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Abstract. Thai Microelectronics Centre (TMEC) used soft lithography techniques to 
fabricate hydrophobic sheets made of PDMS material for various micropillar patterns. The 
F8 and F13 micropatterns had high water contact angle and resisted high compressive load 
on top of hydrophobic sheets [17]. This research aimed to reinvestigate for truly 
understanding compressive behavior of these micropillar patterns under compressive 
loading. The finite element models of F8 and F13 micropatterns were constructed in Ansys 
APDL 2019R3 software. The accurate material model for PDMS under compressive loading 
was Ogden 3rd parameter material model as discussed in [13]. We introduce a novel 
mathematical technique implemented in MATLAB R2021a software. This technique aims 
to ascertain material constants and their associated stability regions. While the proposed 
method for determining material constants is deemed innovative and intriguing. Finally, 
uniform compressive load as a function of vertical deformation was found for each 
micropillar pattern. We found that load-deflection curves were stiffer than previous study 
discussed in [17] since we had no strain limit range in our study. Finally, the maximum 
uniform compressive loads, before the initial collapse of micropillar patterns, were 34.334 
kPa and 16.694 kPa for F8 and F13 micropatterns respectively. 
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1. Introduction 
 

Micro-structured surfaces are widely used in various 
medical areas and marine constructions because of their 
hydrophobic properties, which inhibit the formation of 
algae stains, germs, and barnacles on maritime structures 
[1]. Effective improvements of hydrophobic properties on 
surfaces are to fabricate them from low surface energy 
materials and to create high surface roughness which is 
accomplished by micropillar-like structures. Currently, 
extensive research has focused on fabrication of 
hydrophobic sheets made from PDMS materials and 
studying of mechanical behaviors of these hydrophobic 
surfaces via mathematical formulations or finite element 
methods. It is costly to fabricate hydrophobic sheets 
which are not only the cost of low surface energy materials 
but also facilities to cultivate micropillar-like structures. 
Rahmawan et al. [2] studied strength of the shear adhesion 
found on PUA micropillar arrays (5 μm diameter) of 
different aspect ratios and spacing ratios which were 
fabricated by replica molding from the PDMS mold. They 
found that the strength of the shear adhesion was 
improved by covering each micropillar with silica particles. 
Kim et al. [3] presented fabrication of tapered silicon pillar 
templates and their replication into LDPE thermoplastic. 

Moreover, micropillar tapering angles were studied for 
optimal friction performance. They found that as tapering 
angle decreased, deformation was more pronounced 
throughout the entire pillar. Mohamed et al. [4] reviewed 
cutting-edge technologies on fabrication, application, and 
stability of superhydrophobic surfaces. Oyunbaatar et al. 
[5] fabricated PDMS pillars with microgrooves used for 
biomechanical characterization of cardiomyocyte. The 
PDMS micropillar arrays with microgrooves were 
fabricated using a unique micro-mold made using SU-8 
double layer processes. Sabbah, Youssef and Damman [6] 
had built micro-wrinkling patterns to introduce surface 
roughness onto PDMS sheets for studying of the water 
contact angles, WCA. They found that for smooth PDMS 
surface, WCA was 110 o; however, with micro-wrinkling 
patterns, WCA could be up to 180o. Atthi et al. [7] 
fabricated various biomimetic antifouling surfaces made 
from PDMS by using the soft lithographic technique on 
silicon substrate. They discovered that the C-RESS pattern 
has the highest durability with the smallest suppression of 
the WCA after a scratch test of 1.3°. The adhesion of 
barnacle and algae on the C-RESS pattern is significantly 
reduced compared to other patterns. Li et al. [8] studied 
fabrication and nanoindentation characterization of nickel 
micro-pillar mold for nanoimprint lithography. These 
micropatterned metal sheets combine good strength and 
ductility, flexibility, and workability. 

