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Abstract. Electrocardiogram (ECG) analysis constitutes the most important approach able 
to classify heart infarction anomalies. These anomalies can be identified from the changes 
in various features of the ECG signal. In this paper, we are proposing a new features-based 
classification method of short-time single-lead ECG signals. The goal of this method is to 
classify these ECG signal into one of the following classes: normal, atrial fibrillation, other 
abnormalities, and too noisy as defined by the dataset. This is a challenging problem because 
of the severe imbalance between the classes, where the normal class makes up the majority 
of the samples in the dataset. The second challenge in this dataset is the fact that the sample 
ECG signals have a variable length (it varies between 3 to 60 seconds). The proposed 
method considers three main processes. The first process consists of detecting inverted 
ECG record by analyzing the signal range and mean in a sliding-window. The second 
process involves the extraction of many features effective in characterizing ECG signals and 
detecting abnormalities. These features include morphological, Heart Rate Variability, 
statistical, time/frequency amplitudes, and special Atrial Fibrillation (AF) features. The third 
process represents the main contribution by designing a lightweight residual Convolutional 
Neural Network (CNN) model for the classification of short-time single-lead ECG signals. 
This model is composed of five layers with two residual connections where advanced CNN 
concepts such as Batch Normalization, DropOut, and Leaky-ReLU are used. Compared to 
state-of-the-art solutions, the proposed method achieved the best performance with F1-
score of 95.11% using inversion correction. 
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1. Introduction 
 
The electrocardiogram (ECG) is an interesting 

cardiovascular examination that can provide an 
assortment of valuable health information. It constitutes a 
fundamental aspect to diagnose cardiac patients. 
Cardiovascular disease is a main open concern and 
socioeconomic issue in the world. There are several 
cardiac health monitoring systems like echocardiography, 
magnetic resonance imaging (MRI) and computerized 
tomography scan. However, they have (1) high cost and 
(2) do not support long-term continuous monitoring of a 
patient without disrupting their daily activities. 

Because of its inexpensive price, long-term recording 
capacity, and ease of use without disturbing the patient, 
wearable ECG recorders (W-ECG) are becoming 
nowadays more and more popular. Moreover, surface 
ECGs are fast and simple to acquire based on relatively 
simple electrophysiological concepts. The ECG recorders 
are existing in a more compact form that enables the user 
to wear for ECG recording without affecting or crippling 
their routine activities. 

The conventional 12-lead ECG system invented to 
record ECG, identified five detection main points in the 
cardiac cycle: P, Q, R, S, and T. These five points are 
repeated to form a quasi-periodic ECG signal [1]. ECG 
data produced by electronic recorders have a large volume 
which requires automated methods for analyzing them. 
The electronic recorder affects the type and configuration 
of the ECG data, so it could be composed of a single-lead 
or multi-lead signal. Consequently, the analysis method is 
also single-lead or multi-lead ECG processing algorithms. 
The wave forms (morphologies), spectra, and repeatability 
of the cardiac cycle represent the major factors that allow 
studying the single-lead ECG waveform. However, extra 
factors such as simultaneous features, taken from other 
leads in multi-lead ECG processing algorithms, may 
ensure more immunity against interference signals. 

The irregular heart rhythm is known as arrhythmia. 
Cardiac arrhythmias might be classified into: 

• Origin: ventricular arrhythmia, atrial arrhythmia 
(Atrial Fibrillation), or junctional arrhythmia. 

• Mechanism: re-entry, triggered, automaticity. 

• Rate: bradycardia (< 60 bpm) or tachycardia (> 100 
bpm) both for adults. 

• Duration: sustained ( 30 s) or non-sustained ( 30 s). 

• AV Conduction: delayed, blocked, normal. 
According to the American College of Cardiology 

(ACC), the European Society of Cardiology (ESC), and 
the American Heart Association (AHA), the Atrial 
Fibrillation (AF) is a "tachyarrhythmia characterized by 
predominantly uncoordinated atrial activation with 
consequent deterioration of atrial mechanical function" [2]. 
AF is the pervasive and continuous cardiac arrhythmia. It 
materializes in 1-2% of the populace and is connected to 
mortality through linkages in relation to heart failure, 
strokes, coronary artery disease, etc. [3], [4].  

In excess of twelve million residents in western 
jurisdictions have been assessed to be afflicted by AF. In 
the next thirty to fifty years, the number of afflicted by AF 
is expected to rise to almost forty million individuals [5]. 
As with many health conditions age is a major factor in 
those afflicted by this condition: for those between 40-50 
years of age it is 0.5%; for those at the age of 80 it is 
between 5%-15% [6]. 

Regardless of the importance of this problem, AF 
detection is still a difficult problem exceptionally in the 
case of automatic detection. The previous work on AF 
detection is limited because they usually used selected 
clean ECG heartbeats only and focused on the 
classification of these heartbeats into two classes normal 
and AF rhythms. Also, the methods developed so far, only 
use ECG signals from a few patients, and when we try to 
generalize them to a large number of patients the 
performance degrades. Finally, all methods are trained to 
work well in one dataset, but when you switch to another 
dataset, the method needs to be retrained on the new data. 

Furthermore, the sure detection of AF from a single-
lead is challenging due to the broad taxonomy of rhythms. 
Especially, many rhythms other than AF may displays 
irregular intervals of RR similarly to AF. 

In this work, we will use a consecutive group of ECG 
beats, known as short-time single-lead ECG signal (the 
length between 9 to 60 seconds), instead of a single 
heartbeat, for AF detection in ECG signals. The 
motivation behind this is that using a window of 
neighboring heartbeats may contain more rich 
information that allows the system to classify ECG signals 
more accurately. Also, to deal with the broad taxonomy of 
rhythms in ECG signals, we have considered all abnormal 
rhythms except AF as one class and require the system to 
classify the rhythms as one of the following classes only: 
1) Normal sinus rhythm, 2) AF, 3) Other rhythms, or 4) 
Too noisy to classify. 

