
knowledge through experience in order to make informed 

choices, whereas machines lack this capability and are 
designed to carry out predetermined and specific sets of 
tasks. The field of machine learning endeavors to narrow 
this disparity. The progression in bridging this gap has 
been facilitated by the intro of artificial neural networks 
(ANN). 

An Artificial Neural Network (ANN) replicates the 
operations of the human brain in a computerized model, 
albeit in a highly abstracted form of animal neural 
structures. The evolution of ANNs is marked by three 
significant periods. The journey began with the creation of 
the perceptron in the 1950s, evolved with the 
development of backpropagation in the 1970s, and 
reached a pivotal moment with the introduction of Deep 
Learning (DL) in the 1990s. The concept of the ANN was 
first introduced in 1943 by neurophysiologist Warren 
McCulloch and mathematician Walter Pitts. This 
foundational work was later expanded upon by 
researchers such as Frank Rosenblatt, who developed the 
first perceptron in 1957. The perceptron acts as a 
foundational element of the ANN, mimicking the 
function of a biological neuron.[31]. 

 

 

Fig. 6. This Venn indicates the link among DL, ANN, 
ML and AI. 

 

 

Fig. 7. Perceptron vs Neuron. 

 
Figure 7 depicts a conventional portrayal of a 

perceptron, denoted as the below side of the image, 
alongside a biological neuron, illustrated as the upper side 
of the image. The dendrites, denoted as (x1, x2, x3, ... x_n ) 
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serve as the carriers of input data. These input data are 
then subjected to multiplication with weights produced 
randomly, denoted as (w1,_w2,_w3,_..._wn), corresponding 
to each. input-data. The .dot product of matrix of 
(x1,_x2,_x3,_..._x_n) and (w1,_w2,_w3,_..._wn) is 
subsequently aggregated, and a probable value, commonly 
referred to as bias, is incorporated. This bias symbolises a 
biological neuron's centre. Following this, the function of 
activation, denoted as f, which symbolizes the axon, is 
calculated through the utilization of a function known as 
the step function. However, the aforementioned function 
is limited to approximating linear relationships within the 
dataset. Nevertheless, recent developments in the 
functions of activation, namely sigmoid, Rectified_Linear 
Unit (ReLU), and hyperbolic tangent (tanh), have enabled 
the estimation of intricate and nonlinear relationships 
within the input data. Moreover, these functions have the 
added advantage of normalizing the output data. 
Specifically, the output, denoted as y, assumes a value of 
one (1) when the result exceeds a predefined threshold, 
whereas it assumes a value of zero (0) otherwise. The 
computation of the outcome y is achieved with Eq. (1). 

 

 (1) 

 
In the year 1969, an authored publication by, Marvin's 

and, Papert, entitled "Perceptrons," highlighted the 
restrictions of the perceptron. It was found that the 
perceptron was inadequate in its ability to deal with more 
intricate characteristics such as the logic of XOR. 
Additionally, it struggled to address the non-linear 
characteristics of input information in artificial neural 
networks (ANN). The argument advanced by the authors 
advances that the singular perceptron approach to artificial 
neural networks was not easily adaptable for multi-layered 
artificial neural networks, resulting in financial difficulties 
for projects involving artificial neural networks due to 
restrictions imposed by different organizations. However, 
in 1981, P-Werbos introduced the initial proficient 
artificial neural network (ANN) that incorporated the 
back-propagation method. The back-propagation method 
operates by delicately adjusting the ANN's weights based 
on the previous iteration's calculation of the mistake rate, 
with the objective of minimizing the discrepancy among 
the actual outcome and the expected outcome (error). This 
iterative process subsequently enhances the ANN's 
capacity to generalize and make predictions. In 1986, 
Rumelhart conducted influential work that popularized 
the use of back-propagation and defined the concept of 
hidden layers in artificial neural networks [31],[33]. A 
visual representation in Fig. 8 illustrates a simplified 
depiction of an artificial neural network employing back-
propagation. A network of neurons can consist of a 
multitude of cells, varying in number from tens to 
hundreds. These cells are managed in separate layers, with 
every layer interconnected with the layers adjacent to it. 
The network itself is divided into three primary 
components: the input unit, positioned on the left-hand 

side; the hidden, layer(s), located in the middle; and. the 
output layer, situated on the right. The output layer is 
responsible for producing the final results. 

Figure 8 illustrates the operational process of back-
propagation, beginning with the initial data input, denoted 
as X, into the input layer. Subsequently, weights, 
designated as W and randomly selected, are applied to 
each input X and combined with a bias in the hidden layers. 
The output layer evaluates the training model's 
effectiveness. Then, the loss function is determined, and 
the back-propagation method is utilized to modify the 
weights in the hidden layers, aiming to decrease the loss 
function. This cycle continues repeatedly until the model 
has been sufficiently trained or achieves the set number of 
epochs. 

Deep. Learning (DL) technique is built upon the 
Artificial Neural Network (ANN), which employs both 
linear. and nonlinear. transformations to process the input 
data. These transformations occur across various hidden 
layers, ultimately leading to the output layer [34]. This 
method reflects the operation of the human brain by 
representing data across various layers of abstraction. As a 
result, the network gains the ability to understand diverse 
types of information, thereby inherently identifying 
important patterns within large datasets. [35]. Hinton [36] 
were credited as the first to introduce the notion and 
methodology of Deep_Learning (DL). DL, a variant of 
Machine_Learning (ML), empowers machines to acquire 
knowledge through experiential and progressive 
comprehension of worldly concepts [37],[38]. Conversely, 
the type of ML that utilizes only 3 layers of data 
representation  (hidden, input and output layers) is 
occasionally referred to as "shallow" learning or a shallow 
model [39].The utilization of the term "deep" in the 
context of Deep_Learning accentuates the concept of 
hierarchical strata of representations. In modern Deep 
Learning systems, there exists a multitude of layers, 
frequently encompassing tens or even hundreds of layers 
[26]. The primary distinction between deep learning (DL) 
and conventional artificial_neural_networks (ANNs) lies 
in the quantity of hidden layers (as shown in Fig. 9, their 
interconnections, and the ability to acquire expressive 
abstractions of the input information [40]. Nevertheless, 
the performance of DL is highly reliant on the 
characteristics of the data presentation provided to the 
technique [37]. Since the 1990s, DL has been successfully 
utilized in various applications, making it arguably the 
most renowned domain within the field of artificial 
intelligence [41]. For a more comprehensive historical 
timeline and evolution of DL, readers are referred to [42], 
as the details are beyond the scope of this study. DL is 
occasionally referred to as the universal learning approach 
due to its applicability in nearly all domains. Consequently, 
DL is considered to be task-independent [9]. Nonetheless, 
the potentials and possibilities of DL architectures 
continue to be explored. 
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Fig. 8. A conventional ANN network with back-
propagation process. 
 

 

Fig. 9. This illustrates a comparison between Artificial 
Neural Networks (ANN) and Deep Learning (DL). 

 
Figure 9 presents a comparison between artificial 

neural networks (ANNs) and deep learning (DL). ANNs 
are usually structured with three layers, with learning 
directed towards the output layer. In contrast, DL features 
many hidden layers, anywhere from dozens to thousands, 
enabling it to extract significant features and patterns from 
the input data. This is achieved through the back-
propagation algorithm, which helps DL models to learn 
and correct errors, resulting in models that are more 
adaptable. Additionally, the learning approaches in 
machine learning (ML) and deep learning (DL) are 
categorized into several types, including supervised, 
unsupervised, semi-supervised, and reinforcement 
learning [31]. 

 
3.1. Architectures of Deep Learning 
 

In this particular section, we shall deliberate upon the 
deep learning architecture that is frequently utilizing in the 
processing of electrocardiogram (ECG) signals. 
 
3.1.1. Deep neural networks 
 

Deep Neural Networks (DNNs) are a specialized 
category within machine learning, distinguished by their 
more complex network architectures relative to 
conventional neural networks. While Deep Learning (DL) 
and DNNs are often mentioned as synonymous, here we 
specify a DNN as a classic Artificial Neural Network 

(ANN) equipped with a minimum of two hidden layers. 
Thus, a DNN is defined as a particular form of Artificial 
Neural Network (ANN) that includes a minimum 
configuration of four layers: an input layer, several hidden 
layers, and an output layer.[43]. The application of DNNs 
faces obstacles due to the vanishing gradient issue, which 
complicates the training process. To address these 
challenges, researchers have developed diverse DL 
architectures. [39]. Figure 10 illustrates the structure of the 
DNN. 

 

 

Fig. 10. Classical DNN architecture. 

 
3.1.2. Convolutional neural networks 
 

Convolutional Neural Networks (CNNs), which are 
based on the neurophysiological principles of the human 
visual field, were initially defined in the year 1962 by Hubel 
and Wiesel [43]. This particular type of neural network has 
emerged as the most widely employed technique for 
computer vision and video recognition tasks [44] CNNs 
are designed as deep learning-based algorithms that 
possess the ability to autonomously and elastically learn 
distinctive parameters from intake images or data, 
subsequently facilitating the classification of said data into 
predefined categories. The structure of a CNN entails 
three fundamental components: the layers of convolution, 
pooling, and fully. connected. The layers of Convolution. 
& pooling are typically utilized to fetch relevant 
parameters, while the layers those are fully connected are 
responsible for the categorization process [35]. The initial 
proposition of CNN was introduced by Fukushima [45]; 
however, its utilization remained limited until Lecum et al. 
designed CNN in 1998 specifically for the critical analysis 
of a document. This design yielded favorable outcomes in 
the classification of handwritten digits [46]. Consequently, 
it took approximately 14 years for CNN to gain popularity 
when Krizhevsky et al. significantly enhanced their model, 
known as AlexNet, resulting in a remarkable performance 
improvement. Notably, AlexNet emerged triumphant in 
the ILSVRC-2012 competition [47]. The subsequent year, 
in 2013, ZF-Net was evolved as an improvement upon 
Alex-Net [48]. Later on, researchers from Google Inc. 
crafted GoogLeNet, a network with a remarkable depth of 
22 layers [49]. 