Hyperelastic materials are frequently used in 
fabrication of hydrophobic surfaces in which their 
material properties are governed by constitutive equations. 
Kim and Jeong [9] studied measurement of nonlinear 
mechanical properties of surfactant-added PDMS. Three 
nonlinear mechanical models like a Neo–Hookean, 
Mooney–Rivlin, and Ogden were computed from the 

experimentally measured stress–strain data. The Ogden 
model for the surfactant-added PDMS showed good 
agreement with the experimental data. In the case of the 
Neo–Hookean and Mooney–Rivlin models, they could be 
preferable for the structural analysis of the micro device 
with the surfactant-added PDMS in the small strain region. 
Shahzad et al. [10] aimed to characterize hyperelastic 
material and to determine a suitable strain energy function 
(SEF) for an indigenously developed rubber to be used in 
flexible joint use for thrust vectoring of solid rocket motor. 
To evaluate appropriate SEF uniaxial and volumetric tests 
along with equi-biaxial and planar shear tests were 
conducted. Digital image correlation (DIC) technique was 
utilized to have strain measurements for biaxial and planar 
specimens to input stress-strain data in Abaqus. Yeoh 
model was the right choice, among the available material 
models, because of its ability to match experimental stress-
strain data at small and large strain values. Ribeiro et al. 
[11] studied constitutive models of PDMS material using 
biaxial test.  Numerical studies were also carried out using 
the most popular constitutive models, namely Mooney-
Rivlin, Yeoh and Ogden, for comparison with the 
experimental measurements. The numerical simulations 
with the Yeoh model presented the most accurate results 
for PDMS behavior. Thanakhun and Puttapitukporn [12] 
studied PDMS material models for anti-fouling surfaces 
used for finite element method. The accuracies of the 
PDMS material models, which were the Neo-Hookean, 
Mooney-Rivlin 3 and 5 parameters, Ogden (1st, 2nd, 3rd 
order), Yeoh (1st, 2nd, 3rd order) and Arruda-Boyce material 
models, were evaluated and compared to experimental 
data from uniaxial tensile test and punch-shear test. They 
found that the most accurate material model to simulate 
both the uniaxial tension and shear loading was the Yeoh 
3rd order material model; however, these accuracies would 
be valid for small strain range. Phothiphatcha and 
Puttapitukporn [13] proposed the PP algorithm, a 
MATLAB code, used for determining material constants 
and their associated stability strain range of hyperelastic 
materials. Their constitutive models comprised of Neo-
Hookean; 3, 5, and 9 parameters, Mooney-Rivlin; 2nd and 
3rd order Yeoh; and 1st, 2nd, and 3rd order Ogden. Then, 
they evaluated accuracy of their material constants 
obtained from uniaxial test data for PDMS material with 
results obtained from ANSYS APDL software and found 
that PP algorithm produced a lower RSS. Finally, the 
Ogden 3rd order model was the accurate constitutive 
model for compressive test data of PDMS material since 
it obtained not only low RSS but also no strain limit range. 
Sales et al. [14] studied mechanical characterization of 
PDMS with different mixing. The results for the tensile 
test showed that an increase in the amount of cure agent 
reduced the tensile strength. The hardness values obtained 
were 41.7±0.95, 43.2±1.03 and 37.2±1.14 Shore A for 
pure PDMS with ratios equal to 10:1ma, 10:2 and 10:3, 
respectively. 

