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Abstract. The existence of chaos in ecological models is quite obvious due to the presence of
nonlinear terms. Controlling chaotic phenomena in ecological systems remains a difficult task due
to their unpredictability, and thus chaos control is one of the main objectives for constructing
mathematical models in ecology today. Our aim in this paper is to review chaos control strategies
for the tri-trophic food chain models by using various ecological factors. The factors include
additional food, prey refuge, the Allee effect, the fear effect, and harvesting. We establish the
essential conditions for the existence of ecologically feasible equilibrium points in the food chain
ecological systems and their local stability. This paper provides a unified overview of recent
research on the chaos control of ecological systems. The theoretical results suggest a way to
control populations of species in ecological systems for fishing and pest management in farming.
Numerical examples are performed to justify and compare the theoretical findings through phase
portraits and bifurcation diagrams.
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1. Introduction

The study of interactions between living things
and their surroundings has recently received a lot of
attention from theoretical ecologists since it is crucial
in the formation of an ecosystem. Lotka and Volterra
independently developed a pair of first-order or-
dinary differential equations to describe the pro-
cess of interaction between two species in the mid-
1920s. Following on from these pioneering works,
researchers have demonstrated a strong interest in
modeling and studying species interactions in both
theoretical and experimental settings (see [1, 2] and
references therein). To make the ecological model
more realistic, a number of real elements have been
incorporated, such as the Allee effect, prey refuges,
stage structure, harvesting, toxic effects, and envi-
ronmental variations. On the other hand, chaotic
dynamics are quite obvious when nonlinear terms
are present in ecological systems. Generally, predict-
ing the future evolution of chaotic systems remains a
difficult task due to its sensitivity to the initial con-
dition and system parameters. Chaotic oscillations
may tend toward possible population extinction at
low densities. The authors in [3] stated that chaos
and its control are a more significant and challeng-
ing phenomenon. However, forecasting future pop-
ulations is much more important for maintaining a
healthy ecosystem. Thus, the problem of chaos con-
trol in ecological models has become an important
topic among theoretical ecologists in recent years.

Following Hastings and Powell’s [4] work, several
scientists developed numerous chaos control strate-
gies in food chain models by incorporating various
ecological components, (see [5–10]). For example, by
incorporating an omnivore as the top predator, the
chaotic behavior in the food chain model is elimi-
nated, and periodic oscillation is obtained [6]. The
authors in [5] introduced another predator that con-
sumes only basal prey to control the chaos in the
food chain model given in [4]. Gupta and Yadav [7]
used a nonlinear harvesting strategy to keep the food
chain model stable, where the harvesting of middle
predators is a key part. Recently, the dynamics of
the food chain model with an effect of cannibalism
on the middle predator have been addressed in [8]. 
They concluded that chaotic dynamics in both tem-
poral and spatiotemporal systems can be controlled
by parameters of the cannibalism effect and intraspe-
sific competition. Hossain et al. [9] have investigated
the dynamics of a food chain model with vigilance ef-
fects, which reduce the growth rate of prey and mid-
dle predators. The authors demonstrated that both
the vigilance of prey and the vigilance of middle-

predator parameters are able to stabilize the system.
On the other hand, excessive vigilance can harm the
system and lead to the extinction of one or more
populations. 

The appropriate harvesting of prey populations
helps stabilize a predator-prey-parasite system from
chaotic dynamics [11]. In an eco-epidemiological
model, increasing the predator mortality rate can re-
duce chaos [12]. Hossain et al. [13] have considered
the effect of nanoparticles in an aquatic food chain
model. They concluded that the effect of nanoparti-
cles on prey growth can stabilize the system’s chaotic
oscillations. It has also been observed that excessive
exposure to nanoparticles causes the extinction of
one or more species. Additional food for zooplank-
ton can play a significant role in maintaining the sta-
bility of the phytoplankton-zooplankton-fish (PZF)
system [14]. Sajan et al. [15] considered the problem
of chaos control in the PZF system through fear and
additional food, where the system behaves chaoti-
cally when the cost of fear is low and then settles
into a stable state as the cost of fear increases. Also,
existing chaos at low levels of fear can be regulated
through additional food. Dubey and Sasmal [16]
studied a PZF system where fish produced fear and
its carryover effects affected zooplankton growths.
They noticed that for the midrange of the carryover
effect parameters, the system exhibits chaotic be-
havior, and for lower and higher values, the system
develops stable or periodic dynamics. The Allee ef-
fect in prey populations causes chaotic dynamics in
the eco-epidemiological two-species model [17].

The Hasting-Powell (H-P) model assumes that
prey, middle, and top predators are at the bottom,
middle, and top trophic levels; see Fig. 1. It also
assumes that middle predator growth is solely de-
pendent on prey populations and that top predator
growth is solely dependent on middle predators. The
interaction between species in the H-P model is fol-
lowed by the Holling type II function response. The
H-P model exhibits chaotic behavior with respect to
the half-saturation coefficient of prey. Chaos was
found in this study, which suggests that chaotic dy-
namics are probably common in real food chain mod-
els [4]. In this connection, many theoretical ecolo-
gists are right now working on how to control chaos
in ecological systems, but it is a challenging task due
to their sensitivity to the system parameters. Recent
works attempt to control the chaos in the H-P model
by incorporating various ecological features. The
new control methods should be easy to use, not in-
volve chemicals, and not mess up the ecosystem. In
the literature, the H-P model uses the Allee effect
in prey growth [18,19], supplying additional food to
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the predator [20, 21], the prey’s refuge from avian
predation [18, 22], the fear effect due to predation
risk [23–25], species harvesting [22, 26, 27], vigilance
behavior [9], gestation delay [28], and the nanopar-
ticles effect  [13] to keep chaos under control. Table
1 shows the different characteristics used in the H-P
model (5) to deal with chaos.

 

 

  Prey 

  Middle Predator 

  Top Predator 

 

Fig. 1. The feeding relationship between the
species in H-P food chain model.

Table 1. Summary of the ecological characteristics
used in H-P model.

