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Abstract. The imperative task of identifying and promptly detecting cracks in concrete 
bridges is crucial for preserving their structural health and ensuring the safety of users. 
Traditional bridge inspection methods heavily rely on human eyes and additional tools, 
demanding extensive training for inspectors and resulting in time-consuming processes. 
The increasing demand for Unmanned Aerial Vehicles (UAVs) has provided a 
transformative solution to access hard-to-reach areas efficiently. This research explores the 
integration of deep learning algorithms, including CNN, RCNN, Fast RCNN, Faster 
RCNN, and YOLO, to enhance the accuracy and efficiency of UAV-based crack detection 
systems. Experimental results affirm the effectiveness of these algorithms in addressing 
challenges such as lighting variations and small crack detection. The study aims to 
contribute to structural health monitoring, improving maintenance practices, and 
enhancing safety. 
 
 
Keywords: Unmanned aerial vehicle, bridge inspection, crack detection, deep learning, 
CNN, RCNN. 
 

ENGINEERING JOURNAL Volume 27 Issue 12 
Received 13 June 2023 
Accepted 7 December 2023 
Published 31 December 2023 
Online at https://engj.org/ 
DOI:10.4186/ej.2023.27.12.11 

mailto:bandlapavanbabu


DOI:10.4186/ej.2023.27.12.11 

12 ENGINEERING JOURNAL Volume 27 Issue 12, ISSN 0125-8281 (https://engj.org/) 

1. Introduction 
 
India has experienced remarkable growth in large-

scale infrastructure projects over the past two decades, 
encompassing the construction of apartment complexes, 
commercial buildings, and transportation networks such 
as highways, railways, and bridges. This rapid 
development has underscored the importance of regular 
maintenance and inspection to ensure the structural 
integrity of these structures and mitigate risks to public 
safety, particularly for bridges that are exposed to 
weather conditions and heavy loads. Thorough 
inspections are crucial in identifying signs of wear and 
tear that could lead to structural failure or collapse, 
ultimately safeguarding public safety. 

Structural Health Monitoring (SHM) has emerged as 
a systematic and essential process that plays a pivotal role 
in ensuring the safety, reliability, and optimal 
performance of civil structures. By continuously 
monitoring, assessing, and analyzing various structural 
parameters, SHM provides valuable insights into the 
condition and behavior of structures over time. However, 
most existing crack detection systems heavily rely on 
human observation in the context of bridge inspections. 
These inspections demand extensive training for 
inspectors, consuming significant time and resources. 
Moreover, examining the lateral sides and underside of 
bridges often requires the use of specialized bridge 
inspection units, resulting in additional costs. Despite the 
utilization of these units, working at heights and in 
challenging environments remains risky. Furthermore, 
the subjective nature of manual inspections introduces a 
degree of subjectivity and lacks objectivity in quantitative 
analysis, heavily relying on the experience and expertise 
of the surveyor. 

In recent years, Unmanned Aerial Vehicles (UAVs), 
commonly known as drones, have emerged as a 
transformative technology with profound implications 
across various industries. Drones offer an unparalleled 
aerial perspective, facilitating efficient data collection, 
monitoring, and analysis in diverse fields. Their 
increasing utilization is driven by their unique capabilities 
and versatile applications, revolutionizing sectors such as 
aerial photography, disaster management, agriculture, and 
infrastructure inspection. Drones provide cost-effective, 
time-efficient, and safer alternatives to conventional 
methods. 

One key advantage of drones is their ability to access 
remote or hard-to-reach areas, eliminating the need for 
manual intervention and reducing human risks. This 
accessibility makes drones invaluable in search and rescue 
missions, environmental monitoring, and infrastructure 
inspections, particularly in challenging or hazardous 
locations. Leveraging their maneuverability and advanced 
navigation systems, drones can gather valuable insights 
and data from previously inaccessible vantage points, 
eliminating the need for extensive resources. 
Advancements in drone technology, including 
improvements in flight stability, battery life, payload 

capacity, and sensor capabilities, have further enhanced 
their utility. Equipped with high-resolution cameras, 
thermal imaging sensors, LiDAR systems, and other 
sophisticated tools, drones enable precise data collection, 
mapping, and analysis. This data can then be processed 
using advanced algorithms such as Convolutional Neural 
Networks (CNN) and Region-based Convolutional 
Neural Networks (RCNN) to accurately identify and 
analyze cracks in captured images or collected data. 

