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Abstract. The mechanical properties of the SAPH440 hot rolled steel sheet are mainly 

controlled to satisfy product specifications. Three mechanical properties including the yield 

strength, ultimate tensile strength, and elongation are measured and utilized in product 
classification. Based on these properties, the steel is classified into 3 grades: Class 1 (meets 
specification), Class 2 (moderate quality), and Class 3 (low). However, various factors can 
affect the mechanical properties, leading to a long setup time for initial production runs. 
Therefore, this paper aims to improve the accuracy of these predictions by using machine 
learning algorithms. The results of experiments showed that the random forest algorithm 
had the best performance, with an accuracy of 70.0% and a macro average F-1 score of 

70.0%. This more accurate prediction can reduce the initial setup time and save 37,000 USD 

per grade in trial run costs.  
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1. Introduction 
 
Hot rolled steel is widely used in various industries 

such as construction, truck manufacturing, shelving, 
railroads, car parts, machinery, and container production 
due to its excellent weldability and mechanical properties 
[1]. Accurate control of mechanical properties such as 
elongation, yield strength, tensile strength, and impact 
energy is crucial in the steel industry. As a result, hot strip 
mills or hot rolling manufacturers focus on predicting and 
controlling these properties. Traditionally, prediction 
models have been obtained through simple or multiple 
linear regression. However, in recent years, machine 
learning (ML) algorithms have also been used for 
prediction purposes. 

Continuous improvement in hot rolled steel sheet 
production has been a priority as new products often have 
specific mechanical property requirements based on their 
intended application. Currently, process control mainly 
focuses on the chemical composition of raw materials and 
rolling conditions. Four critical parameters are adjusted 
during the process control, including carbon equivalent, 
thickness, finishing temperature, and coiling temperature. 
The initial setup involves using scatter plots to determine 
the relationship between carbon equivalent and 
mechanical properties, and fine-tuning of process 
parameters to achieve optimal conditions. This process 
requires 20 to 25 initial trial runs (each a twenty-ton hot 
rolled coil) to meet customer specifications, leading to 
increased production costs and loss of production hours 
in the hot rolling process. 

The hot rolled steel process is illustrated in Fig. 1. The 
raw material for this process is a slab with a thickness of 
220-250 mm. The process consists of the following 8 steps: 

1) The slab is reheated in the reheating furnace to a 
temperature in the range of 1,200 - 1,250 °C, 

2) The slab is rolled to reduce the thickness of the 
transfer bar to about 30 mm. by the roughing mill station, 

3) The finishing rolling with transfer bar was passed 
to the finishing mill at a temperature in the range of 990 - 
1,056 °C,  

4) Before entering the finishing mill stand, the transfer 
bar is coiled at the coiled box in order to equalize the 
temperature of the transfer bar,  

5) The transfer bar needed to remove the oxide scale 
which generates when steel is oxidized at a high 
temperature,  

6) The finishing mill is the process which controls the 
final thickness of the hot rolled steel sheets by transfer bar 
changed to steel strip at the finishing mill, 

7) The steel strip was cooled to a temperature in the 
range of 540 - 720 °C by water at the laminar flow before 
the steel strip is coiled at the down coiler, 

8) Hot rolled coil is transferred to the coil yard for 
cooling to room temperature. 

The mechanical properties of the slab after the hot 
rolling process are altered and must be controlled to meet 
customer specifications. As new products require tighter 
specifications for mechanical properties, this work 

proposes more accurate process control. The main focus 
of this paper is to predict the quality of the product based 
on the mechanical properties of a hot strip mill 
manufacturing process. The linear regression has been 
utilized to predict the mechanical properties of hot rolled 
steel sheets, but its results have proven to be inaccurate, 
leading to high costs during the initial production run. 
Machine learning algorithms are thus employed to 
improve the accuracy issue and reduce setup costs.  

The following is a review of literature on the 
influential factors affecting the mechanical properties of 
hot-rolled steel and the application of prediction 
algorithms. The use of neural networks to predict the 
mechanical properties of hot-rolled steel was explored in 
studies [1, 2]. In particular, study discussed a deep neural 
network (DNN) model with an R2 value of 0.907 was 
provide by [1]. The potential for real-time prediction using 
neural networks was noted as a way to significantly reduce 
labor and material costs, as detailed in [2]. 