Model Ecological characteristics used
[20,21] Additional Food to predators
[18,19] Allee effect
[18,22] Prey refuge
[23–25] Fear due to predation risk

[22,26,27] Harvesting of species
[9] Vigilance behavior
[28] Gestation delay
[13] Nanoparticles effect

In this paper, our aim is to review non-chemical
chaos control strategies that have received special at-
tention in recent years for a chaotic H-P food chain
model. The main motivation of this paper is to ex-
amine how ecological control strategies affect the dy-
namics of the H-P model in a unified framework. The
focused control strategies consist of (i) providing ad-
ditional food to middle and top predators; (ii) Allee
effects on prey growth and prey refuge; (iii) fear due
to predation risk; and (iv) species harvesting. We
believe that this review will be useful to researchers
working on the chaos control of ecological systems
to gain an insightful and unified overview of recent
research. Our theoretical findings also provide a way
to protect and control populations of species in eco-
logical systems, which is vitally applicable for fishing
and pest management in farming.

The paper is organizaed as follows. We will
concentrate on chaos control strategies in the H-P
model. In the next section, we describe the nonlin-

ear dynamic model of the food chain ecological sys-
tems. Section 3 investigates the additional food to
predators. Section 4 addresses the Allee effect and
the prey refuge. Then, the fear effect due to preda-
tion risk is analyzed in Section 5. Species harvesting
is investigated in Section 6. In each section, we will
derive the equilibrium points of the food chain model
and their local stability conditions. Furthermore, we
verify the effectiveness of chaos control method by
performing numerical simulation in each section. Fi-
nally, in Section 7, we give the conclusions and sug-
gest the future research.

2. Food Chain Ecological Systems

The utilization of supplementary food (non-prey
food) is one of the fundamental approaches for bi-
ological control, including species conservation and
pest management, and these foods fundamentally
shape the life histories of many predator species. In
a predator-prey system, the availability of sufficient
supplementary food can significantly affect the dy-
namics of the system. In recent years, many biol-
ogists, experimentalists, and theoreticians have in-
vestigated the consequences of providing additional
food to predators in predator-prey systems. Al-
most all predators will attempt to switch to another
prey when their preferred prey is in low numbers,
and they may also resort to scavenging or an her-
bivorous diet if possible. Many aspects of addi-
tional food were investigated in the literature; con-
trolling chaos through the supply of additional food
was one of them. This technique is one of the non-
chemical methods, and it has no pollution factor or
infection risk for the population system. In their
works [20] and  [21], Sahoo and Poria look at the
H-P model with additional food supplies for the top
predator alone and for both predators. The authors
showed that the chaotic behavior of the proposed
models can be controlled by both the quality and
quantity of the additional food that is given. They
also discovered that too much additional food supply
has an impact on the ecosystem’s structure. 

The general H-P food chain model is given in the
following form:

dU

dT
= RU

(
1− U

K

)
− C1A1UV

B1 + U
,

dV

dT
=

A1UV

B1 + U
−D1V − A2VW

B2 + V
,

dW

dT
=

C2A2VW

B2 + V
−D2W,

(1)

where U, V and W are the respective densities of
prey, middle, and top predators. All the system pa-
rameters are assumed to be non-negative. R and K
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are growth rate of prey and environmental support-
ing capacity. A1 (or A2) is maximum attack rate of
middle (or top) predator. B1 (or B2) represents half-
saturation coefficient of prey (or middle predator).
C−1
1 (or C2) indicates the conversion efficiencies of

middle (or top) predator. D1 (or D2) are death rate
of middle (or top) predator.

3. Additional Food to Predators

Model (1) is modified by introducing the supply
of additional food to predators as follows:

dU

dT
= RU

(
1− U

K

)
− C1A1UV

B1 + αµA+ U
,

dV

dT
=

A1(U + µA)V

B1 + αµA+ U
−D1V − A2VW

B2 + ανA+ V
,

dW

dT
=

C2A2(V + νA)W

B2 + ανA+ V
−D2W,

(2)

where µA and νA are effective additional food
sources for middle and top predators, respectively,
that are constantly supplied by either nature or
an external agency. The parameter α describes the
quality of additional food, which supplied to preda-
tors.

To minimize the complexity of model (2), we de-
vise non-dimensional scheme as follows:

U = Ku, V =
K

C1
v, W =

C2K

C1
w, T =

1

R
t (3)

and let α1 =
A1K
RB1

, α2 =
A2C2K
RB2C1

, β1 =
K
B1

, β2 =
K

C1B2
,

δ1 = D1
R , δ2 = D3

R , c = B1
K , e = B2C1

K , ξ = µA
B1

,

η = νA
B2

. Then the system (2) becomes

du

dt
= u(1− u)− α1uv

1 + αξ + β1u
,

dv

dt
=

α1(u+ cξ)v

1 + αξ + β1u
− α2vw

1 + αη + β2v
− δ1v,

dw

dt
=

α2(v + eη)w

1 + αη + β2v
− δ2w,

(4)

subject to the initial conditions 0 < u0 = u(0), v0 =
v(0), w0 = w(0) < ∞. If there is no supply of addi-
tional food (i.e., ξ = η = 0) in model (4), then the
system is reduced to the H-P model as follows:

du

dt
= u(1− u)− α1uv

1 + β1u
,

dv

dt
=

α1uv

1 + β1u
− α2vw

1 + β2v
− δ1v,

dw

dt
=

α2vw

1 + β2v
− δ2w.

(5)

3.1. Equilibrium Points and their Stability

The system (4) have following equilibrium points:

1. The species free equilibrium E0 = (0, 0, 0) al-
ways exists.

2. The predators free equilibrium E1 = (1, 0, 0)
always exists.

3. The top-predator free equilibrium point E2 =
(u2, v2, 0), where

u2 =
δ1(1 + αξ)− α1cξ

α1 − β1δ1
,

v2 =
(1− u2)(1 + αξ + β1u2)

α1
.

It is clear that E2 exists only when u2 < 1 and
δ1(1 + αξ) > α1cξ, α1 > β1δ1.

4. The coexistence equilibrium E∗ = (u∗, v∗, w∗),
where

v∗ =
δ2(1 + αη)− α2eη

α2 − β2δ2
,

w∗ =
(1 + αη + β2v

∗)

α2

(
α1(u

∗ + cξ)

1 + αξ + β1u∗
− δ1

)
,

and u∗ is a positive root of

β1(α2 − β2δ2)u
2 + (α2 − β2δ2)(1 + αξ − β1)u

+ α1(δ2(1 + α)− α2eη) = 0.