The detection of cracks plays a vital role in the 
inspection and monitoring of civil structures, allowing 
engineers and inspectors to proactively address potential 
issues before they escalate. Cracks can result from 
material deterioration, structural stress, or environmental 
conditions, and detecting them early on is crucial to 
ensure structural integrity. The integration of UAVs with 
deep learning methods further enhances crack detection 
capabilities by training neural networks to automatically 
identify and classify cracks 

This research paper aims to study different types of 
algorithms used for crack detection and enhance the 
accuracy and efficiency of crack detection by utilizing 
algorithms such as Convolutional Neural Networks 
(CNN) and Region-based Convolutional Neural 
Networks (RCNN). By harnessing the capabilities of 
drones and advanced algorithms, this study seeks to 
contribute to the field of structural health monitoring, 
improving maintenance practices, and enhancing safety. 

To facilitate the implementation and training of 
Convolutional Neural Networks (CNN) and Region- 
based Convolutional Neural Networks (RCNN) for crack 
detection, this research paper utilizes Jupyter Notebook 
as a powerful and versatile tool. Jupyter Notebook 
provides an interactive computing environment that 
allows for the creation and execution of code cells, as 
well as the integration of explanatory text and 
visualizations. This platform supports various 
programming languages, including Python, which is 
widely used in the field of deep learning. By leveraging 
the power and versatility of Jupyter Notebook, this 
research paper conducts the execution and refinement of 
the crack detection algorithm like CNN and RCNN. The 
interactive computing environment provided by Jupyter 
Notebook enables seamless experimentation by allowing 
the adjustment of hyper parameters and analysis of 
results. Through this iterative process, the algorithm's 
performance is optimized, leading to improved accuracy 
and efficiency in detecting cracks. 

 

2. Literature Review 
 
Convolutional Neural Networks (CNNs) have 

revolutionized crack detection in bridges, offering high 
accuracy and the ability to extract meaningful features 
from images. In 2019, Li et al. proposed a CNN-based 
approach that achieved an impressive accuracy of 99.06% 
[3]. Their method employed deep convolutional layers to 
capture intricate crack patterns, enabling the detection of 
diverse crack types and orientations. This breakthrough 
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demonstrated the efficacy of CNNs in identifying cracks 
with high precision, providing valuable insights for 
bridge inspectors and maintenance teams. 

In a similar vein, a study conducted in 2021 by 
researchers [2] reported a remarkable accuracy of 97.20% 
using a CNN-based approach. Their research focused on 
addressing one of the challenges in crack detection— 
lighting variations. By incorporating robust preprocessing 
techniques and data augmentation methods, the CNN 
model proved resilient to changes in lighting conditions, 
ensuring reliable crack detection across different 
environments. 

Building on these advancements, Chen et al. (2021) 
introduced a CNN-based method that achieved an 
accuracy of 98.00% [1]. Their approach surpassed 
traditional crack detection methods by effectively 
identifying small cracks that often go unnoticed. By 
leveraging the CNN's ability to capture intricate details 
and spatial relationships, Chen et al. enhanced the 
sensitivity of crack detection, leading to improved bridge 
inspection accuracy and safety.  

Moreover, in a most recent study by [21] A. Rahai 
(2022) implemented a deep convolutional neural network 
(DCNN) with transfer learning (TF) technique for crack 
detection. The study explored various deep learning 
networks, conducting experiments on test images that 
demonstrated an accuracy of over 99% in damage 
detection. 

Moving on to Region-based Convolutional Neural 
Networks (RCNNs), they have gained prominence in 
crack detection due to their ability to identify crack 
regions and accurately classify them. In 2016, Dong et al. 
achieved an accuracy of 96.20% using an RCNN 
algorithm [6]. Their method incorporated multiple scales 
of image features, enabling the detection of cracks with 
varying widths and orientations. By considering the 
contextual information surrounding cracks, the multi- 
scale RCNN demonstrated robust performance across 
different types of cracks, contributing to more 
comprehensive structural health monitoring. 