Matsubara et al. [3] highlighted the importance of 
mechanical properties to customers. They noted that 
various factors such as chemical composition, reheating 
temperature, soaking time of the slab in the reheating 
furnace, finishing temperature, reduction of thickness, and 
coiling temperature influence the mechanical properties.  

The chemical composition of steel plays a significant 
role in determining its mechanical properties, with studies 
indicating that precipitation hardening and grain size 
strengthening are key factors in solid solution 
strengthening. The reheating process can also affect the 
mechanical properties through homogenization of the 
chemical composition in the slab during soaking. It was 
further noted that an increase in carbon content can 
enhance the strength of steel. As such, converting the 
other alloying elements into carbon terms is a powerful 
method for predicting the mechanical performance and 
behavior of steel. The relationship conversion of other 
alloying elements to carbon is called the carbon equivalent 
(Ceq), as shown in Eq. (1), provided by Agarwal et al [4]. 

 

Ceq= C+
Mn

6
+

Si

24
                                         (1) 

 

 

 
 

Fig. 1. Hot rolled steel sheet process. 
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Currently, the regression models are used to predict 
the mechanical properties of the hot strip rolling process. 
In quality control, yield strength, tensile strength, and 
elongation must be accurately predicted and monitored. 
Steel manufacturers currently rely on the carbon 
equivalent for prediction; however, it is recognized that 
hot strip rolling parameters such as rolling temperature 
can also impact the mechanical properties. 

Additionally, the metallurgical structure is very 
complex. According to study [5], the effect of thermal 
treatment on microstructure and mechanical properties 
was investigated. The impact on yield strength, ultimate 
tensile strength, hardness, and microstructure was 
examined by considering two factors: soaking temperature 
and rolling temperature. 

It was observed that yield strength, ultimate tensile 
strength, and hardness could be improved by using the 
following conditions: a soaking temperature greater than 
1100°C, rolling temperatures around 800°C, and a rolling 
reduction of 50% or more. Rudkins et al. [6] compared 
finite-element models and the Ekelund and Sims model 
with actual values to investigate the rolling load of the hot 
strip mill and found that the predicted values had good 
agreement with the Ekelund and Sims rolling models. 

Junpradub and Asawarungsaengkul [7] discussed 
papers on predictions using regression models. They 
found that single linear regression (SLR) and multiple 
linear regression (MLR) models were used to predict the 
mechanical properties of hot rolled steel sheets. The SLR 
model correlated the carbon equivalent with the 
mechanical properties, while the MLR model added the 
process parameters to the regression. The results showed 
that the MLR model was more appropriate than the SLR 
in predicting yield strength (YS) and elongation (EL), 
while the SLR model provided more accurate predictions 
of ultimate tensile strength (TS). 

In recent years, machine learning, a component of 
artificial intelligence (AI), has effectively been applied to 
various engineering fields. Ghaisari et al. [8] explored its 
use in the steel industry to predict yield strength (YS), 
ultimate tensile strength (TS), and elongation (EL) using 
machine learning. They also used it to identify the crucial 
input parameters affecting mechanical properties. Ma et al. 
[9] applied machine learning to diagnose faults in the hot 
rolling mill process through a semi-supervised coupling 
fault classification. The study utilized multi-learning (MTL) 
to classify data from different groups and adaptively 
predict the mechanical properties of the hot rolling mill 
process.  

Eligüzel et al. [10] studied the use of k-nearest 
neighbors (k-NN) as predictors on the Twitter platform, 
finding that k-NN had an accuracy of 0.9 and an F1-score 
of 0.86 in classification, outperforming support vector 
machine (SVM) with an accuracy of 0.83 and F1-score of 
0.74. Both SVM and k-NN techniques are also explored 
in Hasan et al. [11]. Ming et al. [12] investigated the hot 
rod rolling process design using knowledge from the 
decision tree by random forest (RF) and an ontology 
design, aimed at optimizing gear box design.  