The GoogLeNet emerged victorious in the ILSVRC 
2014 fuss. Simonyan & Zisserman [50] introduced 
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VGGNet, also known as VGG, and claimed the 2nd  and 
1st  positions in the ILSVRC 2014 for classification and 
localization tasks, respectively. He et al. [51] proposed 
ResNet, another robust CNN architecture, which is 
considered as the framework of residual learning. This 
technique achieved the top spot in the ILSVRC. 2015 task 
of classification. There exist other variations of ResNet, 
namely ResNet34 & ResNet50, & ResNeXt structures. 
SqueezeNet [52] is a model that is built upon ResNet and 
boasts memory requirements that are 510 times lower, 
thanks to the implementation of deep compression 
techniques. Huang et al. [53] defined DenseNet, a CNN 
technique which is densely connected, which parameters 
each layer. connected to every other layer in a network of 
feed-forward. This unique design provides several 
advantages over previous CNNs, including the reduction 
of the vanishing-gradient issue, enhanced parameter 
casting, promotion of feature reuse, and a reasonable 
decrease in the No.of required values. The convolutions 
neural network (CNN) is widely regarded as uttermost 
frequently employed deep learning (DL) technique for 
classification jobs [54][55]. Its application extends to 
different domains like computer vision [56], language 
translation [57], image segmentation [58], and object 
recognition [59], among others. The CNN's architectural 
composition, as depicted in Fig. 11, effectively illustrates 
the distinct components that constitute its structure. 

 

 

Fig. 11. The CNN’s Architecture [60]. 

 
GoogLeNet clinched the top position in the ILSVRC 

2014 competition. Simonyan and Zisserman[50] 
introduced VGGNet, or simply VGG, securing both the 
first and second spots in the ILSVRC 2014 for localization 
and classification tasks, respectively. Following this, He 
and colleagues [51] unveiled ResNet, a powerful CNN 
framework known for its residual learning capability, 
which took first place in the ILSVRC 2015 classification 
challenge. ResNet has been developed into various forms, 
including ResNet34, ResNet50, and ResNeXt. Built on the 
ResNet architecture, SqueezeNet [52] significantly reduces 
memory usage by 510 times through advanced deep 
compression methods. Huang and his team [53] 
developed DenseNet, a CNN with a unique architecture 
where each layer is directly connected to every other layer 
in a feed-forward manner. This design offers multiple 
benefits, such as alleviating the vanishing-gradient issue, 
improving feature propagation, encouraging feature reuse, 
and substantially lowering the number of parameters 

needed. Convolutional neural networks (CNNs) [54], [55] 
are recognized as the predominant deep learning method 
for classification, with applications in fields like computer 
vision [56],, language translation [57], image segmentation 
[58],, and object recognition [59]. The structure of CNNs, 
as shown in Fig. 11 [60] clearly demonstrates the various 
components that make up its architecture. 

Data input, for example, an image with dimensions n 
× n × r, with n representing both the width and height of 
the image and r denoting the channel count, undergoes 
processing via convolution and pooling layers. 
Throughout this phase, the input image's attributes, 
depicted as the input tensor, are extracted. Subsequently, 
image classification takes place in the fully connected layer, 
utilizing the Softmax function to ascertain the 
classification of the object based on probabilities that vary 
from 0 to 1 [60]. 

The Convolutional Layer: The first layer that 
accepts the input information is called as the convolution 
layer. The Kernel, referred to as k, is an m-by-m-by-p 
matrix, where m is lesser than the dimensions of the input 
data(image), n, & p could be equal to r. The array of 
numbers, r is equal to tensor. To calculate the dimensions 
of k we can use n - m + 1. At each location of the tensor, 
a matrix multiplication is performed among input tensor 
& each element of k. This computation is executed as the 
kernel hovers above the input tensor with a specified 
length of stride, denoting the separation between two 
consecutive kernels. The resultant values are subsequently 
aggregated to acquire the_output._value at the 
corresponding location of the. output tensor, widely 
recognized as the map of feature. The tensor proceeds to 
move using the identical stride value. and repeats this 
sequence until the entirety of the image has been traversed. 
This process can be visualized in Fig. 12 ([61]). The 
convolution operation possesses the capability to be 
executed across many layers of convolutional, thereby 
effectively fetching high-level parameters to enhance 
performance. A fundamental characteristic of the 
convolution operation is its employment of sharing the 
weight, whereby kernels are distributed around all 
positions within the image. In cases wherever the kernels 
do not align flawlessly with the input, one may choose to 
employ either valid padding or zero padding. Valid 
padding entails a reduction in dimensionality of the 
convolved feature in contrast to the intake data, as it 
excludes the portion wherever the kernel does not suitable. 
On the other hand, zero padding involves the insertion of 
zeros in order to accommodate the filter. Prior to training, 
the magnitude of the. kernels (typically 3 × 3), the No.of 
kernels, padding, & stride value are predetermined. These 
parameters are subsequently retained for the layer of 
pooling. The convolution process can be mathematically 
written as shown in Eq. (2) [61]. 
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Fig. 12. A demonstration of the convolution process, 
specifically with a stride of 1, a kernel size of 3-by-3, and 
without any padding [61]. 

 
 

 (2) 

 
In the given context, represents the resultant of the 

present layer, denotes the results of the precedent 

layer,  signifies the kernel utilized by the current layer, 

and  embodies the biases associated with the present 

layer. The letter  symbolizes the selection of the maps 

of input. Each output map receives an additional bias. The 
input maps undergo convolution with unique kernels to 
produce corresponding output maps. Following this, an 
activation function is applied to the output maps, which 
may be linear or non-linear, including options like sigmoid, 
Softmax, rectified linear unit (ReLU), hyperbolic tangent, 
or identity functions. 

The pooling layer, in essence, executes a sub-
sampling procedure on the convolved features (also called 
as the. feature-map) in preparation for the subsequent 
convolutional layer. This serves the purpose of reducing 
the computational power required for data processing 
through dimensionality reduction, while also mitigating 
the risk of overfitting. Nevertheless, it still retains crucial 
information. Various pooling operations exist, including 
average, max, and sum. pooling. Among aforementioned 
techniques, average & max pooling are. the most widely 
utilized techniques [35]. The sub-sampling procedure is 
mathematically written as Eq. (3). 

 
 (3) 

 
Fully Connected Layer (FC): The fully connected 

(FC) layer serves to transform the feature maps attained 
from either the pooling or convolutional_layers into a 
flattened form. This process converts 2-dimensional (2D) 
feature maps into a 1-dimensional (1D) vector. After 
flattening, this vector is forwarded to a fully connected 
(FC) layer tasked with classification. A key characteristic 
of this layer is its ability to connect every input to each 

output through adjustable weights, which are fine-tuned 
during the learning process. Subsequent to the fully 
connected layer, a nonlinear_function is applied. Finally, 
an activation function, such as sigmoid or softmax, is 
utilized to classify the input image. [61]. 

 
3.1.3. Deep recurrent neural networks 

 
One kind of recurrent_neural_networks (RNNs) that 

has at least. two hidden layers is the deep recurrent neural 
network. The word "recurrent" comes from the fact that 
its current output is reliant on earlier calculations [62]. 
Unlike neural networks those are feed forward and solely 
train in the forward direction, RNNs retain information 
from the previous step to facilitate training. As a result, 
these methods are insufficient when applied to sequential 
data that possess interdependencies, such as making 
forecasts for time series, identifying speech patterns, and 
recognizing the meaning behind vocal cues. RNNs 
possess a "memory" element that retains the previous 
computation, providing contextual information to the 
current state. Recurrent Neural Networks (RNNs) have 
the benefit of utilizing shared parameters across all layers, 
from the input to the hidden layers and finally to the 
output layer. This feature significantly lowers the 
complexity of parameters in comparison to other types of 
artificial neural networks. The optimal method for training 
an RNN is to use data with inherent dependencies, which 
helps in retaining information from previous sequences. 
[40]. However, the advantages associated with the RNN 
are accompanied by the drawback of the vanishing 
gradient issue [63]. Consequently, the long short-term 
memory unit (LSTM) was proposed as an effective 
solution to address this challenge [64]. Another RNN-
based architecture that exists is the gated recurrent unit 
(GRU), which can be considered a specialized version of 
LSTM. GRU exhibits comparable performance to LSTM 
but possesses a higher speed [65]. In the context of this 
work, we solely present the structure of LSTM as it is the 
most commonly employed variant of RNN [66]. The 
depiction of LSTM's architecture can be found in Fig. 13 
[40]. 

 

 

Fig. 13. Illustrates LSTM's Architecture [40]. 