Researchers and clinicians were given a challenge by 
PhysioNet/Computing in Cardiology in 2017 to develop 
a trustworthy method for detecting atrial fibrillation (AF) 
from short-duration single-lead ECG signals obtained 
with a widely available, reasonably priced hand-held device 
[7]. These portable ECG devices cannot replace the larger 
and more expensive hospital equipment, but they can 
significantly help in the early detection of AF through 
routine daily monitoring over an extended period of time 
[3]. The imbalanced class sizes in the dataset make difficult 
the operation of many classification methods. In addition, 
this dataset contains ECG records that range in length 
from 9 to 60 seconds, which makes it challenging to use 
directly as an input to many classification algorithms in 
raw format. 

The rest of the paper is structured as follows. Section 
2 provides a background in terms of ECG signal, Machine 
learning concepts specifically the most known CNN 
architectures. Section 3 surveys some related work 
achieved on short-time single-lead ECG signal 
classification. Section 4 presents the proposed 
classification method using deep residual CNN. In 
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addition, it defines the performance metrics, shows the 
obtained results for short-time single-lead ECG 
classification and analyses and compares these results with 
the state-of-the-art methods. Section 5 outlines the most 
notable conclusions and major contributions of the work 
and provides some guidelines for future development. 
 

2. Background 
 
An ECG constitutes the electrical activity of the heart 

muscle as it fluctuates over time. The electrical 
depolarization of the muscle cells causes the heart muscle 
contraction. The cardiac muscle contracts because of the 
electrical depolarization of the muscle cells. The aggregate 
of this electrical action, when amplified and recorded for 
only a few seconds (usually 10 seconds) provides an ECG. 

 
2.1. ECG Features 

 
The ECG signal is obtained by placing 12 electrodes 

on the patient’s skin using 12 different recording lead 
(directions). A cycle of normal heartbeat is shown in Fig. 1. 
It contains waves, intervals, complexes, and segments. 
ECG waves and intervals have an expected time period, a 
range of acceptable amplitudes (voltages) and a typical 
morphological pattern. Using this information, we can 
design and develop computer-based techniques to detect 
any anomaly found in the ECG signal. Table 1 presents 
the main features as well as their specifications of the 
normal ECG signal for an adult person. 

 
2.2. Heart Arrhythmias  
 

Any irregular changes in the heart rhythm called 
arrhythmia. Arrhythmias happen once the electrical signals 
of the heart that synchronize heartbeats are not running 
correctly. Some arrhythmias have no symptoms or not 
serious. On the other hand, some of them can cause a 
stroke or cardiac arrest. Early diagnosis of arrhythmias 
helps reducing the risk of severe complications. 

Arrhythmias can be classified into different types 
according to the rate of heartbeats, the duration of the 
abnormal beats or the mechanism of the abnormality. 
Arrhythmias can also be classified by the site of origin: 
atrial, junctional and ventricular arrhythmia [11]. 

AF is an abnormal heart rhythm caused by the rapid 
and abnormal beating of the heart-atrial chambers. 
Figure 2 clarifies the difference between normal and AF 
ECG. Often, it begins as a short period of abnormal 
beating which becomes longer and possibly constant over 
time. The patient may feel symptoms like chest pain, 
weakness, breathlessness, and palpitation. Regularly, 
symptoms develop rapidly. However, sometimes there are 
no symptoms at all appearing on the patient. Patients who 
don't have symptoms won't be predicted of AF, so it goes 
untreated and their lives will be under threat. AF can cause 
severe complication such as stroke or heart failure. 

 
2.3. Typical ECG Abnormality Detection Steps 

 
Figure 3 shows the flowchart including the main 

processes for detecting abnormalities in the ECG signals. 
Preprocessing ECG signals helps in detecting and 
attenuating frequencies of the ECG signal related to 
important features in the signal. One cardiac cycle in an 

ECG signal consists of the P-QRS-T waves. The 
preprocessing step involves filtering the ECG signal using 
state-of-the-art methods. Then, the signal will be 
segmented by detecting the R peaks in the signal since 
each R peak corresponds to one ECG beat. In the last 
years, several research and techniques have been 
developed for the feature extraction of ECG signals. Our 
proposed method considers the following steps: (1) 
Detect QRS wave, (2) Determine the location of R points, 
(3) Obtain the RR intervals, (4) Compute the heart rate, (5) 
Determine the P-wave duration and the PR interval. 

Feature Amplitude Time 
P wave 0.1 – 0.3 mV < 120 ms 

Q wave 
< 1/3 of R wave 
amplitude / lead 

< 40 ms 

T wave 0.1 – 0.5 mV - 

PR interval - 120 – 200 ms 

ST segment - 50 – 160 ms 

QT interval - 
< half RR interval 
(males < 400 ms; 

females < 440 ms) 
QRS 
complex 

< 6 < 0.12 s 

RR interval - 
600 – 1000 ms (60 

– 100 bpm) 

Table 1. ECG Features for lead II in normal adult. 

Normal 

AF 

Fig. 2. Comparison between normal & AF ECG 
rhythms. 

Fig. 1. Diagram of normal ECG signal. 
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The heartbeat segmentation and statistics computing 
process is responsible for detecting any deviation from the 
normal morphology of the ECG signal. In order to be sure 
if the morphology is normal, the following elements must 
be checked: 1) The P wave exists and rounded shape, 2) 
All the P waves should have the same shape, 3) QRS 
comes after the P wave, 4) The P-R interval should be 
constant, and 5) The rhythm should be regular (by 
comparing whether the first three P-P intervals or R-R 
intervals have the same value). 

The feature extraction and abnormality detection 
process is responsible of analyzing the acquired and 
extracted information in order to decide abnormalities and 
whether the patient needs further treatments. 
 