 Bagheripoor and Bisadi [13] created a neural network 
model to accurately predict the rolling force and torque in 
the hot strip mill process to address nonlinear issues. Lu 
et al. [14] utilized support vector machine, neural network, 
and extreme gradient boosting as regression models to 
predict mill chatter or vibration in cold rolling for ST14 
steel. The results showed that extreme gradient boosting 
achieved the best prediction performance with a high 
determination coefficient (R2) and low mean absolute 
percentage error (MAPE). 

This paper focuses on using machine learning to 
predict product classification. The study includes the 
following steps: Section 2 outlines the material and 
methods, including research data, predictions using 
multiple linear regression (MLR), product classification, 
data cleaning, methodologies, and model performance 
measurement. Section 3 determines the optimal 
hyperparameters of k-nearest neighbors (k-NN), support 
vector machine (SVM), random forest (RF), and Artificial 
Neural Network (ANN). In Section 4, the results of model 
decision-making are validated by using confusion matrix 
metrics (F1-Score, Precision, Recall, and Accuracy) to 
evaluate accuracy, effectiveness, and robustness of the 
classification group of hot rolled coil. The performance of 

the models is discussed and concluded in Section 5. 
 

2. Material and Method 
 

Currently, the process uses linear regression to predict 
three mechanical properties (YS, TS, and EL) and product 
classification. Table 1 lists dome data of input parameters 
selected as regressors for the regression model. The input 
parameters consist of carbon equivalent (Ceq), slab 
thickness (THK), finishing temperature (FT), and coiling 
temperature (CT). However, this approach has limited 
accuracy in predicting the mechanical properties and 
product classification. 

The linear equations obtained from the regression 

model are as follows: 
  YS = f1(Ceq, THK, FT, CT)  (2) 

  TS = f2(Ceq, THK, FT, CT) (3) 

  EL = f3(Ceq, THK, FT, CT) (4) 

These equations have been used as a guideline for 
process setup and resulted in high wastes in this hot rolled 
process including: setup time, setup costs, and operation 
capacity. 

 
2.1. Data for Prediction Model 

 
In this study, the data of hot rolled SAPH440 steel 

was obtained and analyzed from a laboratory certified by 
Thai Industrial Standards (TIS 17025-2561) using the test 
coil methodology according to JIS G3113 for structural 
automobile hot rolled SAPH440 steel. The data was 
collected from July 2010 to July 2020. The material was 
tested using an Instron 5585H series universal testing 
machine, following the JIS Z2241 standard for ultimate 
tensile strength of metallic materials. The data used for 
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training and testing ML models included 7,607 hot rolled 
sheets. Both mechanical properties (Ceq, THK) and 
rolling parameters (FT, CT) were considered as factors 
affecting the controlled mechanical properties. The 
thermal rolling conditions (FT and CT) are crucial for the 
yield strength (YS), ultimate tensile strength (TS), and 
elongation (EL). Table 1 lists some input parameters of 
the hot rolled sheets used for training the machine learning 
models. 

 

 
 
2.2. Product classification 

 
The mechanical properties of SAPH440 hot rolled 

steel sheet (YS, TS, and EL) is used to determine the 
product classification of hot rolled steel sheet. Scores are 
assigned based on these properties: "Fail" (YS < 315, TS 
< 460, EL < 31), "Medium" (315 < YS < 365, 460 < TS 
< 510, 31 < EL < 35), and "Good" (YS > 365, TS > 510, 
EL > 35). Table 2 summarizes the criteria for each score. 
The quality of SAPH440 hot rolled steel sheet is classified 
into three categories based on the scores of YS, TS, and 
EL (as shown in Table 3). The criteria for each category 
are:  

• Class 1 (Preferable): All YS, TS, and EL scores meet 
the "Good" requirement.  

• Class 2 (Moderate): At least one YS, TS, or EL score 
is "Medium".  

• Class 3 (Low): At least one YS, TS, or EL score is 
"Fail". 