Note that the equilibrium E∗ exists only when α2 >

β2δ2, δ2(1 + αη) > α2eη, and α1(u∗+cξ)
1+αξ+β1u∗ > δ1.

To study the local stability of the equilibrium
point, the Jacobian matrix of the system (4) at any
point (u, v, w) is given by:

J(u, v, w) =

 j11 j12 0
j21 j22 j23
0 j32 j33

 , (6)

where

j11 =1− 2u− α1v(1 + αξ)

(1 + αξ + β1u)2
,

j12 =− α1u

(1 + αξ + β1u)
, j21 =

α1v(1 + αξ − β1cξ)

(1 + αξ + β1u)2
,

j22 =
α1(u+ cξ)

1 + αξ + β1u
− α2w(1 + αη)

(1 + αη + β2v)2
− δ1,

j23 =− α2v

1 + αη + β2v
, j32 =

α2w(1 + αη − β2eη)

(1 + αη + β2v)2
,

j33 =
α2(v + eη)

1 + αη + β2v
− δ2.

In the following theorem, we describe the local sta-
bility of model (4) at the equilibrium points.

Theorem 1. For model (4):
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(i) The equilibrium E0 is always unstable.

(ii) The equilibrium E1 is stable if α1(1+cξ)
1+αξ+β1

< δ1,

and α2eη
1+αη < δ2.

(iii) If the equilibrium E2 exists and α1β1 < (1 +

αξ + β1u2)
2 and α2(v2+eη)

1+αη+β2v2
< δ2, then E2 is

stable.

(iv) The equilibrium E∗ exists and is locally asymp-
totically stable if Ω1 > 0,Ω3 > 0 and Ω1Ω2 >
Ω3, where Ω1,Ω2 and Ω3 are given in the proof.

Proof. (i) The eigenvalues of Jacobian matrix (6) at
E0 are λ1 = 1, λ2 = −δ1 and λ3 = −δ2. Clearly,
1 is always positive, and −δ1 and −δ2 are always
negative. So, E0 is always unstable.

(ii) At the equilibrium E1, the Jacobian matrix
(6) have following equilibrium points λ1 = −1, λ2 =
α1(1+cξ)
1+αξ+β1

− δ1 and λ3 = α2eη
1+αη − δ2. Clearly, −1

is always negative, and λ2 and λ3 are negative if
α1(1+cξ)
1+αξ+β1

< δ1 and α2eη
1+αη < δ2, which assures the local

stability of E1.
(iii) The eigenvalues of Jacobian matrix (6) asso-

ciated with the equilibrium E2 are λ1 = ā33 and
λ2,3 =

ā11±
√

ā211+ā12ā21
2 , where āmn are obtained

from jmn replacing (u, v, w) by (u2, v2, 0) in equa-
tion (6). So, the equilibrium E2 is stable if α1β1 <

(1 + αξ + β1u2)
2 and α2(v2+eη)

1+αη+β2v2
< δ2.

(iv) The characteristic equation of (6) corre-
sponding to E∗ is

λ3 +Ω1λ
2 +Ω2λ+Ω3 = 0,

where Ω1 = −a11−a22, Ω2 = a11a22−a12a21−a32a23,
Ω3 = a11a23a32. Here, amn are obtained from jmn

replacing (u, v, w) by (u∗, v∗, w∗) in equation (6).
Make use of Routh-Hurwitz (R-H) criterion, the
equilibrium point E∗ is locally asymptotically sta-
ble if Ω1 > 0,Ω3 > 0 and Ω1Ω2 > Ω3 holds.

3.2. Numerical Simulation

The phase portraits and bifurcation diagrams for
the models discussed in this paper are drawn using
the initial populations (0.75, 0.15, 10). The middle
predator’s bifurcation diagram is only used because
all three species in the system exhibit identical bi-
furcation diagrams. All of the system parameters
of the model (6) are chosen from the reference [4].
First, the numerical simulations of the model (4)
without supply of additional food (i.e. ξ = η = 0)
is carried and observed that the dynamics of the
system switches between stable focus, periodic os-
cillations and chaos for varying the parameter β1,
while fixing other parameters as α1 = 5, α2 = 0.1,

β2 = 2, δ1 = 0.4, δ2 = 0.01. In Fig. 2, we plot phase
portrait of the model (5) for β1 = 3.0 and other
parameters given the same as above, which show
chaotic oscillation. Figure 3 represents the bifurca-
tion diagram and fluctuation of the largest Lyapunov
exponent (LLE) of the model (5) with respect to the
parameter β1. The system shows that stable focus
for β1 < 2.1, limit cycle behavior for 2.1 ≤ β1 < 2.3,
period-doubling oscillations for 2.3 ≤ β1 < 2.38 and
chaotic oscillations for β1 ≥ 2.38. The positive val-
ues of the LLE ensure the existence of chaotic be-
haviours in the system (5); see Fig. 3b.

Fig. 2. The phase portrait of the model (5) for
β1 = 3.0 with α1 = 5, α2 = 0.1, β2 = 2, δ1 = 0.4,
δ2 = 0.01.

Now we investigate the influence supplying addi-
tional food on model (4) by varying respective pa-
rameters and fixing other parameters as α1 = 5,
α2 = 0.1, β1 = 3.0, β2 = 2, δ1 = 0.4, δ2 = 0.01,
ξ = 0.1, η = 0.1, c = 0.95, e = 0.85. Figure 4 depicts
the bifurcation diagram and fluctuation of the LLE
of the system (4) with respect to the quality of ad-
ditional food parameter α in the interval [0, 12]. It is
noticeable from Fig. 4a that for lower values of qual-
ity of additional food α, the system shows chaotic or
higher periodic oscillations. Then with the increase
of values of α the system enters into stable state from
chaos via periodic oscillations. The positive LLE val-
ues shown in Fig. 4b confirm the chaotic dynamics
that occur in Fig. 4a. Also, it is observed that any
choice of quantity of additional food ξ and η lead to
negative effects in the ecosystem, that is population
goes to extinction stage. With a proper choice of
supplying additional food parameters (both quality
and quantity) to predators one can control system
dynamics.