In 2021, Dong et al. further advanced RCNN-based 
crack detection by addressing challenges related to 
lighting variations, camera angles, and complex crack 
patterns [4]. Their RCNN algorithm achieved an 
accuracy of 95.78%, highlighting its robustness in 
challenging real-world scenarios. Through the utilization 
of advanced feature extraction techniques and effective 
crack region proposals, Dong et al. enhanced the 
accuracy and reliability of crack detection systems, 
reducing false positives and improving overall inspection 
efficiency. 

In a different approach, Zhang et al. (2020) 
employed a multi-task RCNN model that reported an 
accuracy of 96% [5]. Their research focused on detecting 
cracks of various shapes, including narrow cracks and 
those with low contrast. By incorporating multiple 
subtasks such as crack localization and crack type 
classification, the multi-task RCNN demonstrated 

superior performance in accurately detecting different 
crack geometries and characteristics.  

Fast RCNN algorithms have also shown remarkable 
performance in crack detection, offering a balance 
between accuracy and efficiency. In 2018, Yang et al. 
proposed a Fast RCNN algorithm that achieved an 
accuracy of 93.40% [7]. Their work primarily focused on 
detecting small cracks and cracks with low contrast, 
which pose challenges for traditional detection methods. 
By leveraging the region proposal network and fast 
feature extraction, the Fast RCNN algorithm 
demonstrated its effectiveness in capturing fine-grained 
crack details, improving the overall accuracy of bridge 
inspection systems.  

Li et al. (2022) further improved the accuracy of Fast 
RCNN-based crack detection by addressing cracks with 
various orientations and shapes, including diagonal and 
corner cracks [8]. Their approach achieved an accuracy of 
97%, emphasizing the importance of incorporating 
different anchor scales and aspect ratios to handle 
different crack geometries effectively. By considering a 
wide range of crack characteristics, the Fast RCNNbased 
system developed by Li et al. provided robust crack 
detection capabilities, supporting comprehensive bridge 
inspection and maintenance.  

Additionally, Liu et al. (2020) introduced a hybrid 
Fast RCNN algorithm that achieved an accuracy of 92.4% 
[5]. Their approach combined the strengths of different 
deep learning architectures, leveraging the efficiency of 
the Fast RCNN while integrating additional contextual 
information from the image. This hybrid approach 
improved crack detection efficiency while maintaining 
competitive accuracy levels, offering a practical solution 
for real-time bridge inspection applications.  

You Only Look Once (YOLO) algorithms have 
gained popularity for their real-time object detection 
capabilities, including crack detection in bridges. In 2019, 
Lu et al. employed a YOLO-based method with an 
accuracy of 88% [11]. Their research highlighted the 
algorithm's effectiveness in detecting various types of 
cracks, including diagonal, corner, and T-shaped cracks. 
By utilizing a single-stage architecture, the YOLO-based 
system provided fast and reliable crack detection, 
enabling efficient bridge inspection in real-time scenarios.  

In another study conducted in 2021, Xu et al. applied 
the YOLOv3 algorithm, achieving an accuracy of 94.2% 
[10]. Their research focused on detecting cracks of 
different sizes and shapes, including narrow cracks and 
those with low contrast. The YOLOv3 algorithm's ability 
to process images in real-time, coupled with its accuracy 
in crack detection, provided a valuable tool for bridge 
inspectors to detect cracks promptly and accurately, 
facilitating timely maintenance and ensuring structural 
integrity. 
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Fig. 1. Comparison graph of deep learning algorithms. 
 

The graph Fig. 1 highlights the advancements in 
crack detection algorithms over the years, with CNN-
based methods consistently achieving high accuracies. 
The Faster RCNN algorithm also demonstrates 
significant progress in accuracy, while RCNN and 
YOLO algorithms show slightly lower but still 
competitive performance. 

 

3. Methodology 
 
3.1. Dataset 

 
A representative   and   typical   dataset   is   very 

important for the Algorithm for crack detection task. 
The dataset used in this work contains 40000 images: 
20000 crack and 20000 non-cracks with 227x227 pixels 
with RGB channels. As per the information provided, 
the dataset is a combination of two datasets to provide 
sufficient variance amongst the data samples. Dataset 
contains different types of cracks on concrete structures, 
samples of the crack and non-crack images. These images 
are the input to the crack detection algorithm. 