Many researchers have focused on formulating 
mathematical or finite element models of micropillar-like 
structures to investigate their mechanical behaviors under 
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various load types. Rathod et al. [15] studied engineered 
ridge and micropillar array detectors to quantify the 
directional migration of fibroblasts. They converted the 
defections of a micropillar made of PDMS for various 
aspect ratios into forces using a finite element model in 
ABAQUS software based on neo-Hookean and Arruda-
Boyce constitutive models. Differences in the measured 
forces arise due to the aspect ratio of the micropillars and 
the assumed material model used to define the constitutive 
properties of the pillar material. Pakawan et al. [16] studied 
the effect of PDMS substrate thickness on the mechanical 
behavior of PDMS micropillar patterns under 
compressive loading using the finite element method in 
the ANSYS Mechanical APDL software. The constitutive 
models consisted of Mooney-Rivlin (2, 3 and 5 
parameters), Ogden (1st, 2nd, and 3rd orders), Neo 
Hookean, Polynomial (1st and 2nd orders), Arruda-Boyce, 
Gent and Yeoh (1st, 2nd, and 3rd orders) models were 
curved fitting with experiment data from uniaxial 
compression test. They found that the most accurate 
constitutive model was Mooney-Rivlin 5-parameter model 
for the low strain range. Since there was limitation of 
computation ability in extremely large FE model, the 
convergences of the FE results on the FE models of F3 
micropattern was 84 micropillars. Furthermore, the 
micropillar without the substrate did not lateral collapse 
when subjected to compressive stress. As substrate 
thickness decreased, compressive strength declined, and 
elastic stiffness increased. Pakawan et al. [17] extended 
their work [16] to study the compressive behavior of 
micropillar patterns fabricated from PDMS material 
which had a rectangular cross-section and various 
micropillar’s aspect ratios. They studied the finite element 
analyses of micropillar patterns in the ANSYS Mechanical 
APDL software and the Mooney-Rivlin 5 parameter 
model was used to model PDMS material under uniaxial 
compression. The convergences of the FE results were 
found on all micropillar patterns which were F3 
micropattern (84 micropillars), F4 micropattern (84 
micropillars), F8 micropattern (70 micropillars) and F13 
micropattern (12 cells) on the 150 μm thick substrate. 
They found that the micropillar's compressive strength 
and elastic stiffness were unaffected by the aspect ratio of 
a micropillar. Moreover, the F13 micropattern has the 
lowest droplet contact angle, and the highest elastic 
stiffness and compressive strength. Cornec and Lilleodden 
[18] discovered new approach for determination of stress-
strain curves from micropillar made from glass fused silica 
under compression and studied comprehensive numerical 
analysis for perfect and imperfect micropillars in finite 
element software ABAQUS. Marulli et al. [19] studied a 
finite element framework for the simulation of bio-
inspired adhesives with mushroom-shaped 
microstructures. Kareem [20] proposed mathematical 
modeling of an electrostatic MEMS with tilted elastomeric 
micro-pillars. The model incorporates three coupled sets 
of nonlinear differential equations that govern the 
longitudinal and transverse vibrations of the PDMS pillars, 
as well as the transverse vibrations of the moving electrode. 

This research was an extended work of Pakawan et al. 
[17] to investigate the accurate compressive behavior of 
micropillar patterns made of PDMS material. We also 
proposed a novel mathematical technique implemented in 
PP algorithm [13], called Modified PP algorithm. This 
technique aims to ascertain material constants and their 
associated stability regions. Finally, the accurate material 
model of PDMS and compressive behaviors of the 
micropillar patterns could be accomplished. 
 

2. Theory 
 

Thai Microelectronics Centre (TMEC) used soft 
lithography techniques to fabricate hydrophobic sheets 
made of PDMS material (having ratio of a PDMS 
monomer to a curing agent ratio of 10:1) for various 
micropillar patterns. F8 and F13 micropatterns had unique 
hydrophobic properties as shown in Figs. 1-2. The F13 
pattern (called the sharklet pattern) has high compressive 
strength but low WCA of 134.7o, while the F8 pattern has 
high WCA of 143.8o but moderate compressive strength 
[17]. This research studied compressive behavior of 
micropillar patterns with an accurate constitutive material 
model as discussed in [13]. Here, we introduced the novel 
modified PP algorithm to determine accurate material 
constants from the Ogden 3rd order model. Finally, these 
micropillar patterns were modelled and analysed in 
ANSYS Mechanical APDL 2019 R3 software. 
 
2.1. Finite Element Models 
 

For minimizing FE computational time and 
convergence of FE results, the replicas of micropillar 
patterns were studied as discussed in [16-17]. The FE 
models of F8 and F13 micropatterns consisting of 70 
micropillars and 12 cells are shown in Figs. 3-4 
respectively. Furthermore, all replicas of micropillar 
patterns were modeled on 150 µm thick substrate in which 
the substrates were long enough for studying only on 
interactions between micropillars as listed in Table 1-2. 
The FE models were constructed by the SOLID186 
element which was the 20-nodes structural solid element 
which has 3 translations in the x, y, and z directions on 
each node. The number of elements of each FE models as 
listed in Table 1-2. The boundary conditions were that all 
nodes on the bottom surface were fixed in all degree of 
freedom while all nodes on the top surface were coupled 
with the displacement in the z-direction and moved 
downward to displacement of z = -20 μm. The surface-to-
surface contact without friction was applied to each 
micropillar. The accurate constitutive model for PDMS 
material under uniaxial compression loading was Ogden 
3rd order model in which its material constants obtained 
from modified PP algorithm were illustrated in Table 3. 

 
2.2. PDMS Material Models 
 

The Ogden 3rd order model accurately formulates the 
nonlinear deformation of a PDMS material [13]. Here, the 
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stress-strain relation is derived from the strain energy 
density function (W). 
 