 
The Long Short-Term Memory (LSTM) model 

enhances the capability of Recurrent Neural Networks 
(RNNs) to maintain information over time, even with 
delays in the input data. The LSTM framework is 
structured around three key gates: the input, forget, and 
output gates. These gates regulate the information transfer 
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from the past state to the current state and between 
memory cells. The input gate specifically manages when 
new data is incorporated into the memory cell[67]. The 
forget gate regulates the duration for which stored 
information is maintained, thereby creating space for. new 
data. Lastly, the output. gate determines when the 
information stored in the cell is utilized in the output [68]. 
Figure 13 illustrates the visual representation of the Long 
Short-Term Memory (LSTM) architecture. The variables

, , and  denote the memory, output, and current 

input states of the LSTM cell. Similarly, , , , 

, 𝑀𝑡−1 and represent the memory, outputs, 

and input states from previous time steps. On the other 
hand, and correspond to the posterior output 

and memory state for the posterior time step input . 

In the operation of a simplified LSTM cell, the recurrent 
output, intput, and memory state are represented by the 
variables O, I, and M, respectively. Additionally, the 
weight for the computation within the cell is denoted by

. The LSTM model's ability to process temporal 

information has contributed to its popularity and 
widespread usage [40]. The memory cell ct is updated, 
while simultaneously generating an output vector ht in 
accordance with the prescribed equations [69]. 

 
  (4) 

 
  (5) 

 
  (6) 

 
 (7) 

 
   (8) 

 
In the context of this study, the variable  represents the 

input vector, whereas , , and represent the activation 

vectors of the input, forget, and output gates, respectively. 
The weight matrices of the respective gates are denoted by 
W. The symbol is utilized to denote the Hadamard 
product. The activation function , , and  are 

employed, with  representing the sigmoid function and 

 and  representing hyperbolic tangent functions, in a 

typical implementation. 
 
3.1.4. Restricted Boltzmann machines 
 

Boltzmann Machines (BMs) function as bidirectional 
networks featuring symmetric links between visible units, 
which are stochastic, and hidden units. Visible units form 
the foundational layer of the network, symbolizing various 
components of data, whereas hidden units are designed to 
discern the connections among these components. Both 
visible and hidden units undergo updates in their 
probabilistic states over time, influenced by adjacent units' 

states, a factor that escalates the computational demands 
for training Boltzmann Machines. On the other hand, 
Restricted Boltzmann Machines (RBMs) offer a 
streamlined variant of generative stochastic artificial neural 
networks by implementing a more defined network 
architecture, thus diminishing the complexity of learning 
parameters. RBMs facilitate undirected interactions 
between hidden and visible unit pairs while constraining 
the network’s structure to enhance the efficiency of the 
learning mechanism [70]. Consequently, RBMs represent 
an evolution of BMs by imposing limitations on the 
interconnections within layers, notably between hidden 
and visible units, to simplify and optimize the learning 
trajectory. 

This modification leads to the creation of a bipartite 
graph structure, which is why it is referred to as an RBM 
[60]. 
 

 

Fig. 14. The architecture of Deep Belief Network. 

 
The Restricted Boltzmann Machine (RBM) possesses 

the capacity to acquire knowledge regarding the input 
probability distribution through both supervised and 
unsupervised approaches. Consequently, it has gained 
popularity as a framework for Deep Learning [60]. Within 
the realm of Deep Learning, there exist two primary 
architectures that incorporate the RBM as a learning 
module. These architectures are known as Deep 
Boltzmann Machines (DBM) & Deep Belief Networks 
(DBN). Both DBN and DBM are classified as members 
of the "Boltzmann family"  [35]. However, this study 
places particular emphasis on DBN. DBN is a model that 
combines two distinct types of Artificial Neural Networks 
(ANN).The input unit of DBNs incorporates RBMs, 
while the output unit is composed of Deep Feedforward 
Neural Networks (D-FFNN) [42]. The architecture of the 
DBN is shown in Fig. 14. 

The Deep Belief Network (DBN) exhibits undirected 
relationship among its top 2 layers and directional links 
among all prior layers [35] (refer to Fig. 14). The DBN is 
initialized through the application of a greedy layer-wise 
training approach for the Restricted Boltzmann Machine 
(RBM) [35], [39], [40] . The initial proposal and 
introduction of the DBN was made by Hinton and 
Salakhutdinov [36], An unsupervised learning algorithm, 
which functions through a greedy, layer-by-layer approach, 
enables the Deep Belief Network (DBN) to train 
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hierarchical deep models effectively. This method 
facilitates the development of a deep hierarchical 
understanding of the training data. It accomplishes this by 
establishing a joint distribution between the observed 
vector x and the hidden layer, as shown in Eq. (9). 
 

 (9) 

 
where is a conditional distribution 
for the visible units at level k conditioned on the hidden 

units of the RBM at level k+1 and  is the 
visible hidden joint distribution in the top level RBM [35]. 
 
3.1.5. Autoencoders 
 

An Autoencoder (AE) is an unsupervised deep 
learning (DL) technique that was primarily introduced by 
LeCun et al. in 1987 [46]. The main objective of an AE is 
to decrease the dimensionality of the input information 
and reconstruct it in the last layer [63]. An AE consists of 
three layers and can be transformed into a vast AE by 
incorporating many hidden-layers. The output and input 
layers possess an equal number of units, which are 
denoted with identical dimensionality. Conversely, the 
hidden layers often possess a lesser number of units, 
leading to a more condensed portrayal of the input data 
[40], [60]. The architecture of AE is illustrated in Fig. 15 
[60]. AE training conforms of two stages: the encoder & 
the decoder. Back propagation is employed to train the 
network. During the encoding stage, the inputs undergo a 
transformation process where they are converted into 
concealed representations through the utilization of 
weight metrics derived from the lower half layer. 
Subsequently, in the decoding stage, the objective of the 
network is to reconstruct the initial input by employing the 
metrics derived from the upper. half layer. The encoding 
and decoding stages can be accurately described using 
mathematical language, as shown in Eq. (10) and (11), 
respectively. 
 

 

Fig. 15. The architecture of ANN [60]. 

 

  (10) 
 

  (11) 
 
The parameters w & b are subject to adjustment, while f 
represents the function of activation. The input vector x 
and the hidden representation y complete the set of 
variables. Moreover, the transpose of x is referred to as w', 
while the bias to the output layer is denoted as c. The 
regenerated input at the output layer is denoted as x'. To 
update the autoencoder's parameters, the following 
equations can be utilized: 
 

  (12) 

 

  (13) 

 
where  and  represent the regenerated values for 

w & b correspondingly at the conclusion of the present 
iteration, while E denotes the regeneration error of the 
input at the layer of output [60]. 
 
3.1.6. Generative adversarial networks (GAN)  
 

First introduced by Goodfellow et al. in 2014 [71], the 
Generative_Adversarial_Network (GAN) is a deep 
learning topology that uses an unsupervised learning 
technique. This network conforms of two competing 
topologies, namely the generative & the discriminator 
network, engaged in a zero-sum game. The discriminative 
model aims to determine the likelihood that a specific 
sample originates from the training data, or the 
distribution depicted by the generative model. On the 
other hand, the purpose of the generative model is to 
grasp and mimic the basic distribution underlying the data. 
This interaction can be interpreted as a game of min-max 
between the two algorithms, where the discriminative 
model aims to accurately recognize adversarial instances 
generated by the generative model. Until the adversarial 
instances can no longer be distinguished from the initial 
ones, both algorithms' performance is consistently 
improved [60]. A graphic representation of data flow 
inside the GAN deep network can be found in Fig. 16 [60]. 
 

 

Fig. 16. The architecture of GAN [60]. 

For a panoramic discussion contrasting RNN & CNN, 
DBN & DBM, RBM & AE structures, readers are directed 
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to consult the work of Tobore et al [40] as the scope of 
this present work does not encompass such an extensive 
analysis. 

 

4. The Electrocardiogram (ECG) 
 
An electrocardiogram, often referred to as an "ECG" 

or "EKG," is a diagnostic test that measures the electrical 
activity of the heart. This test helps identify different 
cardiovascular diseases (CVDs) and offers insightful 
information on the condition of the heart. With 
continuous monitoring, The ECG is a cost-effective, non-
invasive tool for diagnosing cardiac issues like arrhythmias. 
Through ECG analysis, crucial information about an 
individual's heart rate, rhythm, and structure can be 
obtained [72], [73]. The ECG examination, as a customary 
procedure, furnishes pertinent information regarding the 
temporal extent of electrical wave transmission within the 
cardiac organ. By analyzing time intervals, healthcare 
professionals are able to ascertain the regularity, velocity, 
or irregularity of the aforementioned electrical signal as it 
progresses through the heart. Moreover, the quantification 
of the intensity of electrical wave propagation across the 
myocardial tissue aids cardiologists in the detection of 
potential concerns, including excessive exertion or 
hypertrophy of specific cardiac areas. Electrocardiography, 
a technique with a century-long history, holds a well-
established position in the management of patients with 
diagnosed or potential cardiovascular conditions [74]. 
Research also delves into a range of other biosignals such 
as Photoplethysmography (PPG), Phonocardiography 
(PCG), Electroencephalography (EEG), 
Electrooculography (EOG), Electromyography (EMG), 
and the monitoring of blood pressure.The 
Electrocardiogram (ECG) is just one among many 
biosignals or physiological signals studied.  

Other relevant biosignals include EMG, associated 
with changes in skeletal muscle movements; EEG, for 
recording brain activity via the scalp; and EOG, 
monitoring variations in the eye's corneo-retinal potential 
[75]. Additional measures such as PPG, which assesses 
organ volume changes over time through light absorption, 
blood pressure readings, and more, are also of significant 
interest. 