4. Allee Effect and Prey Refuge

The Allee effect, a biological phenomenon,
demonstrates a connection between population size
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Fig. 3. For system (5): (a) a bifurcation diagram of the middle-predator with respect to parameter β1;
(b) fluctuation of the LLE with respect to β1.
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Fig. 4. For system (4): (a) a bifurcation diagram of the middle-predator with respect to parameter α;
(b) fluctuation of the LLE with respect to α.

and their per capita growth rate when the density
of the population is low. W.C. Allee first intro-
duced the concept of the Allee effect in his pioneer-
ing works [29, 30]. The Allee effect among a natu-
ral population is commonly caused by mate restric-
tion, cooperative defense, predator satiation, coop-
erative feeding, dispersal, habitat modification, and
so on. There are two types of Allee effects: strong
Allee effects and weak Allee effects. The strong Allee
effect takes place when population densities fall be-
low a critical threshold, which causes negative per
capita growth rates. In contrast, populations with a
weak Allee effect have lower per capita growth rates
at low densities, but they never reach negative per
capita growth rates and have no critical threshold to
exceed. Numerous natural species have been studied
for experiential evidence of the Allee effect, includ-
ing insects [31], marine invertebrates [32], mammals,
and birds [33]. On the other hand, a refugium is a
place where species can persist due to some special
environmental features. In order to maintain the
biodiversity of the bird populations in the Amazo-
nian river basin, Haffer was the one who first pro-
posed the concept of refugia. Numerous analytical
and experimental studies have been conducted, and

it has been noticed that prey refuges maintain the
stability of the predator-prey model (see [34]). Au-
thors in [18] have employed the Allee effect and prey
refuge strategies to avoid chaotic dynamics in the
H-P model. Recently, Mandal et al. [19] used the
additive Allee effect concept in the H-P model and
demonstrated that chaotic oscillations could be con-
trolled by varying the severity of the Allee effect pa-
rameter. 

The Allee effect on prey growth term and prey
refuge are taken into account in the H-P model, and
the non-dimensional version of the modified model
takes the following form:

du

dt
= u(1− u)

(
u

u+ θ

)
− α1(1−m)uv

1 + β1(1−m)u
,

dv

dt
=

α1(1−m)uv

1 + β1(1−m)u
− α2vw

1 + β2v
− δ1v,

dw

dt
=

α2vw

1 + β2v
− δ2w,

(7)

subject to the initial conditions 0 < u0 = u(0), v0 =
v(0), w0 = w(0) < ∞. The term u

u+θ describes the
Allee effect on prey’s growth. m ∈ [0, 1) is refuge
coefficient of prey. It is assumed that the m ∈ [0, 1)
portion of the prey always avoids middle predators,
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while the remaining (1 − m) portion only interacts
with middle predators. 

4.1. Equilibrium Points and their Stability

The model (4) has four feasible equilibrium
points.

1. The species free equilibrium E0 = (0, 0, 0) al-
ways exists.

2. The predators free equilibrium E1 = (1, 0, 0)
always exists.

3. The top-predator free equilibrium point E2 =
(u2, v2, 0), where

u2 =
δ1

(α1 − β1δ1)(1−m)
,

v2 =
u22(1− u2)

δ2(u2 + θ)
.

It is clear that E2 exists only when u2 < 1 and
α1 > β1δ1.

4. The coexistence equilibrium E∗ = (u∗, v∗, w∗),
where

v∗ =
δ2

α2 − β2δ2
,

w∗ =
1

δ2

(
u∗2(1− u∗)

u∗ + θ
− δ1v

∗
)
,

and u∗ is a positive root of cubic equation

u3−
(
1− 1

β1(1−m)

)
u2+

α1v
∗

β1
u+

α1θv
∗

β1
= 0.

The equilibrium E∗ exists only when α2 > β2δ2,
β1(1−m) > 1, and u∗2(1− u∗) > δ1(u

∗ + θ)v∗.
The Jacobian matrix of the system (7) at any

point (u, v, w) is calculated and given by:

J(u, v, w) =

 j11 j12 0
j21 j22 j23
0 j32 j33

 , (8)

where

j11 =
u
(
2θ − 2u2 − 3θu+ u

)
(θ + u)2

− α1(1−m)v

(1 + β1(1−m)u)2
,

j12 =− α1(1−m)u

(1 + β1(1−m)u)
,

j21 =
α1(1−m)v

(1 + β1(1−m)u)2
,

j22 =
α1(1−m)u

1 + β1(1−m)u
− α2w

(1 + β2v)2
− δ1,

j23 =− α2v

1 + β2v
, j32 =

α2w

(1 + β2v)2
,

j33 =
α2v

1 + β2v
− δ2.

The following theorem derives the local stability of
the equilibrium point from Jacobian matrix (8). 

Theorem 2. For model (7):

(i) The equilibrium E0 is non-hyperbolic equilib-
rium point having stable manifold in y − z
plane.

(ii) The equilibrium E1 is always stable.

(iii) If the equilibrium E2 exists and α2v2 < δ2(1 +

β2v2) and α1β1(1−m)2v2
(1+β1(1−m)u2)2

+ θ(θ+1)
(u2+θ)2

< 1, then
E2 is stable.

(iv) The equilibrium E∗ exists and is locally asymp-
totically stable if Ω1 > 0,Ω3 > 0 and Ω1Ω2 >
Ω3, where Ω1,Ω2 and Ω3 are given in the proof.

Proof. (i) The eigenvalues of Jacobian matrix (8) at
E0 are λ1 = 0, λ2 = −δ1 and λ3 = −δ2. Hence, E0

is non hyperbolic equilibrium point and have stable
manifold in y − z plane.

(ii) At the equilibrium E1, the Jacobian ma-
trix (8) have following equilibrium points λ1 =
− 1

1+θ , λ2 = −δ1 and λ3 = −δ2. Clearly, all the eigen-
values are always negative, which implies E2 is sta-
ble.

(iii) The eigenvalues of Jacobian matrix (8) as-
sociated with the equilibrium E2 are λ1 = b̄33 and
λ2,3 =

b̄11±
√

b̄211+b̄12b̄21
2 , where b̄mn are obtained from

jmn replacing (u, v, w) by (u2, v2, 0) in equation (8).
So, the equilibrium E2 is stable if α1β1 < (1 + αξ +

β1u2)
2 and α2(v2+eη)

1+αη+β2v2
< δ2.

Fig. 5. The phase portrait of the model (7) for the
set of parameters given in Fig. 2 with m = 0.04
and θ = 0.01.