2.4. Deep Neural Networks  
 

A neural network is a set of algorithms constructed to 
imitate the activity of the human brain. It aims to 
recognize patterns and pass the input through various 
layers of the simulated neural connections to get useful 
output. If the neural network contains one layer, we call it 
a simple neural network. Instead, many experts can 
consider the network as a deep neural network if at least 
two hidden layers are there between the input and the 
output layers. Adding more hidden layers means a deeper 
neural network. Each layer performs definite types of 
sorting and ordering in a process that may be specified as 
“feature hierarchy”. There are many types of deep neural 
networks depending on the design and learning algorithm 
used in the network. Each type has its own power and 
usage. 

A Convolutional Neural Network (CNN) is a deep 
learning algorithm that includes layers performing 
convolution operations. The two main components of a 
CNN are: (a) a convolution tool that divides the various 
features for analysis, and (b) a fully connected layer that 
takes the output from the convolution layers to make the 
best prediction. 

The strategy and functions of the visual cortex 
stimulate the designers of CNN architecture in order to 
create a simulation in relation to the patterns of 
connectivity within the human brain. In CNN, neurons 

are structured into 3 dimensions. Each group of neurons 
has to analyse a tiny feature or region of the signal. The 
CNN takes these features from layers to produce a final 
output that gives a vector of probability scores to 
comment on the possibility that a unique feature is part of 
a certain class. This architecture constitutes the major 
factor in determining the performance of a CNN. The 
layering structure as well as the type of the utilized 
elements considerably affect the accuracy and speed when 
performing tasks. 

The CNNs have developed rapidly in the last few 
years and numerous CNNs are proposed. These networks 
became so deep and it became hard to conceive the whole 
model. These networks are pre-trained on large image 
datasets and many researchers use it as a tool for feature 
extraction. 

CNN designers tried to achieve better performance 
by increasing the number of layers in the deep neural 
networks. However, when increasing depth, the accuracy 
gets saturated and degrades fast. To avoid this problem 
residual neural networks network was used in building 
deeper models. Residual networks are a type of deep 
neural network that have been proposed recently for 
image classification tasks [16]. It is well-known under the 
name of ResNet and it is commonly used as a pre-trained 
model in many studies in the literature. The accuracy of 
deep neural networks become saturated due to the 
diminishing gradient phenomenon, meaning that the 
gradient goes to zero during the backpropagation 
algorithm. Residual networks deal with this problem by 
using the residual blocks as shown in Fig. 4.  

The basic idea is to make a shortcut connection from 
the input layer to some future hidden layer, where the 
input x is added to the output from the hidden layer. In 
other words, the hidden mapping H(x) becomes F(x)+x. 
Thus, the neural network now maps x to the residual H(x)-
x. The idea is that the network learns how to map this 
residual to 0, that is better and more efficient than learning 
the mapping between x and F(x). 

Furthermore, ResNets were the first deep networks 
that have used Batch Normalization layers after each 
Convolutional layer. Normalization means transforming 
the data so that it follows a normal distribution. Batch 
Normalization layer will normalize the value of network 
weights which helps in training it faster. 

Fig. 4. Main processes for detecting abnormalities in 
ECG signals 

ECG input Signal and data acquisition 

Pre-processing 

 

Heartbeat statistics 
Heartbeat 

segmentation 

Feature extraction and abnormality detection 
Fig. 3. Illustration of the residual connection concept. 
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3. Related Work 
 

Two types of atrial fibrillation (AF) can be identified 
by: 1) Techniques based on atrial activity analysis, or 2) 
Techniques based on ventricular response analysis. The 
first type is identified by the absence of P waves or the 
presence of fibrillatory F waves in the TQ interval. The 
second form, however, is based on the ability to forecast 
the intervals between beats (RR intervals) of the QRS 
complexes in the ECG signal. 

Numerous techniques based on atrial activity analysis 
have been described. They consist of the echo state neural 
network technology, P-wave-based cardiac monitor 
application, and wavelet entropy techniques. When the 
ECG signals are high resolution and contain little noise, 
these approaches can produce results with a high degree 
of accuracy. However, in situations of significant noise 
pollution, their accuracy has a tendency to decline 
significantly. 

The predictability of the inter-beat timing (RR 
intervals) of the QRS complexes in the ECG is the 
foundation of ventricular response analysis. Since RR 
interval identification is based on the detection of the R-
peak, the most pronounced characteristic of an ECG 
heartbeat, it is significantly simpler and more robust to 
high noise. Therefore, many academics consider this 
technique to be the best way for automatically and 
instantly detecting AF. Moreover, it is a more typical 
strategy in the literature. The additional techniques built 
on top of this strategy include thresholding on the median 
absolute deviation (MAD) of RR intervals, Poincare plot 
analysis and normalized fuzzy entropy of RR intervals, 
minimum of the corrected conditional entropy of RR 
interval sequence, Lorenz plot analysis, symbolic dynamics 
and Shannon entropy, histogram of the first difference of 
RR intervals, analysis of cumulative distribution functions, 
and 8-beat sliding window RR interval irregularity detector. 

Other researchers have attempted to combine both 
approaches atrial activity and ventricular response in order 
to provide enhanced detection accuracies. For example, 
Babaeizadeh et al. [19] proposed a method that combines 
RR interval Markov modeling and a P-wave morphology 
similarity measure. Another method proposed by Petrenas 
et al. [20] combines P-wave absence, f-wave presence, RR 
interval irregularity, and noise level to detect AF. The 
fuzzy logic classifier is used in this method. More recently, 
machine learning is heavily used in AF detection. Machine 
learning, especially based on deep learning, can combine 
all of the above single features automatically, since it is able 
to acquire the ECG heartbeat as an input and then learn 
the suitable features automatically. For example, the 
authors [21] use a Denoising Auto-Encoder (DAE) with 
sparsity constraint to learn suitable features from an ECG 
heartbeat, and then they use a deep fully connected neural 
network for classification.  