The electrocardiogram (ECG), created in 1895 by 
Willem Einthoven, emerged as the pioneering diagnostic 
tool [34]. Its utility extended to encompass medical 
diagnosis, particularly in relation to cardiovascular diseases 
(CVDs) [76]. ECG-based biometric systems, utilizing both 
single and multimodal approaches, have been proposed 
for the purpose of human validation and authentication, 
relying on ECG as the physical attribute. Furthermore, 
scholarly literature has presented ECG-based systems for 
detecting driver drowsiness and stress levels, aiming to 
mitigate the occurrence of accidents. The ECG has 

 

1 https://cvphysiology.com/arrhythmias/a009 

additionally demonstrated its value in predicting the 
heart's size and location, locating cardiac wounds, and 
assessing the efficacy of pharmaceutical interventions [77]. 

 
4.1. The morphology of ECG wave  

Measurement is conducted in the standard ECG 
machine of 12-lead by positioning the leads on the body, 
which serve as the channels for recording. These leads 
include lead I to III, aVR, aVF, aVL, V1 to V6. Among 
these leads, lead II is predominantly utilized for assessing 
the behavior of the five waves due to its distinct signal 
compared to the others [78], [79]. Typically, these leads are 
positioned on the chest of the individual, with six 
electrodes in total. Each electrode records the activity 
from various angles. The 12-lead resting ECG is widely 
acknowledged as the most precise tool for capturing 
cardiac rhythm [80]. However, the system of ECG's 
framework utilized to fetch signals depends on the specific 
application [81]. Some procedures require the patient to lie 
down in a supine position, as is the case with the 12-lead 
resting ECG, while others require continuous monitoring 
over several hours or days, like the use of a Holter monitor. 
ECG measurement techniques have been categorized into 
on-body, in-body, and no-contact methods. On-body 
ECG recording involves attaching electrodes directly to 
the patient's skin to record the heart's electrical activity. In-
body measurement involves placing a device inside the 
patient's body. No-contact methods, on the other hand, 
allow for ECG recording without direct skin contact, such 
as through capacitive sensing [82]. 

 

Fig. 17. The ECG Signal1. 

 
Figure 17 demonstrates the elements of ECG 

waveforms as recorded by an ECG device. The ECG is 
composed of five waves, known as the PQRST sequence, 
which shed light on the heart's electrical functions. These 
waves play a crucial role in diagnosing heart irregularities. 
The initiation of the heart's cycle is marked by an electrical 
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signal from the sinoatrial (SA) node in the heart's right 
atrium, causing the atria to contract and send blood to the 
ventricles. The P wave in the ECG indicates the atrial 
depolarization, illustrating the electrical signal's 
distribution across the atria. The QRS complex, 
encompassing the R, Q, and S waves, depicts a single 
cardiac beat and the ventricular depolarization that occurs 
in sync with atrial contraction, facilitating the movement 
of blood into the ventricles, then their subsequent 
relaxation. The electrical impulse then progresses from the 
SA node to the atrioventricular (AV) node, serving as the 
electrical link from the atria to the ventricles, leading to 
ventricular contraction. Finally, the T wave represents the 
ventricular repolarization, signaling the end of electrical 
activity and the ventricles returning to a relaxed state. [69]. 

 
4.2. ECG Waveforms Measuring and Diagnoses 
 

The analysis of the standard electrocardiogram (ECG) 
waveform necessitates the examination of the time 
intervals separating different waves. More precisely, the 
ECG waveform incorporates the P-Q-R-S-T intervals, 
with the P wave occurring before and finishing prior to 
the QRS complex, lasting anywhere from 0.06sec to 
0.12sec. The PR time span extends from 0.12sec to 
0.20sec. An elongated time span of PR may serve as an 
indicator of cardiac blockage. Subsequently, the QRS 
complex ensues the PR time span, lasting from 0.06sec to 
0.10sec. The ST part persists from the S wave until the 
onset of the T wave. The duration of the QT time span 
typically ranges from 0.36sec to 0.44sec [83]. Extended 
intervals might signal the presence of specific cardiac 
disorders, like arrhythmias. According to the American 
Heart Association, arrhythmias are deviations from the 
regular pattern of heart's electrical impulses. This can 
manifest as bradycardia, where the heart beats more slowly 
than normal, covering conditions like supraventricular 
tachycardia, atrial tachycardia including fibrillation and 
flutter, and ventricular tachycardia. On the flip side, 
tachycardia, or an accelerated heart rate, might include AV 
heart blocks, bundle branch blocks, and tachybrady 
syndrome. Additional manifestations of arrhythmia 
include irregular contractions of the upper cardiac 
chamber called atrial fibrillation, abnormal heart rhythms 
known as conduction disorders, and premature heart 
contractions, among others. Other accompanying 
symptoms may include syncope, vertigo, debility, and 
typically anginal pain. In some cases, individuals may 
remain asymptomatic [80], [84].  

 

2 https://www.nhlbi.nih.gov/health/heart/anatomy 

 

Fig. 18. Normal Human Heart Structure2. 

 
However, the process of manually inspecting ECG 

strips for diagnostic intentions is a laborious undertaking 
that heavily depends on the proficiency of the Physiologist 
or Cardiologist. Moreover, it is susceptible to human 
mistake caused by fatigue [72] Fig. 18 got from3 . However, 
the implementation of Deep Learning techniques has 
demonstrated promising outcomes in automatically 
fetching the intricate attributes of the ECG raw 
information and conducting analysis [85]. This 
advancement significantly increase the fertility of 
Cardiologists by facilitating prompt and accurate decision-
making. Other diagnostic methods employed in the 
detection of heart conditions and infections contain chest 
X-rays. These images of chest X-ray have proven to be 
effective in identifying the emergence of respiratory 
infectious diseases, such as the coronavirus 2019 
(COVID-19), by utilizing Deep Learning techniques [86]. 
Although COVID-19 is primarily classified as a lung-
related illness, a research has proved that 20% patients 
with COVID-19 exhibit indications of cardiac issue [87]. 

 

5. Discussion and Findings 
 
The domain of Deep Learning (DL) has emerged as 

an active and crucial field, particularly in the context of 
medical and healthcare applications, where its utilization 
aims to enhance the quality of diagnoses. Within this 
domain, healthcare personnel play a pivotal role in the 
identification of diseases and the determination of the 
most suitable treatment methods. However, this 
responsibility comes with a set of challenges and 
obligations that healthcare practitioners have to face over 
an extended period of time. Furthermore, medical doctors 
are professionals who rely on symptoms and test results 
to make intelligent decisions. Nevertheless, the attainment 
of sound judgments necessitates a certain level of 
knowledge [88]. The electrocardiogram (ECG) is an 
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essential tool used in the detection and evaluation of 
cardiovascular diseases (CVDs). Its utilization aids medical 
professionals and cardiologists in making more informed 
judgments. Presently, deep learning (DL) techniques are 
being applied to analyze physiological waves, enabling the 
discovery of hidden links. This assists healthcare providers 
and medical practitioners in making timely and 
knowledgeable decisions, as well as predicting a wide 
range of clinical events [89]. 

A suggestion was put forward to apply a deep densely 
connected neural network (DDNN) model for detecting 
Atrial Fibrillation (AF) [90]. Leveraging data from three 
sources: the Chinese PLA General Hospital, the China 
Physiological Signal Challenge 2018, and CardioCloud 
Medical Technology, the research demonstrated 
exceptional outcomes in accuracy, specificity, and 
sensitivity across 11,994 participants. In a separate study, 
a deep neural network (DNN) model was employed for 
the Prenatal Detection of Congenital Heart Disease 
(CHD), achieving a 76% accuracy rate using a private 
dataset of fetal ECG readings from both normal and 
CHD-affected groups [91]. To improve results, increasing 
the sample size or dataset might be considered necessary. 

A CNN technique was proposed by Acharya and 
Fujita et al [34] to accurately detect arrhythmias. In this 
study, two CNN architectures, namely Net A & Net B, 
were introduced, each utilizing different input samples. 
The evaluation of the CNN models focused on specificity, 
accuracy, and sensitivity. Notably, Net B achieved an 
accuracy of 81.44% when utilizing specific databases. The 
DL architectures demonstrated favorable performance 
when applied to ECG segments of varying durations. 
However, it was observed that there existed limited data 
and required lengthy training time. To address the issue of 
limited data, data augmentation and the bagging algorithm 
were suggested as potential solutions. Additionally, 
Acharya et al [92] proposed another study involving a 
CNN architecture designed for the classification of life-
threatening ventricular arrhythmias. This architecture 
successfully distinguished between shockable & non-
shockable ventricular arrhythmias through the utilization 
of 2-sec ECG portions. Immediate treatment options for 
shockable arrhythmias include CPR and defibrillation. 
Accurate diagnosis of these arrhythmias is critical for 
improving the efficiency of automated external 
defibrillators. The CNN algorithm secure 93.18% 
accuracy using specific databases, but limited data and 
training time posed challenges. In another study by [93], a 
CNN model was proposed to classify heartbeats with high 
accuracy. 