(iv) The characteristic equation of (6) corre-
sponding to E∗ is

λ3 +Ω1λ
2 +Ω2λ+Ω3 = 0,
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Fig. 6. For system (7) with θ = 0.05: (a) a bifurcation diagram of the middle-predator with respect to
parameter m; (b) fluctuation of the LLE with respect to m.
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Fig. 7. For system (7) with m = 0.04: (a) a bifurcation diagram of the middle-predator with respect to
parameter θ; (b) fluctuation of the LLE with respect to θ.

where Ω1 = −b11− b22, Ω2 = b11b22− b12b21− b32b23,
Ω3 = b11b23b32. Here, bmn are obtained from jmn re-
placing (u, v, w) by (u∗, v∗, w∗) in equation (8). By
utilizing R-H criterion, the equilibrium point E∗ is
locally asymptotically stable if Ω1 > 0,Ω3 > 0 and
Ω1Ω2 > Ω3 holds.

4.2. Numerical Simulation

The system (7) exhibits chaotic oscillation for the
set of parameters given in Fig. 2 with m = 0.04 and
θ = 0.05 so that the effectiveness of the Allee ef-
fect and predator refuge can be investigated, see Fig.
5. In Fig. 6, we draw a bifurcation diagram and
fluctuation of the LLE to examine the behavior of
system (7) with variations of m while keeping other
parameters fixed. From Fig. 6a, it is noticed that
for lower values of prey refuge, the system behaves
chaotically, then is controlled and becomes stable as
prey refuge increases. Additionally, we have seen
that both predators become extinct at a threshold
of m = 0.88. The system becomes stable from its
chaotic dynamics through a period-halving oscilla-
tions with an increase in Allee effect parameter θ,
see Fig. 7a. The chaotic nature of the system (7)

with regard to the parameters m and θ is confirmed
by the positive LLE values (see Figs. 6b. and Fig.
7b). From Figs. 6 and 7, it is clear that the Allee
effect and prey refuge parameters play an important
role in regulating the chaotic dynamics of a three-
species food chain model.

5. Fear Effect

Predators may affect the population of their prey
indirectly (through fear of predation) or directly
(through killing). Fear has the potential to change
the demographics of the prey and can have a sub-
stantial impact on the dynamics of the predator-prey
system. To reduce the risk of predation, prey always
try to shift their usual habitat to a safe location [35].
Based on the numerous experimental results on the
fear effect, Wang et al. [36] mathematically exam-
ined the effect of fear on prey’s growth and found
that the cost of fear had a significant impact on the
dynamics of predator-prey interactions. Since then,
a number of studies on the effect of fear in predator-
prey interactions have been reported [10,23] and the
references therein. The authors of [23] investigated
the dynamics of a food chain model with the fear ef-
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fect, in which the growth of prey and middle preda-
tors shrinks due to the fear of middle predators and
top predators, respectively. They showed that a suit-
able amount of fear was able to regularize the sys-
tem from chaotic oscillation to stable focus through
period-halving bifurcation. Furthermore, if the cost
of fear for middle predators rises, the top predator
may enter an extinction stage. Shi and Hu [25] con-
sidered and analyzed the three-species food chain
model with fear, where the fear of predation risk
is not instant but rather has some time lags on it.
The authors in [24] discuss the three-species food
chain model, in which fear of the top predator and
middle predator foraging decreases. The dynamics
of a food chain model with a Beddington-DeAngelis
functional response have been examined by Debnath
et al. [10]. They found that not only fear effects but
also mutual interference parameters among species
can control the system dynamics. Thus, fear is in-
troduced in the food chain model (1), and the model
then takes the following form:

dU

dT
=

RU

1 + F1V

(
1− U

K

)
− C1A1UV

B1 + U
,

dV

dT
=

A1UV

B1 + U

1

1 + F2W
−D1V − A2VW

B2 + V
,

dW

dT
=

C2A2VW

B2 + V
−D2W,

(9)

in which F1 and F2 respectively represent the in-
tensity of fear in prey and middle predator popu-
lation. Model (9) assumes that due to fear of the
top-predator, the growth rate of the middle-predator
reduces, and due to fear of the middle-predator, the
growth rate of prey also reduces. The fear functions
Φ(K1, V ) = 1

1+F1V
and Ψ(K2,W ) = 1

1+F2W
satisfies

the following characteristics:

• Φ(0, V ) = 1 and Ψ(0,W ) = 1,

• Φ(F1, 0) = 1 and Ψ(F2, 0) = 1,

• limF1→∞Φ = 0 and limF2→∞Φ = 0,

• limV→∞Φ = 0 and limW→∞Φ = 0,

• ∂Φ
∂F1

< 0, ∂Φ
∂V < 0 and ∂Ψ

∂F2
< 0, ∂Ψ

∂W < 0.

Using non-dimensional scheme as given in (3)
and then model (9) becomes

du

dt
=

u(1− u)

1 + f1v
− α1uv

1 + β1u
,

dv

dt
=

α1uv

(1 + β1u)(1 + f2w)
− α2vw

1 + β2v
− δ1v,

dw

dt
=

α2vw

1 + β2v
− δ2w,

(10)

subject to the initial conditions 0 < u0 = u(0), v0 =
v(0), w0 = w(0) < ∞. Here, f1 = F1KC2

C1
, f2 =

F2KC2
C1

and the remaining parameters are same as in
model (5).

5.1. Equilibrium Points and their Stability

The system (10) have following equilibrium
points:

1. The species free equilibrium E0 = (0, 0, 0) al-
ways exists.

2. The predators free equilibrium E1 = (1, 0, 0)
always exists.

3. The top-predator free equilibrium point E2 =
(u2, v2, 0), where

u2 =
δ1

(α1 − β1δ1)
,

v2 =
−α1 +

√
α2
1 + 4α1f1(1− u2)(1 + β1u2)

2α1f1
.

It is clear that E2 exists only when u2 < 1 and
α1 > β1δ1.

4. The coexistence equilibrium E∗ = (u∗, v∗, w∗),
where

u∗ =
β1 − 1 +

√
(1− β1)2 − 4β1ϵ

2β1
,

ϵ = α1v
∗ + α1f1v

∗2 − 1, v∗ =
δ2

α2 − β2δ2
,

and w∗ is the positive root of the following
equation

α2f2
1 + β2v∗

w2+

[
α2

1 + β2v∗
+ f2δ1

]
w

−
[

α1u
∗

1 + β1u∗
− δ1

]
= 0.

