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Abstract. The fragile characteristics of Li-ion batteries lead to the need of battery management system (BMS) 
to carefully supervise them during the operation. Since there are so many variations in battery configurations, 
the BMS usually must undergo many iterations of the development cycle, which take a long time to optimize 
and finalize the design. Previously, many works adopted the idea of modularized BMS to address these issues, 
but they still have some skeptical issues such as measurement approaches or difficulties in reconfiguration. 
This paper presents a guideline on the crucial aspects of flexible BMS designs for automotive applications, 
which aims to reduce time and effort for developing a new BMS for automotive battery pack. The guideline 
covers some crucial aspects pertaining the automotive BMS hardware implementation, SOC estimation 
algorithm and its computational performance based on Extended Kalman Filter (EKF) and Luenberger 
Observer (LO) with 3 levels of Electrochemical model (ECM). All of the tests were carried out in a small-
scale microcontroller. It was found that 2-RC ECM gives the best trade-off between SOC estimation accuracy 
and computational time. While the 3-RC ECM provides 9.5% and 31% higher accuracy than the 2-RC and 
1-RC ECM, respectively, but taking 88% and 240% higher computational time than the latter two cases. The 
optimal speed of the observer poles of LO algorithm are suggested to be in the range of 2-5 times faster than 
the system poles, which makes the convergence speed to be comparable to the EKF algorithm but is still 
able to keep the SOC estimation error in the range of 3-5%. These results can be used to make a trade-off 
between estimation accuracy and computational time, to select the optimal SOC estimation algorithm for 
onboard BMSs.  
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1. Introduction 
 
Lithium-ion (Li-ion) batteries are a promising battery 

technology used across various applications in modern 
days, due to their high energy density and lightweight 
characteristic. However, Li-ion batteries are naturally 
prone to overcharge/over-discharge, which might lead to 
irreversible damage to the cell chemistry [1]. Therefore, Li-
ion batteries require a battery management system (BMS) 
to enhance the reliability/performance of the battery pack. 
Each battery application has different variations, such as 
cell configuration, cell chemistry, etc. Especially for 
automotive industries where these variations are 
complicated. So, the BMS needs to be adjusted along with 
these variations to work properly and achieve its highest 
performance. This adjustment usually takes a long time 
and a lot of resources to finish. Therefore, it would be very 
beneficial to develop a flexible BMS to shorten the 
development cycle, time, and resources required to 
reconfigure the system.  

Flexible BMS, in its sense, is a platform in which the 
number of monitoring units can be freely adjusted to 
support a wide range of battery cells, voltage, chemistries, 
and balancing algorithms, etc. In the past, there were 
several studies that worked on the design of flexible BMS 
[1-3, 5-7, 9-10, 12], the common things found in these 
studies is that they used a decentralized structure to 
maximize scalability and flexibility [16]. However, each 
study focuses on different aspects according to the main 
purpose of the design. The flexible BMS in [2, 7] aims to 
develop low-cost stackable BMS, the system is composed 
of multiple local units and a master unit, connected 
together via LIN Bus/ highspeed UART. The SOC 
estimation and balancing strategy are very simple, resulting 
in a low computational burden. In [3], the author 
minimizes the overall cost by using low-cost STM32 and 
Scilab/Xcos to implement model-in-the-loop (MiL) to 
simulate real-time battery modelling, resulting in better 
SOC estimation. In [10, 12], the authors focus on the 
implementation of external communication between 
master unit and outside systems, such as SPI, RS485, 
Ethernet, CAN or internet of thing (IoT), which supports 
the exchange of battery information in both stationary and 
automotive applications. Even though these studies focus 
on different purposes, the key points in developing a 
flexible BMS are typically lying in six crucial aspects 1) 
voltage measurement and sampling time 2) current 
measurement 3) Interconnection between BMS modules 
4) Balancing Algorithm 5) Temperature measurement 6) 
SOC estimation algorithm, as shown in Fig. 1. The in-
depth detail of how to properly design the hardware/ 
software for a particular BMS application regarding these 
aspects is rarely mentioned in any previous works, as 
shown in the following literature review.  

 
 
 
 
 

 
 

Fig. 1. Essential components of flexible BMS. 

1. Current sensor in flexible BMS shall be chosen based 
on the range of load current, noise sensitivity, thermal 
drift, and common mode voltage [13]. In [8, 9] 
modular BMS for low-voltage batteries was designed 
using a high-side shunt-based current sensor, but it 
has an issue with input common-mode voltage [11, 
14]. In [1, 3], the low-side hall sensor is used as the 
current sensor. Even though it has no problem with 
input common mode voltage, but the accuracy, 
thermal drift, and noise sensitivity might be inferior to 
the shunt-based sensor [13], which might be a serious 
issue when the BMS is being used in unusual high/low 
temperatures or in a noisy environment.  