The Teijeiro et al. method used an abductive 
framework for time series interpretation to extract 
morphological and rhythm-related characteristics [5]. 
Following that, these characteristics were input into two 

classifiers, one to evaluate the record globally using 
aggregated values for each feature and the other to 
evaluate the record as a sequence based on Recurrent 
Neural Network (RNN) and individual features of the 
detected heartbeat. 

Kropf et al. [6] proposed a classification technique 
capable of extracting 380 features from the time and 
frequency domain. They trained a Random Forest-based 
classifier (bagged decision trees) using these features. A 
method for extracting fifty different features was 
proposed by Billeci et al. [22] and can be computed on the 
ECG signal, extracted from the RR series, or combined 
with rhythm and QRS morphology. The stepwise linear 
discriminant analysis is then used to choose a subset of 
thirty distinguishing features. The least squares support 
vector machine classifier then completes the classification. 

Datta et al.'s top-performing method [23, 24] utilized 
two layer binary cascaded approaches. First binary 
classifier divides unlabeled recordings into two 
intermediate groups (‘normal + others’ and ‘AF + noisy’). 
Then, a second binary classifier divides each intermediate 
class into two classes in a subsequent layer. Prior to 
classification, this method also depends on feature 
extraction. It extracts over 150 features with various 
criteria, such as morphological, Prior art AF, frequency, 
statistical, etc. 

For ECGs captured by the AliveCor handheld devices, 
Zabihi et al. [25] suggest a hybrid categorization strategy. 
Features from many domains, such as time, frequency, 
time-frequency, phase space, and meta-level, are 
combined. It makes use of a random forest classifier-based 
feature selection strategy. Another random forest classifier 
then categorizes the chosen characteristics. 

An approach to determining AF based on the decision 
tree ensemble was devised by Bin et al. [26]. To find a 
point in the QRS complex, the proposed method first 
used an upgraded Hamilton and Tompkins algorithm. 
Second, from each ECG record, they extracted thirty 
features. All of these characteristics can be divided into 
four major categories: AF characteristics, Morphology 
characteristics, RR interval characteristics, and Similarity 
indices between beats. Finally, classification is performed 
using a binary decision tree-based classifier. 

In short-time single-lead ECG records, Behar et al. 
[27] employed the feature-based machine learning 
approach to categorize rhythm as a preprocessing step to 
find and choose the highest quality continuous sub-
segment signal. The RR interval is assessed using R-peak 
detectors, and the signal quality was calculated on a 
second-by-second basis. The occurrence of ectopic beats, 
heart rate variability, and ECG shape were among the 
features that were extracted based on the findings. 
Support vector machine classifiers were trained using 
these characteristics using a one-vs.-rest methodology. 
According to many sets of well-known AF properties, 
Bonizzi et al. [28] suggested a two stage ensemble learning 
method to distinguish the AF from other rhythms. The 
ECG short-time single-lead records are divided into non-
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noisy and noisy records in stage one based on the 
extraction of a collection of features from the ECG signal. 
The non-noisy records are removed in stage two to obtain 
the AF features. To classify the records for both stages, an 
ensemble model with decision tree was used and modified 
with RUSBoost. 

Based on dataset of short-time single-lead ECG 
records, three CNN suggested solutions are included in 
the literature. A 16 layer CNN that can accept 5 seconds 
at a time of the raw ECG signal was proposed by Xiong 
et al. [29]. The average of each 5-second clip's individual 
probabilities represents the whole ECG record's final class 
probability. To learn local and discriminative features on 
the raw input sequence, Warrick and Homsi [30] employed 
a one-layer CNN as an auto-encoder. The sequential 
patterns are then encoded using three layers of LSTMs on 
top of the previous CNN. The proposed deep network 
also includes a softmax layer for classification and one 
fully connected hidden layer. In order to identify rhythms 
from short ECG segments that are divided into four 
classifications (AF, normal, other rhythms, or noise), 
Andreotti et al. [31] compared a feature-based classifier 
versus a deep learning CNN technique. Both approaches 

made use of unique tools. The WFDB toolbox was used 
in MATLAB to implement the feature-based 
methodology. However, Python 3.5 was used to create the 
deep learning methodology. The 2017 Computing in 
Cardiology Challenge database from PhysioNet, together 
with another database acquired from PhysioNet, were 
used to train both approaches. Then, a 5-fold cross-
validation technique is used to evaluate their performances, 
and the findings are presented as an F1-score. 

 

4. Deep Residual CNN-Based Classification 
Method 
 
The suggested approach is based on a residual CNN, 

as depicted in Fig. 5, for the classification of short-time 
singe-lead ECG records. The preprocessing step of the 
approach consists of identifying vertically flipped signals. 
A collection of crucial features is extracted from the ECG 
records in the second stage. The short-time single-lead 
ECG records are then classified using the retrieved 
characteristics by training a residual CNN. The 
preprocessing, feature extraction, and classification stages 
utilizing deep residual CNN are covered in depth in the 
following sections. 

 
4.1. ECG Record Preprocessing 
 

The pre-processing phase helps clean the ECG signal 
and improve the performance of the classification step. 
The preprocessing phase involves detection and 
correction of (vertically) flipped signals, resampling and 
scaling (normalization). 

Numerous inverted signals were discovered when the 
recordings in the short-time ECG dataset were examined 
[5, 6]. Due to the difficulties in recognizing P waves, a 
classification system may classify an inverted normal ECG 
signal as abnormal. Thus, one crucial step in raising 
classification accuracy is spotting and rectifying inverted 
signals. Results of our approach for inverted signal 
detection and correction are shown in Fig. 6. Two 
instances of typical signals are shown in the picture; one is 
not flipped (Fig. 6(a)), while the other is flipped (Fig. 6(b)). 
With a sampling rate of 300 Hz, our algorithm employs a 
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Fig. 6. Illustration of inverted ECG record detection. 
Sliding window is shown in yellow color. The red 
dashed line shows the midpoint between maximum and 
minimum values in window. (a) not flipped (regular) 
record, (b) flipped (or inverted) record. 