 
3.2. Data Preprocessing 

 
In the data preprocessing phase of this study, the 

image dataset undergoes meticulous organization and 
preparation. Positive and negative images, representing 
concrete surfaces with and without cracks, are sourced 
from specified directories using a custom function 
named generate_df. Subsequently, the dataset is 
structured into separate DataFrames—positive_df and 
negative_df—each containing file paths and 
corresponding labels. These DataFrames are then 
concatenated into a comprehensive dataset, denoted as 
data, which is strategically split into training and test sets 
using the train_test_split function from scikit-learn. The 
training set, a randomized subset comprising 80% of the 
data (9000 samples for computational efficiency), serves 
as the foundation for model training.  

To augment and preprocess the image data 
effectively, TensorFlow's powerful 
ImageDataGenerator is employed. Two distinct 
generators are instantiated: train_generator for the 
training set and test_generator for the test set. These 

generators incorporate essential transformations, 
including pixel rescaling to a range of [0, 1]. Furthermore, 
images are seamlessly flowed from the DataFrames into 
the model using the flow_from_dataframe method, 
ensuring uniformity in size (120x120 pixels), color 
representation (RGB), and batch processing (32 images 
per batch). The training images are intentionally shuffled, 
with a seed set for reproducibility purposes. These 
preprocessing steps collectively establish a well-
structured and augmented dataset, laying the groundwork 
for the subsequent training of a CNN and RCNN for 
binary image classification in the realm of crack detection. 
Then, these meticulously prepared images are provided 
as input to the CNN and RCNN during the training 
phase, enabling the model to learn and discern patterns 
associated with cracks and non-cracks for robust 
classification. 

To create the CNN & RCNN we use the Keras 
library, which is known to be the most popular library by 
the deep learning community that allows transparently 
using TensorFlow, the library developed by Google for 
deep learning. Other libraries like matplotlib and Seaborn 
have been used for visualizations and attractive statistical 
graphics. 

 
3.3. Convolutional Neural Network classification 

 
The suitability of the CNN architecture employed in 

the code for crack detection is grounded in its design, 
specifically tailored to effectively address the nuances of 
the crack detection problem. The architecture comprises 
multiple layers, strategically incorporating convolutional 
layers, pooling layers, and fully connected layers. Each 
layer plays a crucial role in the overall functionality of the 
network. 

The initial input layer serves as the gateway for image 
data, allowing seamless integration of information into 
the network. Subsequent convolutional and pooling 
layers work in tandem to systematically process the input, 
extracting pertinent features essential for accurate crack 
detection. The architecture is adept at capturing spatial 
patterns within the images, a critical aspect of crack 
identification. 

The output layer, employing a sigmoid activation 
function, serves the pivotal role of predicting the 
presence or absence of cracks based on the processed 
features. This binary outcome aligns with the nature of 
the crack detection task, simplifying the decision-making 
process. 

 
 
Fig. 2. Architecture of the proposed network CNN. 
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Table 1 shows the parameters of the proposed 
architecture which consists of two convolutional layers 
and two dense layers, as well as polling operations after 
each convolutional layer. The "Kernel Size" column 
shows the size of the convolutional kernel for each 
Conv2D layer. The "Kernel #" column shows the 
number of kernels (filters) for each Conv2D layer. The 
"Param. #" column shows the number of trainable 
parameters for each layer. 
 
Table 1. Parameters of each layer for proposed CNN. 

 

Layer Type Kernel 
Size 

Kernel # Param. # 

Input - - 0 

Conv2D 
(filters=16, 
kernel=3) 

3*3*3 16 448 

MaxPooling2D 
(Pool=2) 

2*2*1 - 0 

Conv2D 
(filters=32, 
kernel=3) 

3*39316 32 4640 

MaxPooling2D 
(Pool=2) 

2*2*1 - 0 

GlobalAvgPoolin
g2D 

- - 0 

Dense 
(units=128) 

- - 16512 

Dense 
(units=128) 

- - 16512 

Dense (units=1) 
with sigmoid 

- - 129 

 
 

Overall, the above architecture, with its well-defined 
layers and parameter choices, is tailored to efficiently 
discern and process intricate patterns within images, 
making it highly suitable for the crack detection problem 
at hand. The presented parameters underscore the 
meticulous consideration given to network configuration, 
reinforcing its efficacy in addressing the challenges posed 
by crack detection. 