The model demonstrated a 94.03% accuracy rate 
using the MITDB dataset . [94]. A study introduced a 2D-
CNN algorithm specifically designed for arrhythmia 
detection, transforming ECG signals into 2D images and 
achieving a notable accuracy of 96.69% on the MITDB 
dataset. CNN models, after being thoroughly trained on 
extensive datasets [95]., can be adapted for various 
applications with little to no adjustments, whether using 
the original dataset or different data types. Known as pre-

trained or transfer learning models, these are advantageous 
in scenarios of data scarcity or when computational 
resources for training are limited. Alquran et al . [96]. used 
two such models, AlexNet and GoogleNet, for ECG 
signal classification, applying Higher Order Spectral 
estimation to extract features from ECG signals before 
classification. Using the MITDB dataset, the combination 
of third cumulants with GoogleNet achieved a 97.8% 
classification accuracy. In another study, Mohamad et al. 
leveraged the pre-trained VGG-Net [97]. CNN model for 
effective ECG signal classification, showing promising 
results in identifying supraventricular ectopic beats (SVEB) 
and ventricular ectopic beats (VEB). Additionally, Amrani 
et al. utilized a deep CNN for feature extraction, 
employing a fusion technique named multi-canonical 
correlation analysis (MCCA) for feature collection, which 
were then classified using a Q-Gaussian multi-class SVM 
(QG-MSVM) [78]. 

Cai et al [98]. introduced a deep densely neural 
network (DDNN)-based algorithm in their research to 
detect Atrial Fibrillation (AF), focusing specifically on the 
AF category due to the scarcity of data in other classes. 
The model demonstrated remarkable performance, 
achieving specificity, accuracy, and sensitivity rates all 
exceeding 99%. This research analyzed data from three 
different sources, including 11,994 unique patients from 
the China Physiological Signal Challenge 2018, the 
Chinese PLA General Hospital, and wearable ECG 
devices by CardioCloud Medical Technology Co. Ltd. in 
Beijing. In another study, Vullings utilized a Deep Neural 
Network (DNN) to develop an approach for the prenatal 
identification of congenital heart disease (CHD) [91]. This 
study used a proprietary dataset containing fetal ECG 
readings from 266 healthy individuals and 120 patients 
with CHD, achieving an accuracy rate of 76%. The 
findings suggest that the model's performance could be 
enhanced with a larger dataset or population. 

Acharya et al. [93] introduced a convolutional neural 
network (CNN) approach for detecting arrhythmias. The 
research proposed two distinct CNN architectures, 
labeled as Net B and Net A, with input sizes of 500 and 
1250 samples, respectively. Apart from Net B, which 
achieved an accuracy rate of 81.44% utilizing the MIT-
BIH Atrial Fibrillation Database (AFDB), the Creighton 
University Ventricular Tachyarrhythmia Database 
(CUDB), and the MIT-BIH Arrhythmia Database 
(MITDB), all other CNN models surpassed 90% in 
specificity, accuracy, and sensitivity. These deep learning 
frameworks demonstrated notable effectiveness with 2-
second and 5-second segments of electrocardiogram 
(ECG) recordings. However, the study encountered 
limited information availability for training, consequently 
leading to excessive training time. To address this issue, 
data augmentation and bagging algorithms were suggested 
as potential solutions. Furthermore, utilising 2s ECG 
sections and a CNN construction, which Acharya et al. [92] 
presented the categorization of shockable. and non-
shockable. life-threatening ventricular arrhythmias. 
Defibrillation & Cardiopulmonary resuscitation (CPR) are 
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often used and strongly advised for the timely treatment 
of shockable ventricular arrhythmias. Nevertheless, 
precise detection of both shockable & non-shockable 
ventricular arrhythmias is essential to improving the 
efficacy of automated external defibrillators (AEDs) for 
defibrillation. When the CNN model was assessed using 
VFDB, MITDB, and CUDB, its accuracy was found to be 
93.18%. But issues that affected the model's effectiveness 
included the scarcity of data and the length of the training 
period. Another work by Acharya et al.[93] offered a CNN 
algorithm for heartbeat classification, which used the 
MITDB and produced an accuracy of. 94.03% (Set B). 
Additionally, a research by Al-Huseiny et al. [94] 
introduced a 2D-CNN model for arrhythmia 
identification. Initially, the ECG signals were converted 
into two-dimensional ECG pictures, which were then 
used as training model inputs. On the MITDB a database, 
the algorithm's performance was 96.69%. 

Algorithms based on Convolutional Neural Networks 
(CNNs) that have been trained on large-scale datasets can 
be redeployed with little to no adjustments, whether they 
are applied to the same type of data they were originally 
trained on or to different datasets. These are often referred 
to as pre-trained models or, within the context of transfer 
learning, as models ready for application across various 
tasks [95]. Such models are particularly valuable in 
scenarios where data or computational resources are 
scarce for training on new datasets [77]. In one study, pre-
trained CNNs, specifically GoogleNet and AlexNet, were 
employed to classify electrocardiogram signals after 
applying higher-order spectral analysis for feature 
extraction [96]. This approach, using pre-trained 
GoogleNet combined with third cumulants on the 
MITDB, achieved an accuracy of 97.8% [97]. Another 
study introduced the use of a pre-trained VGG-Net for 
direct ECG signal classification, demonstrating effective 
detection of supraventricular and ventricular ectopic beats 
using the MITDB [78]. A sophisticated CNN model using 
a multi-canonical correlation analysis (MCCA) as a feature 
extraction method was proposed, with Q-Gaussian multi-
class SVM (QG-MSVM) for feature classification, 
achieving an accuracy of 97.37% in arrhythmia detection. 
This indicates the fusion method's superiority over other 
evaluated techniques, albeit with potentially longer 
training times. Additionally, a study utilizing a pre-trained 
CNN, ResNet, optimized with adaptive moment 
estimation (Adam) and stochastic gradient descent (SGD), 
showed SGD achieving higher accuracy, at 96% compared 
to Adam's 83% [99]., underscoring the effectiveness of 
pre-trained CNNs in medical signal analysis. 

However, more research is necessary to solve the data 
imbalance problem and enhance performance. [100] 
suggested using a convolutional block to enhance the 
performance of the three-layer baseline CNN (network A), 
which is a multiscale fusion CNN. Using the MITDB, the 
suggested model (Network B) performed on average 
96.53%, 95.48%, and 87.75% for sensitivity, accuracy, and 
specificity, respectively. For the categorization of ECG 
readings, [101] proposed a model combining Extreme 

Learning Machine (ELM) & CNN . Even with the 
Physikalisch-Technische Bundesanstalt Diagnostic 
database (PTBDB), the performance accuracy was still 
higher than with more conventional models like K-NN, 
Decision Trees, and SVM, even if it was less than 90% (8 
Algorithms based on Convolutional Neural Networks 
(CNNs) that have been trained on large-scale datasets can 
be redeployed with little to no adjustments, whether they 
are applied to the same type of data they were originally 
trained on or to different datasets. These are often referred 
to as pre-trained models or, within the context of transfer 
learning, as models ready for application across various 
tasks. Such models are particularly valuable in scenarios 
where data or computational resources are scarce for 
training on new datasets. In one study, pre-trained CNNs, 
specifically GoogleNet and AlexNet, were employed to 
classify electrocardiogram signals after applying higher-
order spectral analysis for feature extraction. This 
approach, using pre-trained GoogleNet combined with 
third cumulants on the MITDB, achieved an accuracy of 
97.8%. Another study introduced the use of a pre-trained 
VGG-Net for direct ECG signal classification, 
demonstrating effective detection of supraventricular and 
ventricular ectopic beats using the MITDB. A 
sophisticated CNN model using a multi-canonical 
correlation analysis (MCCA) as a feature extraction 
method was proposed, with Q-Gaussian multi-class SVM 
(QG-MSVM) for feature classification, achieving an 
accuracy of 97.37% in arrhythmia detection. This indicates 
the fusion method's superiority over other evaluated 
techniques, albeit with potentially longer training times. 
Additionally, a study utilizing a pre-trained CNN, ResNet, 
optimized with adaptive moment estimation (Adam) and 
stochastic gradient descent (SGD), showed SGD 
achieving higher accuracy, at 96% compared to Adam's 
83%, underscoring the effectiveness of pre-trained CNNs 
in medical signal analysis.8.33%). A research study 
introduced by Dokur and Colleagues [102] introduced an 
algorithm for classifying heartbeats relied on 
Convolutional Neural Networks (CNN). However, they 
excluded the Fully Connected Neural Network (FCNN) 
component from the base level CNN model. In order to 
maintain performance during training, they applied Walsh 
functions. Additionally, they looked at the restrictions 
associated with translating one-dimensional (1D) ECG 
impulses into two-dimensional (2D) pictures. The 
MITDB dataset was used to evaluate this method, and the 
average accuracy for 1D ECG signals & 2D ECG pictures 
was 99.45% & 98.7%, respectively. Fujita and Cimr [103] 
presented a CNN-based application for ECG rhythm 
recognition in another study. In order to automatically 
classify the ECG rhythms within the CNN framework, the 
model used Continuous Wavelet Transformation (CWT) 
to extract attributes. The accuracy attained was 97.78%. 

However, it is important to note that prior 
information of attributes is necessary for training the 
model. Hao et al. [104] put forth a multi-channel CNN 
model for classifying ECG beats. In this study, single-beat 
& beat-to-beat information were utilized. Initially, ECG 
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signals were converted into spectro-temporal pictures 
using wavelet transform & Short-Time Fourier Transform 
(STFT). These images were then utilized for model 
training. The model's positive predictive value (PPV) & 
sensitivity for detection were equivalent. In a similar vein, 
Huang et al. [105] suggested a 2D-CNN model for STFT-
transformed ECG picture training. Employing the ID-
CNN technique, the model attained an efficiency of 99.00% 
for the ECG classification assignment when it was tested 
on the MITDB dataset. 