(a) (b) 

Fig. 5. Architecture of the proposed method. The inputs 
are short-time single-lead ECG records that have 
varying length between 9 to 60 seconds (N. Normal, A. 
atrial fibrillation, O. Other T. Too noisy). 
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sliding window with a size of 600 samples, or 2 seconds. 
We calculate the maximum and minimum values for this 
window. Then, as indicated in Fig. 6's red dashed line, we 
calculate the midway between the maximum and 
minimum values. 

As can be seen, in the event of an inverted record, the 
center point should be below the signal mean. A non-
inverted record, on the other hand, will have this middle 
value above the signal mean. As a result, our system simply 
compares the number of windows that produce points 
above the signal mean to those that produce points below 
the signal mean in order to detect inverted signals. The 
ECG signal is inverted if there are more windows creating 
middle points below the signal mean.  

 
4.2. Feature Extraction 
 

ECG classification is a difficult process since the data 
include a significant level of inter- and intra-class 
variability. As a result, a crucial stage in an ECG 
classification algorithm is feature extraction, which is 
based on expert knowledge of the primary properties of 
ECG signals. The QRS complex is one of the primary 
properties of ECG signals. A well-known technique for 
identifying the QRS complex and R peaks in ECG signals 
is Pan-Tompkins. The Pan-Tompkins algorithm that we 
employed in our study has a MATLAB implementation 
supplied by the challenge's organizers. The method looks 
for more ECG waveform main points using the 
discovered R peaks. Each ECG recording has a collection 
of 188 features taken from it when the P, Q, R, S, and T 
points are found [4]. We give a brief description of these 
features in the following subsections: 

 
4.2.1. Frequency features  
 

The Short Time Fourier Transform (STFT) is used to 
retrieve 39 frequency characteristics. Every 300 samples, a 
Hamming window of size 2 seconds (600 samples) slides 
over the ECG recording, resulting in a 50% overlap 
between the windows. As result, these features are 
extracted from each sliding window which are named as: 
mean spectral centroid [18], spectral flux [19], and spectral 
roll-off [20]. 

The spectral flux (SF) is a measurement of how fast 
the power spectrum changes for a signal and provides 
detection according to energy information or signal 
amplitude. SF is got by calculating the magnitude of the 
STFT over two successive frames and comparing these 
two values by each other. SF is just counting the frequency 
bins where the energy is increasing. Equation 1 defines the 
normalized spectral flux as: 

𝑆𝐹(𝑛)

=  

∑ 𝐻(|𝑋(𝑛, 𝑘)| − |𝑋(𝑛 − 1, 𝑘)|)
𝑁
2

−1

𝑘=−
𝑁
2

∑  |𝑋(𝑛, 𝑘)|
𝑁
2

−1

𝑘=−
𝑁
2

  
(1) 

where H(x) = (x+|x|)/2 is the half-wave rectifier function. 

Although spectral flux is usually used as a function to 
detect the onset, it can be easily used for transient 
detection purposes. The more the signal is passing, the 
greater the value of the spectral flux, and the shorter the 
time constants necessary to achieve the appropriate 
compression. 

The spectral roll-off point is the frequency in which a 
specified percentage (95%) of the total signal energy lies 
below. this value differentiates the abnormal values that 
could be found in the ECG signal. 

 
4.2.2. Heart rate variability (HRV) features 
 

Heart Rate Variability (HRV) is the change in the time 
intervals between consecutive heartbeats. These HRV 
features, including SDSD, pNNx, SDNN, and normalized 
RMSSD, are used in many ECG feature extraction 
algorithms [21]. We extracted 11 out of a total 188 features 
defined as follows: 

• SDSD: stands for the standard deviation of the 
consecutive differences for two adjacent intervals 
(beat-to-beat). 

• pNNx: is the portion of adjacent beat-to-beat 

intervals that differ by more than x ms (we call the 
beat-to-beat intervals as NN interval). pNN50 and 
pNN20 are defined. 

• SDNN: is the standard deviation of beat-to-beat 
intervals. 

• SDRR: is the standard deviation of RR intervals. 

• Normalized RMSSD: is calculated in three steps: (1) 
measures the difference between consecutive beat-to-
beat intervals, (2) compute the squares of successive 
differences, (3) calculate the square root of the mean 
of the square series. 

• Normalized spectral power of the RR interval time 
series within the frequency region of 0-0.003 Hz ULF 
band, 0.04 Hz VLF band, 0.04-0.15 Hz LF band and 
0.15-0.5 Hz HF band.  

 
4.2.3. Morphological features 
 

The morphological features are considered by doctors 
as the basic elements used to diagnose ECG abnormalities 
[22]. They are based on the P, Q, R, S, and T positions 
within the ECG signal. There are 56 different 
morphological features (or values) identified as follows: 

• 4 features for kurtosis, skewness and variance in 
amplitude of the QRS. 

• 5 features given by the distance of the ST segment 
among other points. 

• 6 features related to the corrected QT interval like 
mean, median, width and variance  

• 6 features inspired from the slope, mean and median 
of QR, RS, and ST curves. 

• features calculating the ratio of depth of S to Height 
of R. 



DOI:10.4186/ej.2024.28.2.67 

74 ENGINEERING JOURNAL Volume 28 Issue 2, ISSN 0125-8281 (https://engj.org/) 

• features specific to the ratio of depth of Q respected 
to R. 

• features related to QS width and QR width. 