2.2.1. Hyperelastic constitutive model 
 

The Hyperelastic constitutive model is a 
constitutive equation of strain energy density function W 
which provides stress–strain relations for rubber-like 
materials. 

 

 
 

Fig. 1. Dimension of the F8 micropattern [17]. 
 

 
 

Fig. 2. Dimension of the F13 micropattern [17]. 
 
2.2.1.1. Ogden model 
 

Ogden model is a general hyperelastic model in 
which its strain energy density is expressed in terms of the 
principal stretches. The strain energy density W can be 
written in Eq. (1). 
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where the stretch ratios 1 2 3,  , and    obtain from 

elastomer material testing which composes of uniaxial test, 

equibiaxial test, and planar test; 
i and 

i are material 

constants. For incompressible materials subjected uniaxial 

test, the three principal stretch ratios are given as  =1 ,  
0.5

2

− =  , and 
0.5

3

− =  . 

 

 
(a) 

 

 
(b) 

 
Fig. 3. (a) 3D models and (b) the FE model of F8 
micropattern for 70 micropillars [13]. 
 

 

 
(a) 

 
(b) 

 
Fig. 4. (a) 3D models and (b) the FE model of F13 
micropattern for 12 cells [13]. 

https://en.wikipedia.org/wiki/Strain_energy_density_function
https://en.wikipedia.org/wiki/Strain_energy_density_function
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Table 1. The number of elements of F8 micropattern. 

Number of  
Micropillars 

Number 
of 

elements 

 
Width (µm) x 
Height (µm) 

70 48,892  2,000 x 2,000 

 
Table 2. FE models of F13 micropattern. 

Number 
of  

Cells 

Number 
of 

elements 

 
Width (µm) x 
Height (µm) 

12 59,400  1,800 x 1,800 

 
2.2.1.2. Mooney-Rivlin model 
 

Mooney-Rivlin model is developed from Neo-
Hookean model. The strain energy density function. This 
model is generated from a linear combination of two 
invariants. This model is popular for modelling the large 
strain nonlinear behaviour of incompressible materials. 
The strain energy density W can be expressed in Eq. (2). 
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where strain invariants I1 and I2 can be written as 

 −= + +2 2

1 1I λ λ  (3) 

 −= + +2 2

2 1I λ λ  (4) 

and Cij are material constants. 
 
2.2.2. Determination of stresses 

 
An engineering stress can be derived from derivative 

of strain energy density function by stretch ratio as given 
in Eq. (14).  
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where 
i and 

i  are an engineering stress and a stretch 

ratio in i-direction respectively. 
 
2.2.3. Equivalent Von mises strain 
 

Equivalent Von mises strain e  is a parameter used to 

monitor magnitude of strain in hyperelastic materials 

experiencing large deformation and can be written as 
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where    is the effective Poisson’s ratio which is generally 

considered as 0.5;  1 2, , and 
3 are the principal strains. 

 

2.2.4. Determination of stability regions 
 

The stability region of each constitutive model can be 
determined from the Drucker stability condition for the 
first three modes of deformation. The condition requires 
that the changes of the true stress and true strain are 
satisfied in the inequality. 

 : 0d d    (7) 

For isotropic hyperelastic materials, the inequality can 
be represented in terms of the principal stresses and 
strains as given in Eq. (8). 

 1 1 2 2 3 3 0+ + d d d d d d       (8) 

For incompressible materials, we assigned 

3 3 0d = =  into Eq. (8); therefore, the inequality is 

written as shown in Eq. (9). 
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where 
i  is the Cauchy stress in i-principal direction and 

i  is Cauchy strain in i-principal direction. The changes of 

true strain are related to the stretch ratios which can be 
given in Eq. (10). 
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The relation between the changes of the Cauchy stress and 
the Cauchy strain can be formulated by the matrix 
equation as written in Eq. (11). 
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where D is the tangential stiffness matrix, and each 
element of D can be calculated from Eq. (12). 
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2.3. Residual Sum of Squares 

 
The residual sum of squares (RSS) used to measure an 

error between the constitutive hyperelastic models and the 
uniaxial data testing. Additionally, it is also used as an 
optimality criterion in parameter selection and model 
selection which can be calculated by Eq. (13). 
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where i  is the engineering stress obtained from 

experimental data,   is the engineering stress obtained 
from hyperelastic constitutive models, and N is a numbers 
of data points. 
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3. Methodology 
 
3.1. Determination of the Material Constants from 

Ogden 3rd Order Model 
 

The material constants of Ogden 3rd order model are 
obtained from modified PP algorithm which is MATLAB 
code implemented in the previous PP algorithm as 
discussed in [13]. 
 