Note that E∗ exists only when α2 > β2δ2, u∗ >
δ1

α1 − β1δ1
, and α1v

∗(1 + f1v
∗).

For the purpose of investigating the local stabil-
ity of the equilibrium point, the Jacobian matrix of
the system (4) at any point (u, v, w) is evaluated and
given by:

J(u, v, w) =

 j11 j12 0
j21 j22 j23
0 j32 j33

 , (11)

where

j11 =
1− 2u

1 + f1v
− α1v

(1 + β1u)2
,

j12 =− f1u(1− u)

(1 + f1v)2
− α1u

1 + β1u
,
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j21 =
α1v

(1 + f2w)(1 + β1u)2
,

j22 =
α1u

(1 + β1u)(1 + f2w)
− α2w

(1 + β2v)2
− δ1,

j23 =− α1f2uv

(1 + f2w)2(1 + β1u)
− α2v

1 + β2v
,

j32 =
α2w

(1 + β2v)2
, j33 =

α2v

1 + β2v
− δ2.

In the next theorem, we give the sufficient conditions
for local stability of the equilibrium points of model
(10).

Theorem 3. For model (10):

(i) The equilibrium E0 is always unstable.

(ii) The equilibrium E1 is stable if α1 < δ1(1+β1).

(iii) If the equilibrium E2 exists and u2 >
β1−1
2β1

and
v2 <

δ2
α2−β2δ2

, then E2 is stable.

(iv) The equilibrium E∗ exists and is locally asymp-
totically stable if Ω1 > 0,Ω3 > 0 and Ω1Ω2 >
Ω3, where Ω1,Ω2 and Ω3 are given in the proof.

Proof. (i) The eigenvalues of Jacobian matrix (11)
at E0 are λ1 = 1, λ2 = −δ1 and λ3 = −δ2. Clearly,
1 is always positive, and −δ1 and −δ2 are always
negative. So, E0 is always unstable.

(ii) At the equilibrium E1, the Jacobian matrix
(11) have following equilibrium points λ1 = −1, λ2 =
α1

1+β1
− δ1 and λ3 = −δ2. Clearly, −1 and −δ2 are al-

ways negative, and λ3 is negative if α1
1+β1

< δ1, which
assures the local stability of E1.

(iii) The eigenvalues of Jacobian matrix (11) as-
sociated with the equilibrium E2 are λ1 = c̄33 and
λ2,3 =

c̄11±
√

c̄211+c̄12c̄21
2 , where c̄mn are obtained from

jmn replacing (u, v, w) by (u2, v2, 0) in equation (11).
So, the equilibrium E2 is stable if u2 > β1−1

2β1
and

v2 <
δ2

α2−β2δ2
.

(iv) The characteristic equation of (11) corre-
sponding to E∗ is

λ3 +Ω1λ
2 +Ω2λ+Ω3 = 0,

where Ω1 = −c11− c22, Ω2 = c11c22− c12c21− c32c23,
Ω3 = c11c23c32. Here, cmn are obtained from jmn

replacing (u, v, w) by (u∗, v∗, w∗) in equation (11).
Make use of Routh-Hurwitz (R-H) criterion, the
equilibrium point E∗ is locally asymptotically sta-
ble Ω1 > 0,Ω3 > 0 and if Ω1Ω2 > Ω3 holds.

5.2. Numerical Simulations

To investigate the effect of fear, we fix the sys-
tem parameters as α1 = 5, α2 = 0.1, β1 = 3.0,

β2 = 2, δ1 = 0.4, δ2 = 0.01, so that the model (10) ex-
hibits chaotic oscillations in the absence of fear (f1 =
f2 = 0), see Fig. 2. In the absence of top-predator
fear (f2 = 0), we first examine the impact of middle-
predator fear on the growth rate of the basic prey.
With the increase of f1, the system becomes into
stable state from its chaotic dynamics via period-
halving bifurcation, see Fig. 8a. We noticed that
the system shows chaotic oscillations in f1 < 1.05;
period-doubling oscillations in 1.05 ≤ f1 < 1.31;
limit cycle oscillations in 1.31 ≤ f1 < 1.80, and sta-
ble behaviour in f1 ≥ 1.80. Also, we have seen that
above a threshold value of f1 = 2.6, the top predator
goes extinct, whereas prey and the middle predator
show oscillatory behavior. Similarly, we investigate
that fear of the top-predator shrinks the growth rate
of middle predator while the fear of middle-predator
on prey is absent (f1 = 0). The system becomes
stable from its chaotic dynamics through a period-
halving oscillations with an increase in fear param-
eter f2, see Fig. 9a. The system shows chaotic dy-
namics in f2 < 0.03; period doubling oscillations in
the interval 0.03 ≤ f2 < 0.041; periodic oscillations
for 0.041 ≤ f2 < 0.29 and stable focus for f2 ≥ 0.29.
The positive LLE values in Figs. 8b and 9b, respec-
tively, confirm the existence of chaotic dynamics in
the system (10) depicted in Figs. 8a and 9a. In the
presence of both fear parameters, we draw a bifurca-
tion diagram in the f1 − f2 parametric plane in Fig.
10. We observe that, the system (10) exhibits chaotic
behavior for lower values of fear parameter and then
system becomes stable for higher values. From an
ecological viewpoint, the growth rate of prey and
middle predators reduces as the fear factors f1 and
f2 increase, which results in a considerable reduction
in the number of prey and middle predators that are
consumed by middle and top predators. As a result
of the discussion above, it can be concluded that
both fear parameters can control the coexistence of
all three species with other fixed system parameters.

6. Species Harvesting

Species harvesting has a significant impact on
population dynamics. The intensity of this impact
depends on the characteristics of the harvested strat-
egy, which in turn may range from a sudden reduc-
tion to the total preservation of a population. The
exploitation of natural resources and the harvest-
ing of population species are commonly seen in fish-
eries, forestry, and wildlife management. The im-
pact of harvesting on a natural population is one
of the most important topics in population ecol-
ogy. Inspired by this fact, the harvesting of pop-
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Fig. 8. For system (10) with f2 = 0: (a) a bifurcation diagram of the middle-predator with respect to
parameter f1; (b) fluctuation of the LLE with respect to f1.
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Fig. 9. For system (10) with f1 = 0: (a) a bifurcation diagram of the middle-predator with respect to
parameter f2; (b) fluctuation of the LLE with respect to f2.