• Amplitude difference of TR wave. 

• Ratio of the number of P to the number of R. 

• features for RS amplitude differences. 

• 21 features related to R and P locations. 
 
4.2.4. Special AF features 
 

In the literature, many researches have proposed 
special features for AF detection. In our work, we 
extracted 30 special AF features including: 

• Features that measure the RR intervals variance 
correlated with the presence of AF. 

• 8 features including Evidences of AF, Original Count, 
Irregularity, Pace, Density, and Anisotropy, where AF 
Evidence from Lorentz plot of RR intervals, were 
proposed by Sarkar et al. [23]. 

• Entropy-based characteristics are additional features 
that have been mentioned in the literature to improve 
AF identification [24, 25]. We extracted 15 different 
entropy-based features. 

• 5 features, inspired from Poincare plot [26], are related 
to inter-beat intervals. 

 
4.2.5. Statistical features 
 

All features that can be calculated using statistical 
analysis are named statistical features. We extracted 21 
different statistical features, including: 

• 8 features computed from the RR intervals are: the 
maximum, minimum, median, mean, variance, range, 

kurtosis, and skewness. 

• Entropy related-features defined by Shannon, Tsallis, 
and Renyi entropy. 

• 7 features are used to estimate the probability density 
of the RR and delta RR intervals as well as the number 
of peaks 

• Features corresponding to the linear predictive 
coefficients of the raw time series data. 

• 1 feature for the variance of energy between R peaks. 
 
4.2.6. Other features 
 

A total of 30 features are extracted to detect noisy 
ECG signals similar to those that have been specified in 
the literature. They include statistical features considering 
the ECG signal morphology [27] as well as special features 
described in [28] and extracted from frequency and time 
domains. 
 
 

 
4.3. Classification Using Residual CNN 
 

In the literature, a variety of techniques for classifying 
ECG signals have been proposed and developed. To 
categorize recent single-lead ECG records, none of them 
have used residual networks. The proposed deep residual 
CNN is shown in Fig. 7(a). It employs two residual blocks. 
Two convolutional layers with a Leaky ReLU activation 
function, followed by a Batch Normalization layer, build 
each residual block. It is well established that 
normalization is an important requirement for neural 
networks, in order for them to avoid overfitting and 
converge during training to an optimal or near optimal 
solution. Szegedy et al. [29] have also shown the 
normalization of the data between layers of the network 
also helps the network converge quicker. Thus, they have 
introduced the Batch Normalization layer in their 

  
(a) (b) 

Figure 6. CNN architecture proposed for short-time 
single-lead ECG records classification. (a) 5-layer CNN 
with residual connections, (b) same CNN without 
residual connections. 
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GoogLeNet CNN architectures (in particular in the 
InceptionV2 model). 

We have also added a dropout layer in between the 
two convolutional layers. The dropout layer, basically, 
drops out or excludes, some neurons from the previous 
layer in the feed-forward computations. In other words, 
the dropped neurons do not get used in the computations 
of the neurons of the current layer. The dropout layer has 
been shown to combat overfitting in neural networks. The 
convolutional layers are characterized by a size of 188, an 
activation function based on LeakyReLU and alpha fixed 
to 0.2. Our model includes after each convolutional layer 
a batch normalization layer and a dropout layer with a 
drop out of 0.2. 

The proposed model is characterized by additional 
residual connections (Fig. 7(a)) compared to the base 
model. To evaluate the efficiency of our model, we have 
implemented a similar 5-layer CNN without residual 
connections as given in Fig. 4(b). Then, we established a 
comparative study of the two models to demonstrate the 
effectiveness of the residual connections. 

 
We request authors to follow this guideline and 

format their manuscripts exactly the same as this 
document. The easiest way to do this is download this 
template and replace its contents with those in your 
manuscript. 
 

5. Experimental Work 
 

The experimental work has been performed in a 
specific simulation environment. For more details, this 
environment is described in the following paragraphs in 
terms of structure of the dataset and the experimental 
setup. 

 
5.1. Dataset Description 
 

The 2017 PhysioNet Computing in Cardiology 
Challenge [2] featured the relatively new dataset of short-
time single-lead ECG recordings. There are 12,186 
records. This dataset has been made available for the 
challenge by AliveCor known as manufacturer of 
handheld ECG equipment. Each sample was recorded 
using one of the three single-channel ECG devices. 
Theoretically, the user gripped each of the two electrodes 
in each hand to create an ECG equal to lead I (LA-RA). 
The recording lasted, on average, 30 seconds. 

The equipment then used a 19 kHz carrier frequency 
and a 200 Hz/mV modulation index to acoustically send 
the data to a wireless device into the microphone over the 
air. Software demodulation was used to digitize the data in 
real time at 44.1 kHz and 24-bit resolution. The data were 
finally saved as 300 Hz, 16-bit files with a bandwidth of 
0.5-40 Hz and a dynamic range of 5 mV. 

The data was then divided into training and test data 
sets and transformed into Matlab V4 files according to 
WFDB. The test set contains 3,658 recordings with 
identical lengths and class distributions. However, the 

training set inludes 8,528 samples ranging from 9 to 60 
seconds. In our work, 300 records are selected for testing.  

 

 
Fig. 8. shows the composition of the dataset in terms of 
samples per class, where N, A, O, and ~, represent the 
Normal, AF, Other, and Noisy classes respectively.  
 
5.2.  Experimental Setup 
 

The proposed deep residual CNN has been 
implemented using the Python-based TensorFlow 
environment through a high-level neural network API. We 
set the batch size to 250 samples, because the computer 
RAM can handle 250 ECG features at a time. In addition, 
we set the Adam optimization method's learning rate to 
0.0001. We utilize the default values of 0.9, 0.999, and 1e-
8 for the exponential decay rates for the present, 
estimations, and epsilon. The HP-station used for all 
studies has an Intel Xeon CPU clocked at 2.40 GHz, 24.00 
GB of RAM, and an 11 GB GEForce GTX1090 GPU. 