The stepwise algorithm used for implementation of 
CNN is as follows: 
1. Define the layers of the convolutional neural 

network (CNN) model using the Keras functional 
API. 

2. Create the model by specifying the inputs and 
outputs. 

3. Compile the model with the Adam optimizer, binary 
cross-entropy loss, and accuracy metric. 

4. Train the model using the ‘fit’ function, specifying 
the training and validation data, number of epochs, 
and an early stopping callback to prevent overfitting. 

5. Visualize the training and validation loss over time 
using Plotly. 

6. Predict the labels for the test images using the 
trained model. 

7. Define a function, ‘evaluate_model’, to evaluate the 
model's performance on the test set. This includes 
calculating the test loss, accuracy, and generating a 
confusion matrix and classification report. 

8. Call the ‘evaluate_model’ function with the trained 
model. 

9. Display sample test images with their predicted labels, 
highlighting correct and incorrect predictions. 

10. Identify the indices of the misclassified images. 
11. Display the misclassified images from the test set. 
 

 
Fig. 3. Block diagram for CNN. 
 
3.4. Region Based Convolutional Neural Network 

Classification 
 
The RCNN architecture proposed in this paper 

consists of region proposal and convolutional neural 
networks. It starts by generating region proposals using 
selective search or a similar algorithm. These proposals 
are then fed into a CNN, which extracts features from 
each region. The extracted features are used to classify 
and localize objects within the regions. The RCNN 
architecture effectively combines the power of CNNs 
with region-based processing, making it suitable for 
accurate crack detection tasks. 

 

 
 

Fig. 4. Architecture of the proposed network RCNN. 
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The RCNN model consists of a base network with 
two convolutional layers and two max pooling layers, 
followed by a Region Proposal Network (RPN) and a 
Region of Interest (ROI) Pooling layer. The RPN 
consists of a single convolutional layer with 512 filters 
and a 1x1 convolutional layer with sigmoid activation for 
objectness classification and linear activation for 
bounding box regression, respectively. The ROI Pooling 
layer uses a time-distributed max pooling operation with 
7x7 pooling regions to extract features from each region 
of interest (ROI). The pooled features are then flattened 
and passed through two fully connected layers with 128 
units each and ReLU activation. Finally, the RCNN 
model has two output layers, one for classification and 
one for regression, each with a time-distributed dense 
layer with softmax and linear activation, respectively. 
 
Table 2. Parameters of each layer for proposed RCNN. 
 

Layer  Kernel 
Size 

Kernel # Param. # 

Conv1 3x3x3 32 896 

Pool1 2x2x1 - 0 

Conv2 3x3x3 64 18496 

Pool2 2x2x1 - 0 

Conv3 3x3x3 128 73856 

Pool3 2x2x1 - 0 

Conv4 3x3x3 256 295168 

Pool4 2x2x1 - 0 

Flatten - - 0 

Dense1 - 512 3277312 

Dense2 - 1 513 

 
 

The stepwise algorithm used for implementation 
of RCNN is as follows: 
1. Define two functions: ‘get_rpn_layer’ and 

‘get_roi_layer’, which will be used to build the 
Region Proposal Network (RPN) and ROI (Region 
of Interest) pooling layer, respectively. 

2. Define the main RCNN model using the 
‘get_rcnn_model’ function. This model consists of 
input layers, shared convolutional layers, the RPN 
layer, and the ROI pooling layer. 

3. Create an instance of the RCNN model. 
4. Compile the model with the Adam optimizer, binary 

cross-entropy loss, and accuracy metric. 
5. Train the model using the `fit` function. Pass the 

training and validation data generators as inputs and 

specify the number of epochs to train. Use the 
‘EarlyStopping’ callback to stop training early if the 
validation loss doesn't improve for 3 consecutive 
epochs. 