 

 
2.3. Data Cleaning  
 

To train and test the ML model, data was collected 
from 7,607 hot rolled sheets over the past 10 years. The 
unbalanced data set from the hot rolling process is shown 
in Fig. 2. Outliers were removed during the analysis. To 
balance the data, equal sample sizes of hot rolled steel 
sheets were randomly selected from each of the three 
product quality classes. The resulting balanced data set 
consisted of 1,500 data points per class. This balanced data 
set ensured accuracy and precision in prediction. 

 

 
 
2.4. Methodologies 

 
This paper uses machine learning algorithms to 

improve decision-making in the hot rolling process and 
achieve a preferable class of product quality. Machine 
learning can be divided into three sub-fields: supervised 
learning, unsupervised learning, and reinforcement 
learning. This study focuses on supervised learning for 
classification and prediction. Supervised learning involves 
finding the relationships between input features and the 
output data set to improve prediction accuracy.  

The k-nearest neighbors (k-NN), support vector 
machine (SVM), random forest (RF), and artificial neural 
network (ANN) algorithms were tested to find the best 
performing one. The machine learning models were 
trained using input features (CEQ, THK, FT, CT) and the 
actual class of SAPH440 hot rolled steel sheets. The 
framework for product classification prediction is shown 
in Fig. 3. 

Data set was typically divided into three groups 
including training, test, and validation. The recommended 

Table 1. Some of the input parameters of the mechanical 

properties. 
 

Ceq THK 
(mm.) 

FT (℃) CT (℃) 

0.29 2.0 841 581 

0.28 2.0 841 581 

0.26 2.0 864 591 

0.26 2.0 864 591 

0.30 4.5 858 623 

0.30 4.5 850 614 

0.27 3.2 875 612 

0.29 3.2 875 612 

0.28 2.6 875 612 

 
  

 

Table 2.  The scores for the mechanical properties of the 

products. 
 

Mechanical 
properties 

Good Medium Fail 

Yield Strength 315 - 365 > 365 < 315 

Ultimate Tensile 
Strength 

460 - 510 > 510 < 460 

Elongation > 35 31 - 35 < 31 

 
  

Table 3. Product Classification.  

 

Yield 
Strength 

Tensile 
Strength 

Elongation Class 

Good Good Good 1 (Preferable) 

Medium ≥ 1 for 3 properties 2 (Moderate) 

Fail ≥ 1 for 3 properties 3 (Low) 
 

 
 

Fig. 2. Data set for test and train process of ML. 
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value for the proportionality between the three data 
groups was described in [15-20].  In this paper, the data 
set of 4,500 samples were divided into 70% for training 
and 30% for testing during creating machine learning 
models.  

 

 
 
2.4.1. k- Nearest Neighbors (k-NN) 

 
The k-Nearest Neighbors (k-NN) algorithm is used 

for supervised learning classification and regression. In the 
classification method, it compares input data distances to 
classify a data point into a group. The k-NN algorithm 
chooses the k nearest data points, where k is any integer. 
It then uses a voting system for the most frequent class in 
case of classification or averages the labels in case of 
regression. The performance and classification method of 
k-NN are described in [21-22]. The Euclidean distance 
between two points can be calculated using Eq. (5). The 
k-NN algorithm predicts a new data point's class by using 
the number of nearest neighbors, as shown in Fig. 4, and 
classifying it based on the Euclidean distance. 
 

  Euclidean = √∑ (X𝑖 − Y𝑖)
2𝑘

𝑖=1
 (5) 

 
where Euclidean is the distance between new data point 
and i point; k is number of neighbors.  

  

 
Fig. 4. The architecture of k-nearest neighbors (k-NN). 

 

2.4.2. Support Vector Machine (SVM) 

 
The support vector machine (SVM) is a non-linear 

learning algorithm as illustrated in Fig. 5. The objective of 
SVM is to project the dataset into a feature space and 
construct a hyperplane that separates the data into 
different classes. The data points laid closest to the 
hyperplane are called support vectors, and the maximum 
distance between the hyperplane and these data points is 
the margin. The hyperplane will result in higher accuracy 
of classification if it can produce a maximum margin. A 
larger margin means lower generalization error.  Support 
vector machine can work well in high-dimensional data 
when the number of input features is greater than the 
number of observations or samples.  