The performance evaluation of the proposed model 
has been performed using F1-score metric for each class 
as well as over all classes. Given a confusion matrix as 
shown in Table 2, these scores are computed, as presented 
in Eq. (2), (3), (4), and (5). Finally, the overall F1-score is 
computed using FN, FA, and FO as shown in Eq. (6) and 
according to the guidelines of the PhysioNet/Computing 
in Cardiology challenge. 

FN =
2 × Nn

∑ N + ∑ n
 (2) 
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Fig. 7. Composition of short-time single-lead ECG 
dataset. (a) Training set with 8,528 samples, (b) Testing 
set with 300 samples 

Table 2. Definition of parameters used in score 
formulas in Eq. (2), (3), (4), and (5). 
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FA =
2 × Aa

∑ A + ∑ a
 (3) 

FO =
2 × Oo

∑ O + ∑ o
 (4) 

F~ =
2 × Pp

∑ P + ∑ p
 (5) 

𝐹1𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝐹𝑛 + 𝐹𝑎 + 𝐹𝑜

3
 (6) 

 

6. Results and Discussion 
 

6.1. Results with the Base CNN (Without Residual 
Connections) 

 
In this section, we present the results obtained by the 

base CNN model without residual connections. This 
model is characterized by the following parameters: 
convolutional layers with 188 filters of size 3 each and a 
stride of 1. Stride specifies the step size between each 
convolution of the signal with the filter. In other words, 
the convolution is not computed at every value of k, 
instead k moves by step equal to s. as illustrated by the 
following formula for the convolution between x[n] and 
the filter h[n]:  

(ℎ ∗ 𝑥)[𝑛] = ∑ ℎ[𝑛 − 𝑘] × 𝑥[𝑘]

𝑁

𝑘=0

 (7) 

In this first experiment, we set the learning rate of the 
Adam optimization algorithm to the low rate of 0.0001 to 
start with. The categorical cross entropy loss function is 
used when the data point belongs to one category. In other 
words, it is used in classification problems where only one 
result is correct. Categorical cross entropy loss can be 
represented by Eq. (8). 

𝐿(𝑦, �̂�) = − ∑ ∑(𝑦𝑖,𝑗 × log(�̂�𝑖,𝑗))

𝐶

𝑗=1

𝑆

𝑖=1

 (8) 

where ŷ is the predicted probability that observation i is of 
class j. y is binary indicator (0 or 1) if class label j is the 
correct classification for observation i, S is number of 
samples, and C is the number of classes. 

Based on the initial loss and accuracy curves shown in 
Fig. 9, we notice that the CNN converges around training 
epoch 200. Thus, we settle on 200 for the number of 
epochs parameter. However, we implemented the 
following improvement. For the first 150 epochs, we set 
learning rate to a higher value, namely 0.001, to speed up 
convergence. Then, for the training epochs between 150 
and 200, we reset again to 0.0001, so that the network fine-
tunes its final result. 

Furthermore, we notice also from Fig. 9 that there are 
small fluctuations in the loss value even when the CNN 
reaches convergence. Thus, we have implemented a 
solution that keeps track and saves the model with the 
lowest loss value during the epochs 150 to 200. The model 
with the lowest loss value is the best model that we expect 

to give us optimal results when we apply it to the testing 
set. 

 F1 Score per class 
F1 
score 

Method N A O ~ Overall 

5-layer CNN 
[ours] 

96.71 90.52 86.13 83.71 91.76 

Residual 
CNN [ours] 

97.10 94.85 93.33 85.58 95.09 

 
6.2. Effect of Residual Connections 
 

In the second set of experiments, we compare the 
base model (without residual connections) to the 
proposed model of the residual CNN. For these 
experiments we fix the parameters to the same values as 
in the experiment of the previous section, including the 
idea of setting the learning rate to 0.001 during the first 
150 epochs and then reducing it to 0.0001 thereafter. In 
addition to saving the best model that reaches the lowest 
loss value on the training data. We obtain the results 
shown in Table 3, which clearly show the effectiveness of 
introducing residual connections to the model. In 
particular, the overall F1-score has increased from 91.76% 
to 95.09%. In addition, the F1-score has improved across 
all classes. In particular, the improvement was pretty 
significant for the minority classes which are the A and O 
classes. This shows that residual connections were 
instrumental in helping the model focus on important 
features that helped identify these classes. 

Figure 10 shows the confusion matrix on the test set 
for both models, in which we can see that the main 
difference is in the minority classes, especially the “O” 
class (class two). For this class the base model wrongly 
classifies more (exactly 12) ECG records as normal 
records compared to the residual CNN. 

Fig. 8. Loss and accuracy curves results. (a) and (b) CNN 
without residual connections. (c) and (d) CNN with 
residual connections. 

Table 3. Effect of adding residual connections to our 
proposed deep CNN model. 

(a) 

(c) (d) 

(b) 
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Finally, we plot the loss and accuracy curves for both 
models in Fig. 11. We notice here that initial loss of the 
residual networks is (around 0.9) which is lower than the 
initial loss of the base network without residual 
connections. Also, we notice the CNN with residual 
connections converges faster. This clearly shows the 
effectiveness of residual connections in deep CNN 
models. 

 
6.3. Effect of Inverted Signals Detection 
 

The impact of inverted signals detection on the 
classification accuracy for both types of CNN is shown in 
Table 4. The classification accuracy increases greatly by 
identifying and correcting inverted signals, as shown in the 
table. When using the 5-layer CNN model, the accuracy 
increases from 87.58 to 91.76%. however, when using the 
5-layer CNN with residual connections the accuracy is 
much better which incrases from 89.09 to 95.09%. These 
results show how correcting inverted ECG signals can be 
effective before classification to produce precise results. 