6. Plot the training and validation loss over time using 
Plotly Express. 

7. Make predictions on the test set using the trained 
model. 

8. Define a function, ‘evaluate_model’, to evaluate the 
model's performance on the test set. This includes 
calculating the test loss, accuracy, and generating a 
confusion matrix and classification report. Call the 
‘evaluate_model’ function with the trained model. 

9. Display sample test images with their predicted labels, 
highlighting correct and incorrect predictions. 

10. Identify the indices of the misclassified images. 
 

 
 
Fig. 5. Block diagram for RCNN Model. 
 
3.5. Evaluation Metrics 

 
In this section, we outline a comprehensive 

evaluation of the deep learning models employed in our 
paper, focusing on crack detection using Convolutional 
Neural Networks (CNN) and Recurrent Convolutional 
Neural Networks (RCNN). The choice of metrics aims 
to provide a multifaceted assessment of the models' 
effectiveness. 

A. Accuracy is a commonly used metric that 
measures the proportion of correctly classified 
samples to the total number of samples. It can 
be calculated using the following equation: 
 

Accuracy = No. of correctly classified samples           
Total number of samples 

 
B. Test loss quantifies the discrepancy between the 

predicted output and the actual ground truth 
values during the testing phase. It provides 
insights into the model's overall performance. 
Lower test loss values indicate better model 
performance. 

 
C. The number of epochs refers to the number of 

times the entire dataset is passed through the 
model during training. It reflects the number of 
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iterations needed for the model to converge and 
achieve optimal performance. 

 
D. The total number of samples used denotes the 

size of the dataset employed for training, 
validation, and testing purposes. A larger dataset 
often leads to more reliable and accurate model 
performance. 

 
E. Training and validation loss are Vital metrics 

used to monitor the model's performance during 
the training phase. Training loss represents the 
error between predicted and actual values during 
the training process, while validation loss 
indicates the error during the validation phase. 
These metrics help in assessing the model's 
generalization capabilities and identifying 
possible overfitting or underfitting issues. 

 
F. A confusion matrix is a tabular representation 

that provides a detailed analysis of a classifier's 
performance. It summarizes the true positive, 
true negative, false positive, and false negative 
predictions. From the confusion matrix, several 
evaluation metrics can be derived, including 
precision, recall, and F1 score. 

 
G. Precision quantifies the proportion of true 

positive predictions out of the total positive 
predictions, emphasizing the model's accuracy in 
positive identifications: 
 
 

      Precision =      TP       
                         TP + FP 
 
H. Recall, also known as sensitivity or true positive 

rate, measures the proportion of actual positive 
instances correctly classified by the model. It is 
computed using the following equation: 
 

      Recall =          TP          
                        TP + FN 
 
I. F1 score combines precision and recall into a 

single metric that balances both metrics. It 
provides a harmonic mean of precision and 
recall, allowing for a comprehensive assessment 
of the model's overall performance: 
 

      F1 score = 2 * Precision * Recall  
                         Precision + Recall 
 
These evaluation metrics, along with the 

corresponding results [4], are presented in detail through 
tables and figures, providing a comprehensive analysis of 
the effectiveness of our CNN and RCNN models in 
crack detection. 

 

4. Results & Discussions 
 
Based on the research, a Convolutional Neural 

Network (CNN) achieved a maximum accuracy of 98% 
and RCNN achieved a maximum accuracy of 96%, for 
detecting cracks, as reported in appendix section. 
However, in an effort to further improve the accuracy 
rate and enhance detection results, certain parameters 
like Epochs (3.5[C]), Number of samples for training 
(3.5[D]), in the CNN & RCNN architecture were 
modified, as shown in Table 3(a) and  Table 3(b). 

 
Table 3. (a) Changed Parameters of CNN. 

 

Accuracy
% 

Test loss Epoch No. of 
Samples 

98.37% 0.0454 500 6000 

98.48% 0.0414 600 7000 

98.98% 0.0290 700 8000 

99.44% 0.0196 700 9000 

 
Table 3. (b) Changed Parameters of RCNN. 
 