 
The prediction model design and techniques to 

minimize the least square error between the real data and 
prediction model output are discussed in [23]. SVM also 
has a kernel function that can transform complex data into 
a linearly separable form in a higher dimension. The 
classification function for SVM is explained in Eq. (6) 

below: 
  y  =  f(x)  = ωTx +b (6) 
 

where x is set of input sample features, y is the output 

result, ω is set of weights for each feature, b is a bias. 

The Support Vector Machine (SVM) uses an 
optimization approach to maximize the margin between 
data points. This helps reduce the number of weights that 
are non-zero and contributes to the important features. 
The margin is the sum of the shortest distances to the 

closest positive and negative points, denoted as 𝛿+ and 

𝛿− , respectively. This leads to the optimal hyperplane 
being found. The non-zero weights are linked to the 
support vectors, which are the data points closest to the 
hyperplane. 

Hyperplanes as in Fig. 5 can be defined by Eq. (7) and 
Eq. (8). 

 ω∙ x +b  = +  1  when, y = +1 (7) 

 ω∙ x +b  =  − 1, when y = − 1 (8) 

 
 

Fig. 3. Methodology for classification and prediction. 
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Fig. 5. The architecture of the support vector machine 

(SVM). 
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The median hyperplane is displayed in Eq. (9).  

 ω∙ x +b = 0 (9) 
 

2.4.3. Random Forest (RF) 

 
Random forest is a supervised machine learning 

algorithm. Random forest (RF) is a powerful machine 
learning model for classification and regression problems 
with a strong predictive ability. It works by combining 
multiple decision trees to create a "forest". In classification 
models, each decision tree acts as a classifier, and the final 
prediction is made based on the majority vote of the 
decision trees, as shown in Fig. 6. There are three types of 
nodes in a random forest: root nodes, internal nodes, and 
leaf nodes. Root nodes are the first branching point in a 
decision tree, internal nodes represent additional decisions 
based on the root node or other internal nodes, and leaf 
nodes are the final outputs of the decision tree. 

 

 
 

Fig. 6. The architecture of the Random Forest for 

classification. 
 

In the tree diagram of random forest, each module 
represents the significance of an attribute value among 
instances, leading to branches and possible input values to 
meet the criteria. To classify an instance, the process 
begins with creating a root node, determining the attribute 
data, and branching the tree based on the desired attribute 
value. The accuracy of the prediction model is influenced 
by the design of the input parameters, including both 
primary and secondary input features, as shown in [24]. 

Since the algorithm process method was considered 
repeated, the additional sub-tree root node was defined as 
the new node.  RF uses the “bagging” method in which 
the sampling method is utilized to combine the learning 
models that can improve the prediction result and reduce 
the over-fitting. This formula employs a decision tree 
which is used to determine the concept of how nodes 
produce an effect on a decision tree branch, and can be 
expressed in Eq. (10).  This concept is called the Gini 
index.  

The RF itself in another way is labelled by the entropy 
in order to encourage nodes to branch in a decision tree, 
as depicted in Eq. (11). The decision entropy was applied 
by statistical probability in order to select how the node 
should branch, which is measured by using the Gini index.  
Entropy provides the measurement of impurity in a group 

of observations. Entropy of a dataset closed to zero means 
that it is not useful for learning. 
 

 Gini =1- ∑ (Pi)
2c

i=1  (10) 

 

 Entropy =  ∑ - Pi
c
i=1 *log

2
 (Pi)  (11) 

where  𝑃𝑖  is probability of class i 
           c   is the number of classes 

 
 
2.4.4. Artificial Neural Network (ANN) 

 
The artificial neural network (ANN) is modeled after 

the human brain and has complex learning processes. It 
typically consists of three layers: input, hidden, and output. 
The input layer receives data, which is then processed by 
the hidden layer through an activation function and sent 
to subsequent layers as seen in Fig 7. There are various 
activation functions, such as Softmax, Leaky ReLU, 
Sigmoid, Tanh, and ReLU. The ANN used in this paper is 
a feed-forward network, which processes data from the 
input layer through the hidden layer and outputs the result 
through the output layer. The artificial neural network can 
be used for various problems, as referenced in [15-16, 25-
26]. 