We also present the confusion matrix for both 
scenarios in Fig. 12. An interesting observation here is that 
the inversion detection pre-processing step had a higher 
positive effect on the minority classes compared to the 
normal class (or class zero). In particular, the “O” class (or 
class two) is the one most affected. It is confused with the 
“N” class (or class zero) which is the “Normal” class. 

 
Table 4. Effect of inversion detection on classification 
accuracy. 
 

 F1 score per class 
F1 
score 

Method N A O ~ Overall 

5-layer CNN      

No correction of 
inverted signal 

95.42 93.75 84.21 - 87.58 

with correction of 
inverted signal 

96.71 90.52 86.13 - 91.76 

5-layer CNN with residual 
connections. 

  

No correction of 
inverted signal 

93.89 92.63 83.72 - 89.09 

with correction of 
inverted signal 

97.10 94.85 93.33 - 95.09 

 

 

   
(a)   (b) 

 
Fig. 11. Confusion matrix for CNN with residual 
connections. (a) ECG records without inversion detection 
and (b) ECG records with inversion detection. 
 
6.4. Comparison to State-of-the-Art Methods 
 

Table 5 establishes a comparative study, based on the 
F1 scores, between our work and the top-performing deep 
learning methods proposed for this problem. These 
include the methods proposed in [5, 6, 7, 8, 30]. In 
addition, we included three more studies that are similar 
to our method because they are based on deep neural 
networks. Specifically, we used the research developed in 
[13, 14, 15]. 

Our residual CNN model performs better than six 
methods out of eight. Only two methods developed by 

Fig. 9. Confusion matrix for (a) CNN without residual 
connections and (b) CNN with residual connections. 

Fig. 10. Loss and accuracy curves results. Model 1 is 
CNN without residual connections, while model 2 is 
CNN with residual connections. (a) Loss curves. (b) 
Accuracy curves. 
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Kropf et al. [6] and Datta et al. [8] surpassed our method 
by achieving an overall F1-scores of 95.62 and 99.02, 
respectively. 

In terms of the feature extraction phase, while more 
than 150 features are extracted, our methodology is similar 
to Datta et al. [8] research work. However, the 
last employs a binary cascaded technique with two stages. 
The recordings are split into the "normal+others" and 
"AF+noisy" intermediate classes by the first binary 
classifier. The final classes "normal", "others", "AF", and 
"noisy" are the result of splitting each intermediate class 
into two groups using a separate binary classifier in an 
additional stage. This idea represents the main cause of 
their method's successful application. We therefore 
believe that further research into this cascaded method 
can lead to better performance. 

The work achieved by Kropf et al. [6] initiates ECG 
record processing by extracting 380 features used for 
classification. This number is significantly larger than the 
number of features extracted in our method (188 features). 
Moreover, they used a bagged decision trees method 
based on random forest classifier. As result, when 
comparing the number of features in one hand and the 
obtained results in another hand, we can conclude that 
more complexity is introduced in their model without 
significant improvement in the classification accuracy. 

 

7. Conclusion 
 

In this work, we proposed a deep learning-based 
method to classify short-time single-lead ECG signals. 
These signals constituted a dataset presented during the 
2017 PhysioNet Computing in Cardiology Challenge. Our 
proposed method operates through three main phases: 
preprocessing, feature extraction, and deep residual CNN-
based classification. In the preprocessing phase, the 
method performs detection and correction of inverted 
signals. The proposed inversion detection algorithm is our 
first contribution in this work. In the second phase, we 
have combined a wide range of feature extraction 
algorithms, including morphological features, Heart Rate 
Variability (HRV) features, special AF features, statistical 
features and time and frequency features. The 3rd phase 
constitutes the main contribution of this paper, which 
resides on investigating deep residual CNN to classify 
short-time single-lead ECG signals. 

We have carried out several experiments to study the 
proposed method. The experimental results show the 
effectiveness of the algorithm to detect and correct 
inverted signals. This algorithm led to significant 
improvements in the classification accuracy. As result, the 
proposed residual CNN model demonstrates better 
performance, especially compared many existing state of 
the art researches. In perspective, we are interested to 
extract, from both time and frequency domains, additional 
features that can improve the classification performance. 
In addition, the cascaded classifier approach can be 
another direction, where the first classifier divides the 

ECG signals into two classes, and then each class is further 
split into two sub-classes using other classifiers. 

 

 
 

Contributions 
The main contributions of this paper are the following:  

• Automatic mechanisms for detection of inverted 
signals. 

• Proposing an algorithm for extracting a wide range of 
ECG features to be used jointly with a convolutional 
neural network classifier. 

• Designing a lightweight CNN model based on the 
idea of residual connections for effective classification 
of short-time single-lead ECG signals. 

• Validating the proposed methods on short-time 
single-lead ECG dataset presented in the 2017 
PhysioNet Computing in Cardiology Challenge. 
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 F1 Score / class 
F1 
score 

Method N A O ~ 
Over
all 

Top 5 
methods 

     

Billeci [7] 92.72 94.62 83.2  90.18 

Teijeiro [5] 93.29 95.74 84.62  91.22 

Plesinger 
[30] 

95.30 95.83 85.94  92.36 

Kropf [6] 95.50 98.95 92.42  95.62 

Datta [8] 99.66 98.95 98.46  99.02 

Other deep 
NN 

     

Xiong [13] 92.31 96.91 82.17  90.46 

Warrick [14] 89.93 89.36 70.07  83.12 

Andreotti 
[15] 

96.35 84.71 89.05  90.03 

5-layer CNN 
[ours] 

96.59 90.7 86.79 84.11 91.36 

Residual 
CNN [ours] 

97.21 94.96 93.15 85.58 95.11 

Table 5. Classification accuracy: Comparative study with 
state-of-the-art methods. 
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