Accuracy
% 

Test loss Epoch No. of 
Samples 

97.87 0.0465 500 6000 

98.48 0.0414 600 7000 

98.69 0.0401 700 8000 

98.11 0.0318 700 9000 

 
Based on the parameters we tested, we were able to 

achieve a high level of accuracy ranging from 98% to 
99.25%, for CNN architecture as shown in the graph Fig. 
5(a). Similarly we were able to achieve accuracy ranging 
from 97% to 98% as shown in graph Fig. 5(b) for 
RCNN architecture. The different splits and sample sizes 
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did not have a significant impact on the accuracy (3.5[A]), 
but it's worth noting that the model performed slightly 
better with a larger sample size. Additionally, as the test 
loss (3.5[B]) decreased, the accuracy increased, which is 
to be expected. Overall, we were able to obtain a high 
level of accuracy with our model for CNN & RCNN 
using the tested parameters. 
 

 
Fig 5. (a) Accuracy vs Test Loss Graph for CNN. 
 

 
 
Fig 5. (b) Accuracy vs Test Loss Graph for RCNN. 
 

After extensive testing, we were able to achieve a 
maximum accuracy of 99.25% for CNN architecture and 
99.00% for RCNN architecture. This was accomplished 
using a training dataset of 8000 samples and training for 
800 epochs with an 80:20 split between the training and 
validation sets. The Training and validation loss (3.5[E]) 
are depicted in the accompanying Fig. 6(a) for CNN and 
Fig. 6(b) for RCNN. 
 

 
 
Fig 6. (a) Training and Validation Loss Graph for CNN. 
 

 
 
Fig 6. (b) Training and Validation Loss Graph for RCNN. 
 

The next tables represent a confusion matrix(3.5[F]) 
for crack detection. Table 4(a) (CNN) and Table 4(b) 
(RCNN) outline the model's performance, distinguishing 
between true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). TP indicates 
correct crack identification, TN is accurate non-crack 
identification, FP signals false alarms, and FN represents 
missed crack detections. These matrices gauge the 
models' accuracy and reveal insights into their crack 
detection abilities, visualized through heatmaps. 

In crack detection, false positives (FP) could trigger 
unnecessary maintenance, impacting costs and safety. 
Meanwhile, false negatives (FN) pose more severe risks, 
indicating overlooked cracks and compromising safety. 
Achieving a balance is vital for an effective system. 
Evaluating heatmaps adds depth, emphasizing the 
practical consequences. This nuanced approach 
highlights the need for minimizing both false positives 
and false negatives to enhance the reliability of crack 
detection systems. 
 
Table 4. (a) Confusion Matrix Table For CNN. 

 

 

Detection 

TRUE FALSE 

Actual 
TRUE 902 7 

FALSE 3 888 
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Table 4(b). Confusion Matrix Table For RCNN. 

 

 

Detection 

TRUE FALSE 

Actual 
TRUE 907 2 

FALSE 14 877 

 
 

Here Table 5(a) and Table 5(b) show the 
comparison of existing and proposed values of 
classification report for each of the algorithms used, that 
is CNN and RCNN respectively. The classification 
report for crack detection using CNN and RCNN 
provides a comprehensive summary of the model's 
performance metrics, including recall, precision, and F1 
score. Precision (3.5[G]) quantifies the model's accuracy 
in detecting cracks, Recall (3.5[H]) measures the model's 
ability to correctly identify cracks, and the F1 score 
(3.5[I]) balances both precision and recall. We can 
observe that the results of both the implemented 
algorithms have improved as compared to the existing 
results. 
 
Table 5. (a) Comparison table for CNN. 
 

CNN Recall Precision F1-score 

Existing 0.80 0.85 0.82 

Proposed 1.00 0.99 0.99 

 
Table 5. (b) Comparison table for RCNN. 
 

RCNN Recall Precision F1-score 

Existing 0.89 0.83 0.86 

Proposed 1.00 0.98 0.99 

 
 

The enhanced recall, precision, and F1 score 
values in Table 5(a) and Table 5(b) signify substantial 
improvements in the proposed model over existing 
results, showcasing its heightened efficacy in safety-
critical applications like crack detection. A recall of 1.00 

indicates a minimized rate of false negatives, crucial for 
ensuring the accurate identification of all crack instances 
in safety scenarios. The precision values of 0.99 for CNN 
and 0.98 for RCNN demonstrate a notable reduction in 
false positives, contributing to a more reliable crack 
detection system. The F1 score of 0.99 for both CNN 
and RCNN reflects a balanced approach, minimizing 
missed detections and false alarms. 