 

𝑓1 → 

𝑓 2
→

 

0 3 

0.3 

0 

                Stable Behaviour 

 Limit cycle oscillations 

 Period doubling oscillations 

 Higher periodic or chaotic oscillations 

 

Fig. 10. The two parameter bifurcation diagram of model (10) in f1 − f2 parametric space; where the
system exhibits stable behavior, limit cycle, period-doubling, and chaotic oscillations in green, purple,
yellow, and red regions, respectively.

ulations has been incorporated into modeling the
prey-predator system, and some interesting results
with harvesting have been presented in [26, 37] and
references therein. Harvesting can lead to a reduc-
tion in the size of the population due to hunting
or capturing species. There are different types of
harvesting strategies used in the literature, includ-
ing constant-yield harvesting, linear harvesting, and
nonlinear harvesting. Nath and Das [27] have inves-

tigated the impact of a linear harvesting strategy in a
three-species food chain model, where they assumed
that all three-species are harvested. They concluded
that harvesting parameters can control the chaotic
dynamics of the system. Raw and Sarangi [22] have
dealt with the dynamics of the three species fishery
model with nonlinear harvesting and prey refuge. By
employing the linear harvesting method in the model
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(1), the model is described as follows:

dU

dT
= RU

(
1− U

K

)
− C1A1UV

B1 + U
−H1U,

dV

dT
=

A1UV

B1 + U
−D1V − A2VW

B2 + V
−H2V,

dW

dT
=

C2A2VW

B2 + V
−D2W −H3W,

(12)

where H1,H2 and H3 are the harvesting rate of the
prey, middle-predator and top-predator populations,
respectively. Here we assume that Hi ∈ [0, 1), i =
1, 2, 3. The non-dimensional version of model (12)
becomes:

du

dt
= u(1− u)− α1uv

1 + β1u
− h1u,

dv

dt
=

α1uv

(1 + β1u)
− α2vw

1 + β2v
− δ1v − h2v,

dw

dt
=

α2vw

1 + β2v
− δ2w − h3w,

(13)

subject to the initial conditions 0 < u0 = u(0), v0 =
v(0), w0 = w(0) < ∞. Here h1 =

H1
R , h2 =

H2
R , h3 =

H3
R and the remaining parameters are same as in

model (5). Note that the harvesting parameters
h1, h2, h3 can not exceed their maximum value 1 be-
cause harvesting more than 100% of any individuals
is not at all possible.

6.1. Equilibrium Points and their Stability

The model (10) possesses the equilibrium points
as follows:

1. The species free equilibrium E0 = (0, 0, 0) al-
ways exists.

2. The predators free equilibrium E1 = (1 −
h1, 0, 0) exists only when h1 < 1.

3. The top-predator free equilibrium point E2 =
(u2, v2, 0), where

u2 =
δ1 + h2

(α1 − β1δ1 − β1h2)
,

v2 =
(1− h1)(α1 − β1δ1 − β1h2)− (δ1 + h2)

(α1 − β1δ1 − β1h2)2
.

It is clear that E2 exists only when α1−β1δ1−
β1h2 >

δ1+h2
1−h1

and h1 < 1.

4. The coexistence equilibrium E∗ = (u∗, v∗, w∗),
where

v∗ =
δ2 + h3

α2 − β2δ2 − β2h3
,

w∗ =
(α1 − β1δ1 − β1h2)u

∗ − δ1 − h2
(α2 − β2δ2 − β2h3)(1 + β1u∗)

,

and u∗ is the positive root of the following
equation

ϵ1w
2 + ϵ2w + ϵ3 = 0,

with

ϵ1 =β1β2h3 + β1β2δ2 − α2β1

ϵ2 =α2β1 − β1β2δ2 − β1β2h3 − α2 − α2β1h1

+ β2δ2 + β2h3 + β1β2δ2h1 + β1β2δ2h1h3,

ϵ3 =α2 − β2δ2 − β2h3 − α1δ2 − α1h3 − α2h1

+ β2δ2h1 + β2h1h3.

Note that E∗ exists only when α2 > β2δ2 + β2h3,
(α1 − β1δ1 − β1h2)u

∗ > δ1 + h2, and any one of the
ϵi < 0, i = 1, 2, 3. To examine the local stability
of the equilibrium point, the Jacobian matrix of the
system (13) at any point (u, v, w) is evaluated and
obtained as follows:

J(u, v, w) =

 j11 j12 0
j21 j22 j23
0 j32 j33

 , (14)

where

j11 =1− h1 − 2u− α1v

(1 + β1u)2
,

j12 =− α1u

(1 + β1u)
, j21 =

α1v

(1 + β1u)2
,

j22 =
α1u

1 + β1u
− α2w

(1 + β2v)2
− δ1 − h2,

j23 =− α2v

1 + β2v
, j32 =

α2w

(1 + β2v)2
,

j33 =
α2v

1 + β2v
− δ2 − h3.

Theorem 4. (i) The equilibrium E0 is always un-
stable.

(ii) The equilibrium E1 is stable if δ1 + h2 >
α1(1−h1)

(1+β1(1−h1))
.

(iii) If the equilibrium E2 exists and (1 + β1u2)
2 >

α1β1v2 and δ2+h3 >
α2v2

1+β2v2
, then E2 is stable.

(iv) The equilibrium E∗ exists and is locally asymp-
totically stable if Ω1 > 0,Ω3 > 0 and Ω1Ω2 >
Ω3, where Ω1,Ω2 and Ω3 are given in the proof.

Proof. (i) The eigenvalues of Jacobian matrix (14) at
E0 are λ1 = 1−h1, λ2 = −δ1−h2 and λ3 = −δ2−h3.
Clearly, 1− h1 is always positive, and −δ1 − h2 and
−δ2 − h3 are always negative. So, E0 is always un-
stable.

(ii) At the equilibrium E1, the Jacobian ma-
trix (14) have following equilibrium points λ1 =

h1 − 1, λ2 =
α1(1−h1)

1+β1(1−h1)
− δ1 − h2 and λ3 = −δ2 − h3.