3.1.1. Data selection 
 

The uniaxial experimental data obtained from [16] is 
smoothed by 6th order polynomial fitting after that the 
strain range T is equally divided by the number of strain 
intervals which gives the maximum interval length Lmax 
written in Eq. (14). 
 

max

T
L

n
=  (14) 

where 
 

max minT  = −  (15) 

 
and n is number of material constants in constitutive 
models.  

The uniaxial test data will be accurately matched and 
smoothed by polynomial functions as shown in Fig. 6. 

{ }i

Fit  and { }i

Eng  are the fitted engineering stress and strain at 

the end of an i-interval respectively. 
 

 
Fig. 6. Selection of the engineering stress-strain data [21]. 
 

Hyperelastic constitutive models are generally written 
in a function of stretch ratios, the stretch ratio at the end 
of i-interval can be expressed as shown in Eq. (16). 
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In Ogden model, material constants cannot be 

detached from a matrix of hyperelastic constitutive models; 
however, it can solve by substituting pairs of nth data point 
in each row of Eq. (17).  
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Ogden 3rd order model has 6 material constants which 

requires 6 selected data points at the ends of each interval 
length L, the material constants are determined from each 
component of stress vectors given in Eq. (18). Finally, 
material constants can then be solved by Levenberg–
Marquardt algorithm [21] in MATLAB R2021a software 

for each value of L ( maxL L ) such that the optimized 

material constants return the minimum RSS of stress-
strain reproduction. 
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3.1.2. Determination of stability regions 
 

Constitutive equation of Ogden model depends only 
on the stretch ratio; therefore, each element of the 
symmetric matrix D is determined from Eq. (19). 
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For material stability, the tangential stiffness matrix D 
must be positive definite which requires D to satisfied two 
conditions as written in Eqs. (20)-(21). 
 

 11 22 0D D+   (20) 
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 11 22 12 21 0D D D D−   (21) 

 

4. Results and Discussion 
 

For uniaxial compressive test data of PDMS material 
obtained from [16], the material constants of Ogden 3rd 
model obtained from modified PP algorithm are 
compared with ones obtained from Ansys and PP 
algorithm is illustrated in Table 3 and their corresponding 
RSS are listed in Table 4. Figure 7 shows that the 
optimized L was 0.076 (compared to Lmax = 0.082 in PP 
algorithm) which yielded RSS of 0.11569. We also found 
an increase in accuracy of reproduction of the stress-stress 
curve with modified PP algorithm because of these 
optimized L as shown in Fig. 8. Figure 9 shows the stress-
strain curves reproduced from Mooney-Rivlin 5-
parameter model (with Ansys) and Ogden 3rd order model 
(with Modified PP algorithm). Table 5 shows that 
Modified PP algorithm implemented for Ogden 3rd order 
model had the highest accuracy in reproduction of stress-
strain curve.  Moreover, these material constants have no 
strain limitation since left hand side terms of Eq. (20) and 
Eq. (21) are greater than zero as illustrated in Fig. 10. 

 
Table 3. The material constants in Ogden 3rd order model 
determined from compressive test data of PDMS material. 

Material 
constants 

Ogden 3rd order model 

ANSYS 
 

PP 
 

Modified PP 
 
 

1  4.36077 -0.07254 -0.08127 

1  0.03681 -2.28350 -2.28604 

2  4.36085 -0.07255 -0.08130 

2  0.03693 -2.28349 -2.28604 

3  4.36099 -0.10215 -0.08413 

3  0.03688 -2.28322 -2.28653 

 

Table 4. RSS between compressive test data and data 
reproduced from modified PP algorithm, PP algorithm, 
and ANSYS software with Ogden 3rd order Model. 

 RSS  

ANSYS 78.13855 
PP algorithm 0.11570 
Modified PP algorithm 0.11569 

 

 
Fig. 7 The plot of interval length L vs. RSS. 

 
Fig. 8 Stress-strain curves reproduced from Ansys, PP 
algorithm and modified PP algorithm with Ogden 3rd 
order model compared to Experimental data. 