These are some sample results we get for our 
two implemented algorithms, which detect if the given 
input image has a crack or not. 
 

 
 
Fig. 6. Result of the Proposed method. 
 

5. Conclusion 
 
Our research stands as a testament to the 

effectiveness of CNN in the domain of crack detection 
from images obtained through UAVs. This conclusion is 
rooted in a meticulous exploration of numerical data, 
unraveling key insights into the comparative performance 
of two prominent deep learning models, CNN and 
RCNN. 

The standout numerical finding lies in the 
remarkable accuracy achieved by the CNN model, 
reaching an impressive 99.44%, overshadowing the 
RCNN model's performance at 99.11%. This substantial 
accuracy gap forms a robust numerical foundation, 
unequivocally establishing the supremacy of the CNN 
model in the specific task of UAV-based crack detection. 

Moreover, to fortify the reliability and robustness of 
our conclusions, we conducted comprehensive parameter 
tuning experiments. The CNN model consistently 
outperformed the RCNN model across various 
experiments, underscoring the CNN model's superior 
performance in crack detection. The CNN and RCNN 
models exhibit superior accuracy compared to other 
algorithms such as YOLO and Fast RCNN, which report 
accuracies ranging from 95% to 98%. 

Further substantiating our findings, extensive 
parameter tuning experiments were undertaken, offering 
a nuanced understanding of model behavior under 
diverse conditions. The resulting numerical outcomes 
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consistently favored the CNN model, showcasing its 
resilience and superior performance across various 
parameter configurations. These numerical details serve 
as pivotal support, enhancing the reliability of our 
overarching conclusion. 

Our unwavering assertion is that the CNN model 
emerges as a more robust and reliable solution for UAV-
captured crack detection, distinctly validated by its 
superior accuracy. This conclusion is underlined by the 
consistency of CNN's outperformance over RCNN 
across a spectrum of experimental scenarios, adding a 
quantitative dimension to our claim. 

The significance of our numerical findings extends 
beyond the confines of our research, holding potential 
implications for industries reliant on precise crack 
detection systems, notably in civil engineering and 
infrastructure maintenance. The stark numerical 
superiority of the CNN model, with an accuracy of 
99.44%, underscores its potential to avert damages and 
bolster safety through early crack detection. 

Looking forward, our future research trajectory is 
guided by these numerical revelations. Delving into 
advanced architectures like DenseNet and ResNet, 
backed by their promising track records in computer 
vision tasks, aims to elevate the accuracy and robustness 
of our model. Additionally, a strategic augmentation of 
our dataset, encompassing diverse crack images captured 
in varied conditions, aims to fortify real-world 
performance. 

In summation, our comprehensive numerical 
exploration fortifies the conclusion that the CNN model, 
with its exceptional accuracy and consistent performance, 
stands as a potent solution for UAV-based crack 
detection. This conclusion resonates with the data-driven 
essence of our research, providing a nuanced and 
quantitative perspective on the efficacy of our proposed 
model. 
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Appendix 
 

The following table summarizes the performance of various deep learning algorithms for crack detection in civil 
structures. The accuracy percentages and corresponding studies showcase the advancements in the field.  

 
Table 7. Comparison table of deep learning algorithms. 

 

Algorithm Accuracy% Study 

CNN 99.06 [3] Li et al. (2019) 
 97.20 [2]2021 
 98.00 [1] Chen et. Al (2021) 
RCNN 96.20 [6] (2016) 
 92.4 [5] (2017) 
 95.78 [4] Dong et al. (2021) 
Faster RCNN 93.40 [7] Yang et al. (2018) 
 95.00 [9] Liu et al. (2020) 
 97.00 [9] Li et al. (2022) 
YOLO 88.00 [11] Lu et al. (2019) 
 94.20 [10] Xu et al. (2021) 

 

 