The backpropagation algorithm is a key component in 
fine-tuning the weights of an artificial neural network 
(ANN). It calculates the gradient of the loss function for 
a single weight using the chain rule. Optimal weights 
reduce error rates and improve the accuracy of the ANN's 
predictions. The use of ANN in predicting roll force and 
roll torque in the hot strip rolling process is demonstrated 
in [25]. The relationship between inputs and outputs is 
calculated through a weighted sum of input features and 
bias, as shown in Eq. (12). The output result is generated 
through the ANN's feed-forward process, starting from 
the input layer and flowing through the hidden layer to the 
output layer is display in Fig 8. 
 

 y= 𝛿( ∑ ωixi+b)i  (12) 
 
where,  y is the output 

𝜔i is the weight coefficient i 
xi is input feature i 
b is the bias vectors  

Equation (13) is used for calculating a output of a 
hidden layer that use information from the previous layer 

and then send the value to the next layer. 
 

 yl = 𝛿(ωlyl−1+ bl)             (13) 

where,  yl is the output of layer l 
ωl is the weight coefficient matrix of layer l  
bl is the bias vectors of layer l 

𝛿(z) is the activation functions. 
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Fig. 7. The feedforward Neural Network Algorithms. 
 

 
 
The data was normally divided into three groups: 

training and testing, with recommended proportions 
described in [15-20]. In this paper, a dataset of 4,500 
samples was split into 70% for training and 30% for 
testing during fitting the machine learning model. The 
ANN architecture design involves three layers: input, 
hidden, and output. Optimal hyperparameters can 
improve the accuracy of machine learning models.   
 
2.4.5. Performances of prediction models 
 

Efficiency of classification is an important 
methodology in terms of evaluation based on the 

measured accuracy, precision, recall and F1-Score. The 

formulars to measure the performance of model are 

shown in Eq. (14) to (17). The parameters represent the 

number of True Negative (TN), True Positive (TP), False 

Negative (FN), and False Positive (FP). 
 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                    (14) 

 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                          (15) 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (16) 

 

F1-score = 2*
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                        (17) 

                                                                 
The confusion matrix is a tool used in classification 

problems to visualize the performance of a classifier. The 
proposed method of correction using a confusion matrix 

evaluates the accuracy of the classifier by comparing the 
actual classes to the predicted classes, with positive and 
negative classes defined. Fig. 9 provides an illustration of 
how correct and incorrect predictions can be counted 
when the target class is class 1. 
 

 
Fig. 9. The confusion matrix platform when Class 1 is 

the target class. 
 

F1-Score is the weighted average of precision and 
recall, two important metrics in classification problems. 
Precision (also known as positive predictive value) 
measures the accuracy of positive classifications, 
calculated as the ratio of True Positives to Total Predicted 
Positives (Eq. (15)). Precision is appropriate when the cost 
of False Positives is high. Recall (also known as sensitivity) 
measures the proportion of actual positive cases correctly 
identified, calculated as the ratio of True Positives to Total 
Actual Positives (Eq. (16)). Recall is relevant when the cost 
of False Negatives is high. F1-Score balances precision 
and recall (Eq. (17)) and is suitable for classification 
problems with unbalanced class distribution. 
 

3. Hyperparameters for ML algorithms 
 
The experiments were done to determine the suitable 

hyperparameters for ML algorithms used for product 

classification. The optimal hyperparameters can enhance 

the prediction accuracy of ML models. 
  

3.1. k-Nearest Neighbors (k-NN) 
 

The k-NN algorithm classifies a new sample by taking 
a majority vote of its k nearest neighbors, determined by a 
distance function. The algorithm is trained using input 
features and actual class outputs, which in this paper are 
Class 1, 2, and 3. The goal of the experiment is to predict 
the product classification in the hot rolled process for new 
sample data. The optimization of the hyperparameters in 
the k-NN learning process involves adjusting the value of 
k, as shown in Table 4. 
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Fig. 8. The process of computing the output result for 

ANN. 
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Table 4.  Hyperparameters for k-NN. 