Isin and Ozdalili's [106] investigation was centred on 
the identification of cardiac arrhythmias. They used the 
AlexNet, a CNN model that has already been trained, as 
an attribute extractor in their study. The back-propagation 
approach was used for training the model, and the 
MITDB dataset yielded an amazing identification rate of 
98.51%. Izci et al. [107] presented a 2D-CNN model for 
the problem of recognising arrhythmia in a different 
investigation. On the MITDB dataset, they obtained a 
performance accuracy of 97.42\%. A deep residual CNN 
model was presented by Kachuee et al. [108] for the 
categorization of arrhythmias, particularly for the 
prediction of myocardial infarction (MI). Using the 
PTBDB dataset, the model showed a 93.4% accuracy in 
classification for arrhythmias and a 95.9% accuracy in 
predicting for MI. A CNN model for ECG classification 
was introduced by Kaouter et al. [109]. Their model was 
tested against CNN complete training, Google Net-144 
layers, Res Net-50, VGG Net-16, and an ensemble of 
optimised CNNs. Utilising ECG signals tested on 
the MITBIH normal sinus rhythm database (NSRDB), 
MITDB, and Beth Israel Deaconess Medical Centre 
(BIDMC) congestive heart failure database, the study 
indicated that the CNN model achieved the greatest 
performance accuracy of 93.75%. However, it is advised 
to incorporate additional patient factors in addition to the 
ECG signals in order to improve the diagnostic value of 
the suggested model. 

Additionally, a research conducted by Li et al. [110] 
explored the classification of ECG using a 1D-CNN. The 
accuracy achieved by the model was 97.5% as evaluated 
using the MITDB dataset. To further enhance detection 
capabilities, it may be worthwhile to investigate additional 
ECG leads. A further contribution made by Li et al. [111] 
concerned the suggestion of an already trained algorithm 
for ECG classification, namely ResNet-31. Both single 
and 2-lead Electrocardiogram data sets were used to 
evaluate this model. The findings demonstrated that, with 
an efficacy of 99.38%, the 2-lead data outperformed the 
single-lead data, which had an efficiency of 99.06%. It is 
noteworthy, therefore, that the 2-leads ECG dataset 
required more time for the training procedure to converge 
than the single ECG dataset. Pandey and Janghel [112] 
presented a CNN-based model for identify arrhythmia in 
a different investigation. The Synthetic Minority 
Oversampling Technique (SMOTE) was utilised to rectify 
the imbalance present in the MITDB dataset. With a 
precision of 86.06%, accuracy of 98%, recall of 95.51%, 
and F1-score of 89.57%, the model performed admirably. 

A CNN model was presented by Rajkumar et al. [113] to 
perform the job of classifying arrhythmias. The MITDB 
dataset yielded an accuracy of 93.6% for this model. 
ResNet is a residue framework that was introduced in a 
recent research by Ribeiro et al. [74] for the efficient 
diagnosis of ECG. A private dataset of 2,322,512 ECG 
recordings from 1,676,383 distinct patients was used by 
the authors. The model was able to attain a specificity of 
higher than 99% and an F1-score above 80% by utilising 
a conventional 12-lead ECG with a short duration. The 
application of deep CNN and two-stage deep CNN for 
classifying electrocardiograms was first presented by 
Shaker et al.[114]. Additionally, they showed how well 
GANs work for heartbeat augmentation, outperforming 
imbalanced data in the process. Above 90.0% precision, 
98.0% overall accuracy, over 97.4% specificity, and more 
than 97.7% sensitivity were all attained by the models. 
Nonetheless, pulse quality may be increased by using post-
processing methods like smoothing filters, and accuracy 
findings can be enhanced by removing outliers. A CNN 
model suggested by Xu and Liu [6] demonstrated great 
performance, achieving an average accuracy of 99.43% for 
both VEB and SVEB beats when tested on the MITDB 
dataset. Yao and Chen (2018) introduced a Multi-Scale 
CNN (MCNN) which surpassed methods utilizing hand-
crafted features in terms of overall accuracy, achieving 
88.66% for SVEB and VEB beats. It is worth considering 
the utilization of landmark information to further enhance 
the model's performance. 

In Yıldırım et al.'s study [66], a one-dimensional 
convolutional neural network (1D-CNN) was used to 
identify arrhythmias. The model classified 
electrocardiogram (ECG) recordings using the MITDB 
dataset and achieved 83.91% sensitivity, 91.33% accuracy, 
and 99.41% specificity. In a different study, a CNN 
algorithm was presented by [115] for classifying ECG, and 
it showed 98.37% sensitivity, 98.92% accuracy, and 99.19% 
specificity on the MITDB set of data. In Zhou and Tan's 
study [116], the CNN-based structure was utilised for 
extraction of features. The authors then included the 
extreme learning machine (ELM) for ECG signal 
classification, achieving 98.77% on the MITDB dataset. In 
a research, Li et al. [24] presented a novel method for 
feeding into an CNN framework for ECG categorization 
by combining rhythm and the morphology of heartbeats. 
The one-dimensional ECG data were converted into two-
dimensional pictures by the authors using the one-hot 
encoding approach, which increased both the 
convergence speed and accuracy. The MITDB dataset was 
utilised to evaluate the efficacy of the model, and it yielded 
accuracy rates of above 90% for both the VEB & SVEB 
classes. It is important to note, nevertheless, that because 
V beat used raw ECG data without representation 
extraction, its accuracy & specificity were significantly 
lower than those of the other approaches under 
consideration. Takalo-Mattila et al. [117] proposed a 1D-
CNN model for the classification of ECG signals, which 
was evaluated on the MITDB dataset and exhibited a 
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competitive performance for the Normal, SVEB, & SVEB 
classes. 

Models based on Convolutional Neural Networks 
(CNN) have been utilized for the automated classification 
of cardiovascular diseases, such as anterior myocardial 
infarction (AMI), myocardial infarction disease (MID), 
atrial fibrillation (AF), and congestive heart failure (CHF). 
MID, commonly referred to as a heart attack, is caused by 
a dysfunction in the myocardium that reduces blood flow 
[89].. Acharya et al , [93]. developed a CNN model for the 
automated detection of myocardial infarction. The 
research highlighted the impact of noise by processing the 
first set of electrocardiogram (ECG) data to eliminate 
baseline wander and leaving the second set with noise. The 
findings from the noisy dataset demonstrated efficiencies 
with sensitivity, accuracy, and specificity rates of 93.71%, 
93.53%, and 92.83%, respectively. In contrast, when 
evaluated on the PTBDB, the dataset without noise 
showed improved performance, achieving a sensitivity of 
95.49%, accuracy of 95.22%, and specificity of 94.19%. In 
another study, Acharya et al [118]. proposed a CNN model 
specifically for diagnosing CHF, showcasing the versatility 
of CNNs in medical diagnostics. 

The datasets were combined into sets A, B, C, and D 
in order to evaluate the framework. BIDMC & 
NSRDB  were in Set A;  BIDMC & Fantasia were in Set 
B;  BIDMC & NSRDB  were in Set C; and BIDMC 
& Fantasia were in Set D. In all three instances, the CNN 
model's sensitivity,  accuracy, and specificity scores were 
more than 90%. In a research by Ahmed et al. [119], MID 
was predicted using a model based on CNN, which the 
authors optimised using Ant Colony Optimisation (CNN-
ACO). 95.78% accuracy was achieved on the UCI-ML 
Dataset. However, because of the added ACO, the CNN-
ACO model used an enormous amount of storage when 
compared to the standard CNN design. Alghamdi et al. 
[22] suggested using an already trained deep CNN (VGG-
Net) for automated MI identification. Two variants of 
VGG-Net, VGG-MI2 and VGG-MI1, were introduced, 
where VGG-Net served either as a static feature extractor 
or underwent fine-tuning. VGG-MI2 functioned as a 
feature extraction tool, utilizing QG-MSVM for 
classification, whereas VGG-MI1 employed the VGG-
Net model with minimal fine-tuning adjustments. This 
approach led to a 2% increase in accuracy, with VGG-MI2 
achieving the highest accuracy rate of 99.22% on the 
PTBDB. In their study on MI classification, Baloglu et al . 
[120]. employed a deep CNN method, achieving an 
accuracy of 99.78% on the PTBDB. However, this model 
fell short in pinpointing the exact locations of the MIs.  

Chen et al [121]. proposed the Multi-Channel 
Lightweight CNN (MCL-CNN), which demonstrated a 
96.18% accuracy rate in identifying Anterior MI (AMI) on 
the PTBDB database. In a study focused on AF detection, 
the use of pre-trained CNN models (VGG-16, AlexNet, 
ResNet-152, and AlexNet-scratch) as feature extractors 
and SVM & MLP for classification was explored , [95]. 
The MLP+AlexNet combination yielded the most 
impressive outcomes, achieving a sensitivity of 81.1% 

(85.7%), an accuracy of 87.6% (87.9%), and a specificity 
of 94.3% (92.7%), with values for more challenging classes 
provided in parentheses. During the 2017 
PhysioNet/Computing in Cardiology (CinC) Challenge, 
the performance of the model was evaluated. In this 
challenge, Hsieh et al [122]. demonstrated a 90.7% 
accuracy rate using their proposed 1D-CNN model for 
detecting atrial fibrillation (AF). By employing a 2D-CNN 
trained on the Normal Sinus Rhythm Database (NSRDB) 
and the Atrial Fibrillation Database (AFDB), Huang and 
Wu recommended a method for classifying ECG data into 
normal sinus rhythm and AF categories. Their approach 
achieved a sensitivity of 99.71%, an accuracy of 99.23%, 
and a specificity of 98.66%, showing that the first 
experiment, which involved filtered ECG signals, 
surpassed the second one, which used unfiltered signals, 
in terms of performance metrics. Additionally, 
Kamaleswaran et al [123]. proposed a deep CNN 
architecture for the task of AF detection, further 
contributing to the research in this field. In the 
PhysioNet/CinC Challenge 2017, the developed 
algorithm reached an F1-score of 0.83 and an accuracy rate 
of 85.99%. Employing a Multi-Layer Perceptron (MLP) 
for classification and a Convolutional Neural Network 
(CNN) for feature extraction, Li et al [24]. managed to 
attain a sensitivity of 93.14%, an accuracy of 83.5%, and a 
specificity of 95.99%. This outcome was based on data 
gathered from 14 atrial fibrillation (AF) patients using the 
128-Leads Body Surface Potential Mapping (BSPM) 
System at West China Hospital, owing to the lack of a 
publicly accessible database containing detailed 
postoperative patient information for AF at that time. 
Furthermore, Li et al [111]. combined CNN with Support 
Vector Machine (SVM) for the classification of AF, where 
the SVM was fed features extracted by the CNN model to 
categorize the ECG signals. Despite the small size of the 
dataset used, this model achieved a sensitivity of 88%, an 
accuracy of 96%, and a specificity of 96%. 