Clearly, h1 − 1 and −δ2 − h3 are always negative,

50 ENGINEERING JOURNAL Volume 27 Issue 9, ISSN 0125-8281 (https://engj.org/)



DOI:10.4186/ej.2023.27.9.39

and λ2 is negative if δ1 + h2 > α1(1−h1)
(1+β1(1−h1))

, which
assures the local stability of E1.

(iii) The eigenvalues of Jacobian matrix (14) as-
sociated with the equilibrium E2 are λ1 = d̄33 and
λ2,3 =

d̄11±
√

d̄211+d̄12d̄21
2 , where d̄mn are obtained from

jmn replacing (u, v, w) by (u2, v2, 0) in equation (14).
So, the equilibrium E2 is stable if (1 + β1u2)

2 >
α1β1v2 and δ2 + h3 >

α2v2
1+β2v2

.
(iv) The characteristic equation of (14) corre-

sponding to E∗ is

λ3 +Ω1λ
2 +Ω2λ+Ω3 = 0,

where Ω1 = −d11−d22, Ω2 = d11d22−d12d21−d32d23,
Ω3 = d11d23d32. Here, dmn are obtained from jmn

replacing (u, v, w) by (u∗, v∗, w∗) in equation (14).
Make use of Routh-Hurwitz (R-H) criterion, the
equilibrium point E∗ is locally asymptotically sta-
ble Ω1 > 0,Ω3 > 0 and if Ω1Ω2 > Ω3 holds.

6.2. Numerical Simulations

The model (13) exhibits chaotic dynamics for fol-
lowing set of parameter α1 = 5, α2 = 0.1, β1 = 3.0,
β2 = 2, δ1 = 0.4, δ2 = 0.01, h1 = 0.01, h2 =
0.02, h3 = 0.001, see Fig. 11. To explore the impact
of harvesting parameters on the system dynamics,
in Figs. 12-14, we plot the bifurcation diagram and
fluctuation of the LLE with respect to h1, h2, and
h3 and fix all other parameters as previously men-
tioned. If we increase the value of h1 from 0.0 to
0.2 and keep all the other parameters the same, the
chaotic dynamics of the system change into stable
behavior through period-halving oscillation, which
is represented in Fig. 12a. When the value of h1 is
large, the system settles into a stable focus, whereas
when the value of h1 is low, the chaotic dynamics in
the system remain the same. We have also noted
that above a critical value of h1 = 3.5, the top-
predator population becomes extinct, while prey and
the middle-predator show oscillatory behavior. Now,
with the increase of h2, the system becomes into
stable state from its chaotic dynamics via period-
halving oscillation, see Fig. 13a. Note that the
density of middle-predator decreases as h2 increases,
which leads to density of prey population increase
and top-predator decrease due to unavailability of
food. This phenomena can control chaos. Similarly,
the system becomes stable from its chaotic dynam-
ics through with an increase in harvesting parameter
h3, see Fig. 14a. The chaotic dynamics of the sys-
tem (13) with respect to the harvesting parameters
h1, h2, and h3 are confirmed through the positive
LLE values (see Figs. 12b, 13b, and 14b). Accord-
ing to our numerical simulations, by increasing the

harvesting parameters and fixing all other parame-
ters, the system switches from chaos to a limit cycle
oscillation, then settles into a steady state solution.

Fig. 11. The phase portrait of the model (13)
for the set of parameters given in Fig. 2 with
h1 = 0.01, h2 = 0.02 and h3 = 0.001.

7. Conclusions

Most ecological systems that have been mod-
eled reveal chaotic behavior because they are non-
linear. Chaotic systems always react roughly be-
cause of their sensitive dependency on their system
parameters and initial conditions. Therefore, it must
be controlled in order to predict how the ecological
system will develop in the future. Hastings-Powell
first found chaos in a model of a food chain with
three species. Hastings-Powell first found chaos in a
model of a food chain with three species. This model
has been widely supported by the scientific commu-
nity because of its use in describing the dynamics
of numerous ecological systems. In this review ar-
ticle, we investigate the controlling mechanisms of
chaos in the H-P model through various ecological
factors. The ecological factors used are as follows:
(i) providing additional food to predators; (ii) al-
ley effect in prey growth; (iii) prey refuge; (iv) the
fear effect; and (v) species harvesting. The ecologi-
cally possible equilibrium points and corresponding
local stability are studied for all cases. In Section
3, we showed that the stability of the H-P model
is controlled by the quality and quantity of supple-
mentary food for predators. The interaction between
prey and predator decreases as the predator’s food
supply increases. Also, it has been found that any
amount of food has a negative effect on the ecosys-
tem and can lead to the extinction of a population.
From Figs. 6 and 7, it is clear that the Allee ef-
fect and prey refuge parameters play an important
role in regulating the chaotic dynamics of the H-
P model. As prey refuges expand, the availabil-
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ity of prey to middle predators decreases, causing
all species to maintain positive densities. It should
be noted from Section 5 that as fear parameters in-
crease, the growth rate of prey and middle predators
is limited, which leads to a lower number of prey and
middle predators being consumed by the middle and
top predators in the system. This situation allows
all three species to coexist and maintain a positive
density level. Figures 12-14 show that harvesting
parameters have a stabilizing effect on system dy-
namics. Thus, with the proper choice of harvesting

parameters, one can keep the chaos under control in
the H-P model. So, we can conclude that the intro-
duced chaos control strategies in the H-P model are
non-chemical and easy to implement. The methods
derived in this paper are very helpful for protecting
biodiversity and managing ecosystems. The ideas
discussed in this study can be extended by consider-
ing the H-P model with various functional responses,
which leaves this as future work. The same ecologi-
cal characteristics that have been used in this paper
can be extended to various eco-epidemiological mod-
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Fig. 12. For system (13): (a) a bifurcation diagram of the middle-predator with respect to parameter h1;
(b) fluctuation of the LLE with respect to h1.
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Fig. 13. For system (13): (a) a bifurcation diagram of the middle-predator with respect to parameter h2;
(b) fluctuation of the LLE with respect to h2.
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Fig. 14. For system (13): (a) a bifurcation diagram of the middle-predator with respect to parameter h3;
(b) fluctuation of the LLE with respect to h3.
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els and fisheries models, which also leaves room for
future work.
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