Parameter Keys Range 

n_neighbors 5 
algorithm auto 
leaf_size 30 
metric minkowski 
metric_params None 
p 2 
weights uniform 

 
The best n_neighbors value for maximum accuracy is 

5. The k-NN model's accuracy in classifying hot rolled 
products is 67%. 

 
3.2. Support Vector Machine (SVM) 
 

In this paper, the support vector machine (SVM) is 
utilized for classification problems. The hyperplanes are 
built to make the product classification. The optimal 
hyperparameters based on the training dataset for SVM 
are shown in Table 5. 

 

Table 5.  Optimal hyperparameters for SVM. 

Parameter Keys Range 

C 1000 

gamma 0.0001 

cache_size 200 
max_iter 1 
Probability FALSE 
Shrinking TRUE 
decision_function_shape ovr 
degree 3 
kernel rbf 
verbose FALSE 

 
SVM model with Radial Basis Function (RBF) kernel 

is successfully improved the efficiency with an accuracy of 

57.0% for classification. The RBF kernel (K) can be 

expressed as in Eq. (18): 
 

  K(x1,x2) = exp (
‖x1- x2‖2

2𝜎2 ) (18) 

 

where σ is the variance and our hyperparameter; ‖x1- x2‖ 

is the Euclidean distance between two points x1and x2. 
 
3.3. Random Forest (RF) 
 

Table 6 displays the optimal hyperparameters for the 
Random Forest model. The n_estimators, which is the 
number of trees created before voting, is found to be 
optimal at 100. The recommended value for max_depth, 
the maximum number of levels in each decision tree, is 3. 
Additionally, the optimal max_feature, the maximum 
number of features considered in each tree, is "auto". 

 

Table 6.  Optimal hyperparameters for random forest. 

Parameter Keys Range 

n_estimators 100 
max_feature auto 
max_depth 3 
Random state 42 
criterion entropy 

 
The initial dataset was divided into 70% training 

samples and 30% testing samples for use by the Random 
Forest model in making classifications. This resulted in a 
classification accuracy of 70%. 

 
3.4. Artificial Neural Network (ANN) 
 

The product classification of the hot rolled process was 
performed using a single-layer Neural Network (ANN) 
architecture. The model consists of three layers: the input 
layer with four features (chemical content and hot rolled 
parameters), the hidden layer with 4 nodes and 16 hidden 
layers, and the output layer with 3 neurons for the three 
classes of hot rolled steel sheet. The optimal 
hyperparameters for the ANN, including the number of 
hidden layers and nodes, as well as the recommended 
hyperbolic tangent activation function, are shown in Table 
7.  

A common logistic model for activation function 

used for multi-class classification is sigmoid, S(x). The 

sigmoid activation function can be expressed as in Eq. (19) 

 

 S(x) =  
1

1+ e−x
 = 

e x

1+ e x
             (19) 

where, S(x) = sigmoid function, e = Euler's constant, equal 

to 2.7182. 

According to the definition of the mathematical 

function, the S-curve is a Sigmoid function also known as 

the logistic function, which is crucial in providing the 
optimal minimum error for linear functions. The Sigmoid 
function maps real numbers to a range between 0 and 1, 
and its purpose is to convert real values from inputs into 
probabilities for the outputs.  

For the classification of the hot rolled steel sheet, the 
hyperbolic tangent (tanh) activation function, shown in 
Eq. (20), is recommended. The relationship between the 
sigmoid and hyperbolic tangent functions is expressed in 
Eq. (21). The tanh activation function has an s-shaped 
curve and ranges from -1 to 1. 

 

  F(x) = tanh(x) =
(ex−e−x)

(ex+e−x)
 (20) 

  tanh(x) = 2∙S(2x) − 1 (21) 
 

The Stochastic Gradient Descent (SGD) algorithm is 
used to minimize the objective of the loss function. After 
training, the recommended solver for the ANN is the 
Adam optimizer, an extension of the SGD technique, for 
the supervised learning model. A learning rate of 0.1 is also 
suggested.  
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Table 7.  Optimal hyperparameters for ANN. 