Pourbabaee and colleagues [44] proposed integrating 
CNN with conventional classifiers (MLP, KNN, & SVM) 
for evaluating paroxysmal atrial fibrillation (PAF). The 
most effective model pairing (KNN + CNN) achieved the 
highest performance on the PAF prediction challenge 
database. In a separate study, Xia and co-authors [17]. 
recommended a CNN-based approach for the end-to-end 
classification of AF, where ECG segments transformed by 
stationary wavelet transform (SWT) and short-time 
Fourier transform (STFT) were inputted into the model. 
The models showcased strong performance metrics, with 
the STFT-CNN model achieving a specificity of 98.24%, 
a sensitivity of 98.34%, and an overall accuracy of 98.29% 
when evaluated on the AFDB database. In comparison, 
the SWT-CNN model reported specificity at 97.87%, 
sensitivity at 98.79%, and accuracy at 98.63%. Xiong et al. 
[20] investigated atrial fibrillation detection using a CNN 
model, comparing its performance against spectrogram 
learning and RNN methods. The CNN model 
outperformed the other algorithms, showing an overall 
accuracy improvement of 82%. However, challenges such 
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as imbalanced ECG data and variations in signal length 
affected the model's performance. 

The literature presents several instances where models 
based on recurrent neural networks (RNN) have been 
employed for analyzing electrocardiogram (ECG) signals. 
Banerjee and colleagues [124] introduced an RNN model 
that utilizes a dual LSTM network configuration, 
enhancing it with manually selected ECG wave features to 
accurately identify atrial fibrillation (AF). This model 
exhibited impressive results, achieving a specificity of 0.98, 
a sensitivity of 0.93, and an F1-score of 0.89, highlighting 
the advantage of incorporating handcrafted features. In 
another study by Darmawahyuni and Nurmaini [125], the 
use of an LSTM model for the classification of myocardial 
infarction (MI) showcased its potential in accurately 
distinguishing between binary classes. This model 
achieved notable performance metrics, including a 
sensitivity and precision both at 0.91, a Balanced Accuracy 
(BAcc) of 0.83, and an F1 score of 0.90, through the 
application of PTBDB. In a separate study, 
Darmawahyuni and colleagues [126]  introduced models 
based on LSTM, RNN, and GRN for myocardial 
infarction classification. Among these, the LSTM model 
stood out, delivering the highest performance with a 
specificity of 97.97%, sensitivity of 98.49%, an F1 score of 
96.32%, precision of 95.67%, a Matthews Correlation 
Coefficient (MCC) of 95.32%, and a Balanced Accuracy 
(BACC) of 97.56%, utilizing PTBDB. 

The Faust et al, [88] study introduced the utilization 
of a bi-LSTM for the identification of atrial fibrillation 
(AF). The results of their model demonstrated high levels 
of specificity, accuracy, & sensitivity, surpassing 98% in 
both blind & cross validation. In a separate study, Sujadevi 
et al, [127] proposed the use of LSTM, RNN, & GRU 
models for AF identification. These frameworks achieved 
accuracies of 1.000, 0.950, & 1.000, respectively, without 
the need for any preprocessing methods. To conduct their 
research, the NSRDB & AFDB datasets from MIT-BIH 
Physionet were utilized. Another study by Chang et al, 
[128] put forth an LSTM model for the classification & 
detection of cardiac arrhythmias. A comparative study 
involving emergency physicians, cardiologists, and internal 
medicine specialists revealed that the model performed 
competitively. It reached an accuracy of 90% by analyzing 

ECG signals gathered from the China Medical University 
Hospital (CMUH) using a GE Marquette MAC 5500 
device. However, it failed to detect the ST-T shift, crucial 
for diagnosing acute myocardial infarction. Pandey and 
Janghel proposed the identification of arrhythmia [129]. 
The LSTM was trained with statistical, morphological,  R-
R interval, & wavelet characteristics as inputs for 
classifying. On the MITDB dataset, the model yielded 
99.37% accuracy, 96.73% precision,  95.77% F-
score, 99.14% specificity, & 94.89% sensitivity. However, 
the model was dependent on handmade elements. An 
LSTM model was suggested by Sharma et al. [130] for the 
categorization of arrhythmias. The RR-intervals were 
expanded using Fourier-Bessel extension to create 
intelligent sequence, which were then input into the LSTM 
model for classifications. On the MITDB and an exclusive 
dataset, the model's accuracy was 90.07% & 89.04%, 
respectively. 

An LSTM model was suggested by Saadatnejad et al 
[131] for the categorization of ECG in their study. Wavelet 
& RR characteristics were used to train the algorithm. 
Using the MITDB dataset, the LSTM model's 
performance was evaluated, and it obtained accuracy 
values of 98.3% & 99.2% for SVEB and VEB, respectively. 
In Singh et al.'s work [85], RNN-based models (GRU, 
RNN, & LSTM) were examined. The accuracy achieved 
when tested on the MITDB dataset was 82.5% (GRU), 
85.4% (RNN), & 88.1% (LSTM). However, it should be 
noted that hand-crafted features were utilized and the 
efficacy of these features for new diseases remains 
uncertain. A deep bidirectional LSTM-based algorithm 
was presented for classifying electrocardiograms in a paper 
by Yildirim [66]. With the use of wavelet sequences (WS), 
this model's wavelet-based layer improved classification 
performance. The best performance was achieved by the 
proposed DBLSTM-WS with a WS layer of 3, achieving 
an accuracy of 99.399% on the MITDB dataset. However, 
due to limited hardware, not every data-sets from the 
MITDB were utilized. In another study, Cheng et al. [128] 
conducted research on OSA detection using an LSTM 
model. Using 70 ECG recordings from the Apnea-ECG 
database, the model was evaluated and its accuracy was 
97.799%.
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Table 5. Findings from different articles. 
 

REF MODEL DATASET ACC% F1% SEN% PPR% SPE% 

[98] DDNN Dataset. from the. China Physiological. Signal (CPS) 
Challenge 2018, Chinese. PLA General Hospital, (11,995 

unique subject) 

99.34 90 99 / 99.44 

[91] DNN Private dataset. with fetal ECG. measurements 
performed. at six different. medical centres. in the (266 
from. the healthy group and 120 from the CHD group) 

76 / / / / 

[92] CNN MITDB, CUDB, VFDB (105 subjects) 93.18 / 95.32 / 91.04 
[94] 2D-CNN MITDB (54 subjects) 96.67 86.62 84.53 / 99.28 
[96] CNN Architectures 

(GoogleNet) 
AlexNet) MITDB (48 

subjects) 
97.8 / / / 

[97] Pre-trained CNN 
(VGGNet) 

INCART, MITDB, SVDB (201 records) 99.9 / 99.7 99.3 100 

[78] deep CNN  QG-MSVM+MCCA Fusion, deep CNN without 
Fusion QG-SVM 

MITDB, AFDB, 
SVDB (111,901 
ECG segments) 

94.74  97.37 / / 

[99] ResNet MITDB (48. records) 96(SGD)  83(ADAM
) 

90 / / 

[100] Multi-scale fusion CNN MITDB (47. subjects) 92.81(A), 
95.48(B) 

/ 95.84(A), 
96.53(B) 

/ 93.92(A), 
87.74(B) 

[101] ELM+CNN PTBDB (294. subjects) 83.33 / 89.47 / 87.8 
[102] CNN without FCNN MITDB (47. subjects) 99.45(1D)  98.7(2D) / / / 
[103] CNN+CWT AFDB, VFDB \ MITDB (25,459 

segments) 
97.78 / 99.76 / 

[104] Multi-channel dense 
CNNs + WT \ 

STFT Biofourmis for 
training (more 
than 10,000 

ECG records), 
MITDB for 
testing (44 
subjects) 

/ / N(97.0) 
L(98.9) 
R(91.4) 
V(95.0) 
S(90.4) 

N(97.7) 
L(92.2) 
R(90.2) 
V(94.5) 
S(91.5) 