 
Fig. 9 Stress-strain curves reproducing from Ansys (with 
Mooney-Rivlin 5-parameter model) and modified PP 
algorithm (with Ogden 3rd order model) compared to 
Experimental data. 
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Fig. 10 Positive tangential stiffness for all strain range. 
 
Table 5. RSS between uniaxial compressive test data and 
data reproduced from Ogden 3rd order model with 
modified PP algorithm and Mooney-Rivlin 5-parameter 
model with ANSYS.  

Constitutive models  RSS 

Mooney-Rivlin 5 parameters 0.12339 
Ogden 3rd order  0.11569 

 
Compressive behaviors of micropillar patterns 

subjected to compressive loading had been studied using 
Ogden 3rd order model and were compared to results 
studied by [17] as shown in Figs. 11-14. Figures 11-12 
show the plot of uniform compressive loading and vertical 
displacement of F8 and F13 micropatterns respectively. 
We found quite different in load-deflection curves of 
micropatterns in which both F8 and F13 micropatterns 
are stiffer than results of [13]. Figures 13-14 show 
different collapse patterns compared to results of [13]. 
Figure 15-16 show the contour plot of various strains in 
F8 and F13 micropattern respectively. In our study, initial 
collapse micropillars occurred along the rim of 
micropatterns. The maximum von Mises strains were 
0.374 and 0.096 for F8 and F13 respectively. The differ of 
our results may cause by no strain limit in our simulation 

compared to
z 0.225  in [12-13]. Additionally, F8 and 

F13 micropatterns had sign of collapse of micropattern 
when compressive displacement of 17.715 m and 4.817 

m  respectively as discussed in [13]. Here, we found 

severe mesh distortion on some elements when the strain 
was relatively high which caused Ansys to terminate.  

 
  
Fig. 11.  Plot of uniform compressive loading and vertical 
displacement for F8 micropattern. 
 

 
Fig. 12. Plot of compressive pressure and vertical 
displacement for F13 micropattern. 
 

 

 

 
(a)  
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(b) 

Fig. 13. Contour plot of deformation in the z-direction 

(unit in m) of F8 micropattern at an initial collapse of 
micropillar patterns compared between (a) Mooney 5-

parameter model [17]; (b) Ogden 3rd order model. 
 

 

 

 
(a) 

 
(b) 

Fig. 14. Contour plot of deformation in the z-direction 

(unit in m) of F13 micropattern at an initial collapse of 
micropatterns compared between (a) Mooney-Rivlin  5-
parameter model [17], (b) Ogden 3rd order model. 

 

 
(a) 

 

 
(b) 

Fig. 15. Contour plot of Von Mises stress in MPa at an 
initial collapse of micropatterns for (a) F8 micropattern; 
(b) F13 micropattern. 
 
 

 
(a) 
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(b) 

 

 
(c) 
 

 
(d) 

Fig. 16 Contour plot for various strain distributions on F8 
micropattern at compressive displacement of 17.175 m  

for (a) 1st Principal strain; (b) 2nd Principal strain; (c) 3rd 
Principal strain; (d) Equivalent Von Mises strain. 
 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Figure. 17 Contour plot for various strain distributions on 
F13 micropattern at compressive displacement of 4.817 

m  for (a) 1st Principal strain; (b) 2nd Principal strain; (c) 

3rd Principal strain; (d) Equivalent Von Mises strain. 
 

5. Conclusions 
 

The compressive behaviors of micropillar patterns of 
F8 and F13 micropatterns had been studied with Ogden 
3rd parameter model in Ansys APDL 2019R3 software. 
Moreover, we introduced a novel modified PP algorithm 
for determining material constants which is deemed 
innovative and intriguing in MATLAB 2021a software. 
This made the material constants more accurate than the 
study of [13] since we used the optimized strain interval 
length L instead of Lmax as discussed in [13]. The load-
deflection curves of micropillar patterns were stiffer than 
discussion in [17]. Moreover, the uniform compressive 
load P (in kPa) can be written as a function of vertical 
deformation z (in m ) as 

8 3 5398 0 0791 for 0 7 175 m. . .FP z z = −    (22) 

13 2 1081 0 801 for 0 4 817 m. . .FP z z = −    (23) 

The R-squared for Eqs. (21-22) were 0.9971 and 0.9996 
respectively. The maximum uniform compressive load, 
before initial collapse of micropatterns, were 34.334 kPa  
and 16.694 kPa for F8 and F13 micropatterns respectively. 
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