Parameter Keys Range 

hidden_layer_size (16,4) 
activation Tanh 
solver Adam 

learning_rate_int 0.1 

max_iter (1000, step = 50) 

 
The accuracy of the product classification performed 

using the Artificial Neural Network (ANN) was found to 
be only 40%, which is considered to be low. This result 
raises the need for further investigation and improvement 
to increase the accuracy of the model. 
 

4. Results and Discussions  
 

Four machine learning algorithms were employed to 
develop a prediction model for the product classification 
of hot rolled steel. The hyperparameters for these 
algorithms were determined in a previous section. The 
performance of the experiment on these ML models is 
reported in this section, using precision, recall, accuracy, 
and F1-score as the evaluation metrics. These metrics are 
displayed in Fig. 10 to 13. Accuracy is a commonly used 
performance indicator for selecting the best ML algorithm, 
while the F1-Score, a combination of precision and recall, 
is an appropriate metric to use when dealing with 
unbalanced class distributions.  

The results from the validation experiments reveal that 
the accuracy of the k-Nearest Neighbor (k-NN), Support 
Vector Machine (SVM), Random Forest (RF), and 
Artificial Neural Network (ANN) algorithms are 67%, 
57%, 70%, and 40%, respectively. It can be observed that 
the Random Forest (RF) algorithm provides the best 
accuracy for all classes of classification. Furthermore, in 
terms of precision, recall, and F1-score, the RF algorithm 
outperforms the k-NN, SVM, and ANN algorithms. The 
performance of the ANN was found to be the worst 
among all the algorithms in terms of all performance 
metrics. As a result, the Random Forest algorithm is 
selected as the best option for predicting in the hot roll 
process in manufacturing due to its superior performance 
compared to the other algorithms.  

In addition to the machine learning algorithms, the 
existing regression model that is currently used in the 
manufacturing process was also employed to predict the 
product classification. Based on the dataset used for 
modelling these machine learning algorithms, the accuracy 
of the regression model was only 33.5%. The regression 
model tends to predict the product quality as Class 2. It is 
found that 4,487 out of 4,500 hot rolled sheets were 
predicted as Class 2. True positive (TP) for Class 2 is 1,500 
out of 1,500 hot rolled sheets. That means number of 
False Positives (FP) for Class 2 is 2,987 out of 3,000 hot 
rolled sheets. The reason that why performance of 
regression model is very low because it tries to predict the 
mean of mechanical properties which are “Medium”.  

It can be concluded that the machine learning 
algorithms are more accurate in comparison to the 
regression model. Among the machine learning algorithms, 
the Random Forest algorithm demonstrated the best 
performance and thus, is considered to be the most 
suitable for the product classification task. 
 

 
 

 

 

 
 

Fig. 12. The F1-score value of ML algorithms. 
 

 
 

Fig. 10. The precision value of ML algorithms. 

 
 

Fig. 11. The recall value of ML algorithms. 
 



DOI:10.4186/ej.2023.27.8.51 

60 ENGINEERING JOURNAL Volume 27 Issue 8, ISSN 0125-8281 (https://engj.org/) 

 
 

5. Conclusion 
 
The product quality classification in the 

manufacturing process is based on three physical 
properties: tensile strength, ultimate tensile strength, and 
elongation. Previously, the linear regression method was 
used to predict the product quality. However, this method 
showed low accuracy, leading to longer initial setup times 
and higher setup costs. Additionally, misclassification of 
product quality led to increased financial losses for the 
manufacturing process. 

To address this issue, new prediction models using 
machine learning algorithms were proposed. The results 
of the experiments showed that these algorithms could 
significantly improve the accuracy of product quality 
prediction compared to the linear regression model. 
Among the algorithms tested, random forest was found to 
have the best performance, scoring highest in all 
performance metrics. 

The use of the selected machine learning algorithm 
model not only improves the accuracy of product quality 
prediction but also reduces setup time and costs. It is 
estimated that the benefits of the prediction model could 
lead to a reduction of approximately 37,000 USD in trial 
products, development time, and trial costs per grade. 

The further research opportunity is to develop more 
accurate prediction model by utilizing the importance 
input features and the hybrid machine learning model.  

The closeก-loop control system and optimization 

technique can be developed to control the hot rolled 
process so that this process will be able to produce more 
preferable product quality. 
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