[105] 2D-CNN+STFT MITDB(47 records) 99 / / / / 
[106] BPNNs+AlexNet MITDB (23 subjects) 92 / / / / 
[107] 2D-CNN MITDB(47 records) 97.42 / / / / 
[108] Deep residual CNN MITDB (47 records), PTBDB (290 records) 93.4 / / / / 
[109] CNN MITDB (47 records), NSRDB (18 records), BIDMC 

congestive heart failure database (15 records) 
93.75 / / / / 

[110] ID-CNN MITDB (48 subjects) 97.5 / / / / 
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REF MODEL DATASET ACC% F1% SEN% PPR% SPE% 
[111] ResNet-31 MITDB(47 records) 99.06 / 93.21 96.76 / 
[112] SMOTE+CNN MITDB(47 records) 98.3 89.87 / / 86.06 
[132] ID-CNN PhysioNet\ CinC Challenge 

2017 
86 / / / 

[113] CNN MITDB(47 records) 93.6 / / / / 
[74] ResNet Private dataset having 2,322,513 ECG subjects from 

1,676,384 different patients of 811 counties in the state 
of Minas Gerais/ Brazil from the TNMG 

/ 80 / / 99 

[114] Twostage deep-CNN  Deep-CNN MITDB (48 
subjects) 

98 / 97.7 / 

[6] CNN MITDB(48 records) 99.43 / 99.2 99.4 / 
[133] MCNN MITDB (48 subjects), private dataset HEDB (22 

subjects) 
96(SVEB)  92.50(VEB

) 
/ / / 

[66] 1D-CNN MITDB(45 records) 91.33 85.38 83.91 / 99.41 
[116] ELM+CNN MITDB(47 records) 98.77 / / / / 
[24] 2D-CNN MITDB(47 records) 98.2(VEB)  99.5(SVEB

) 
/ 99.3(VEB) 

\ 
99.4(SVEB

) 
[117] 1D-CNN MITDB(47 records) / / 89(VEB)  62(SVEB) 51(VEB) 
[93] CNN PTBDB (200 records) 93.53(with 

noise)  
95.22(with
out noise) 

/ 93.71(with 
noise)  

95.49(with
out noise) 

[118] CNN BIDMC Congestive Heart Failure Database, Fantasia 
Database, NSRDB (73 records) 

(NSRDB, 
BIDMC): 95.98  

(Fantasia, 
BIDMC): 

98.97  

(NSRDB, 
BIDMC): 

94.40  

(Fantasia, 
BIDMC): 

98.33 

/ 

[119] CNN-ACO UCI-ML Repository (43,401 people’s records) 95.78 / / / / 
[22] Pre-trained CNN (VGG-

Net = VGG-MI2  
VGGMI1) + VGGNet/QG-MSVM, Alex Net PTBDB (290 

records) 
VGG-MI2: 

99.22  
VGG-MI1: 

97.24 
/ VGG-

MI2: 99.15  
[120] Deep CNN PTBDB (200 records) 99.78 / 99.8 / / 
[95] AlexNet, ResNet-152 1D-

CNN, VGG-16,  
SVM, Alexnetscratch + MLP PhysioNet/ 

CinC Challenge 
2017 (40,882 

dataset) 

87.9 86.4 / / 

[122] ID-CNN PhysioNet/CinC Challenge 2017 (8528 ECG records) 79.1(AF), 
90.7(Normal), 
65.3(Noisy), 

76(other) 

78.2 / / / 

[134] 2D-CNN AFDB, NSRDB (41 records) 99.23(EXP1)  99.23(EXP
2) 

/ 99.71(EXP
1)  

99.31(EXP
2) 

[123] Deep CNNs PhysioNet/CinC Challenge 2017 (8,528 ECG records) 85.99 83 / / / 
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REF MODEL DATASET ACC% F1% SEN% PPR% SPE% 
[124] LSTM  handcrafted features PhysioNet/Cin

C  Challenge 
2017 dataset 
(8528 ECG 

data) 

/ 89 93 / 

[125] LSTM PTBDB (290 records) / 90 91 / / 
[126] LSTM, GRN, RNN PTBDB (290 subjects) / 96.32 98.49 / 97.97 
[135] bi-LSTM AFDB (23  records) 98.51 / 98.32 98.39 98.67 
[127] LSTM, RNN, GRU AFDB (25  signals), NSRDB (25 signals) 95(RNN), 

100(LSTM), 

100(GRU) 

94.1(RNN)
, 

100(LSTM)
,100(GRU) 

/ / / 

[128] LSTM China Medical University Hospital (CMUH) recorded by 
a GE Marquette MAC 5500 (38,899 subjects) 

98.2 77 / / / 

[129] LSTM+waveletfeatures MITDB(48 subjects) 99.37 95.77 94.89 / 99.14 
[130] FB expansion+LSMT MITDB (2880 segments), PhysioNet/ CinC Challenge 

2017 dataset (8528 segments)and private dataset (301 
segments) 

90.07(MITBIH)  89.04(priva
te datset) 

89.04(MIT
BIH)  

85.01(priva
te datset) 

/ 

[131] RR features  wavelet features+LSTM MITDB(47 
subjects) 

99.2(VEB)  98.3(SVE) 95.1(VEB)  78.8(SVEB
) 

[136] LSTM Apnea-ECG database (70 ECG records) 97.8 / / / / 
[137] ACE-GAN MITDB(47 subjects) 99(VEB)  99(SVEB) 95(VEB)  81(SVEB) 93(VEB)  
[121] LSTM+CNN MITDB, Physionet/CinC Challenge 2017, NSRDB, 

AFDB 
(MITDB,Physio

net 96.2} 
(AFDB, 

NSRDB 97.15) 

/ (MITDB,P
hysionet 
95.40), 

(AFDB, 
NSRDB 
97.11) 

(MITDB,P
hysionet 
95.56) 

(AFDB, 
NSRDB 
97.66) 

(MITDB,P
hysionet 
96.80) 

(AFDB, 
NSRDB 
97.06) 

[55] Handcrafted 
Features+LSTM+CNN 

MITDB(48 subjects) (Class-
oriented)99.26  

(subject-
oriented)94

.20 

/ (SVEB)90.
74  

(VEB)92.9
2 

[100] Deep CNN-BLSTM MITDB (47 subjects), AFDB 99.94 / 99.93 / 97.03 
[138] LSTM-CNN PTBDB and Fantasia Databases, INCART Arrhythmia 

Database , PTBDB, BIDMC Congestive Heart Failure 
Databases 

98.51 / / / / 

[139] SincNet+CNN PTB-XL database 90 / / / / 
[8] LSTM-CNN MIT-BIH arrhythmia 98.55 / 96.54 / 99.33 
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REF MODEL DATASET ACC% F1% SEN% PPR% SPE% 
[140] multiple scale-dependent 

DCNN expert classifiers 
PTBXL-2020 12-lead ECG and the CinC-training2017 

single-lead ECG 
/ 84.5(PTBX

L-2020)  
88.3(CinC-
training201

7) 

/ / 

[141] CNN MIT-BIH 98.87 / / / / 
[142] CNN The China Physiological Signal Challenge 2018: 

Automatic identification of the rhythm/morphology 
abnormalities in 12-lead ECGs 

96.2 / 96.7 / / 

[143] SVM-CNN PTB-XL 99.2 / / / / 
[144] TCGAN MIT-BIH 94.69 / / / / 
[145] Hybrid-CNN MIT–BIH 99.28 99.24 / / / 
[146] MorphGAN+Bi-LSTMs (MIT-BIH-AR), (MIT-BIH-SUP), (INCART), (MIT-

BIH-L),(Wrist-PPG) 
/ N(60), 

S(16), 
V(1.8) 

/ / / 

[147] VGG16+CNN MIT-BIH Arrhythmia 95 / / / / 
[148] CardioNet, Transfer 

Learning 
MIT-BIH Arrhythmia 98.92 / / / / 

[149] DCNN MIT-BIH Atrial Fibrillation 98.73(binary)  97.33(quina
ry) 

/ / / 

[150] Hybrid-CNN CPSC2020 99.32 / / / / 
[151] DCNN MIT-BIH 95.5 / 94.5 / 96 
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6. Conclusion 
 

This study carried out a comprehensive review of 
literature on the application of Deep Learning (DL) 
techniques in analyzing Electrocardiogram (ECG) data 
across various fields. It underscored the enhanced efficacy 
of DL models over traditional Machine Learning (ML) 
techniques in ECG data analysis. The paper delved into 
the development of biometric ECG systems and 
scrutinized empirical research that applied DL to ECG 
signal processing, considering aspects such as the 
application domain, specific tasks, DL models used, 
sources of datasets, and the architectures for training. The 
study revealed an escalating interest in applying DL to 
ECG analysis in recent years, especially within the medical 
and healthcare sectors, a trend likely to persist as DL 
technologies become more widespread. The opening 
section of the document explored scientific research 
trends through bibliometric analysis, identifying key 
journals, prominent authors, and their contributions, as 
well as tracking the growth of this area through the 
analysis of titles and author keywords. Notably, the bulk 
of the sources cited in this investigation were published in 
the last eight years. 

This study lays the foundation for the following 
section of the document, providing an extensive 
examination of the subject, beginning with the 
mathematical underpinnings of various deep learning 
algorithms. It then delves into the structure of ECG 
signals and the operations of the cardiac system. Following 
this, the study methodically presents findings from various 
angles, including ECG databases, deep learning algorithms, 
assessment frameworks, evaluation metrics, and code 
availability. The goal of this detailed investigation is to 
highlight emerging research directions, obstacles, and 
prospects in the realm of deep learning for ECG 
arrhythmia detection. This research is expected to 
significantly benefit both emerging and established 
scholars aiming to enhance the current knowledge base in 
ECG signal processing through deep learning techniques. 
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