2. Voltage measurement in [5], the author designed the 
modular BMS by using an instant IC to monitor 7.2V 
NiMH battery cells by using the combination between 
the resistor divider and the differential amplifier. This 
method is good for modularity since it reduces the cell 
voltage by half, resulting in a smaller number of 
required BMS ICs. However, this method might cause 
an unacceptable measurement error due to the 
tolerance of resistors. In [1, 6], the cell voltage 
measurement is achieved by using non-isolated 
amplifiers attached to every single cell. This method 
requires a ground separation between local units and 
microcontroller for safety issue [4]. Moreover, 
installing these amplifiers requires a huge soldering 
work, making it not practical for a modular design in 
which the number of cells or the measurement range 
can be arbitrarily changed.  

3. Balancing algorithm in [10] uses voltage-based 
algorithm to start the balancing process when the cell 
voltage exceeds or drops beyond a particular 
threshold. This algorithm is easy to implement, but 
the terminal voltage might not reflect the actual SOC 
due to the ohmic voltage drop. In [7], the author uses 
the SOC value obtained from the coulomb-counting 
method to perform balancing. This method is more 
accurate than the voltage-based since the SOC is not 
disturbed by the ohmic voltage drop. However, the 
Coulomb-counting method does not have a self-
correction mechanism, so its accuracy might 
deteriorate over time due to the accumulated 
measurement errors [15]. In [3], the balancing is 
implemented based on electrochemical impedance 
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spectroscopy (EIS) model with an Extended Kalman 
Filter (EKF). This method can accurately perform 
real-time balancing, but the EIS method has very 
limited flexibility since it requires the use of a 
specialized load profile, making it suitable for 
parameter initialization only [15] but not a good for a 
flexible BMS in which the type of cell/ cell chemistries 
is uncertain. In [2, 7] a modular BMS aims to shorten 
the balancing time by using external FETs to provide 
high balancing current. But the system requires a large 
heatsink to deal with high power dissipation, making 
the BMS module bulky and not suitable for flexible 
design. In reality, the balancing current found in 
medium-size EVs is not too high [16].  

4. Intercommunication between each BMS is a key 
factor that allows BMS to become stackable. In [5, 7], 
use 4-wires non-isolated SPI as a main 
communication between each local units, so it is 
necessary to keep the wiring short to minimize delays 
and noise [17]. This issue makes the non-isolated SPI 
not suitable for flexible BMS in which each BMS 
module might be far away from the other [20].  
 
It can be seen that there are still some issues regarding 

the design of flexible BMS that need to be clarified, so this 
study aims to provide a guideline on the design of flexible 
BMS hardware for automotive applications, covering the 
six important aspects mentioned previously, to reduce the 
time which a BMS designer has to spend on doing research 
or carry out comparisons. Apart from all of the issues 
mentioned above, other equally important points in 
flexible BMS implementation are the ability to estimate 
battery internal resistance and SOC value in real-time. The 
internal resistance can be used to reflect the state of health 
(SOH) of the battery, whereas the accurate SOC value can 
enhance the balancing performance, leading to longer 
battery life. However, these real-time estimations shall not 
consume too long computational time, as it will reduce the 
number of cells which a flexible BMS can support. The 
scope of battery cells in consideration of this study is lying 
on only Li-ions battery packs for small to medium scale 
vehicles, whose number of cells is up to 100 cells, the 
maximum capacity is up to 100 kWh, cell capacity up to 
100 Ah. The pack voltage is in the range of 36-400 V, and 
the voltage measurement is in the range of 0-5 V to 
support all types of battery chemistries, including super 
capacitors.  

The structure of this study is organized as follows: 
Section 2 introduces some details and recommendations 
associated with the six crucial aspects of the hardware 
design of flexible BMS, by considering the real-world 
operating conditions of EVs and Automotive Safety 
Integrity Level (ASIL). Section 3 includes the analysis and 
comparison of SOC estimation algorithms based on the 
Extended Kalman filter (EKF) and Luenberger observer 
(LO) under 3 levels of ECM, by using an open-source 
standard driving cycle battery dataset [53]. Also, Sect. 3.4 
and Sect. 3.5 investigate the dynamic performance and 
computation time of each algorithm, to find out the 

optimal balance between estimation accuracy and 
computational burden. 

 
2. Battery Management Hardware 

Recommendation in Automotive 
Applications 
 

2.1. Current Measurement for Battery Management 

 
In automotive BMSs, there are two methods widely 

used to measure current, shunt-based and hall-based. 
Shunt-based sensors is popular due to low parasitic 
inductance, low-temperature drift, and high accuracy. The 
two most common types of shunt resistors are surface-
mounted-device shunt resistors (SMD) and Kelvin 
connection resistors. SMD resistors have high accuracy, 
low thermal drift and small package, but usually suffers 
from contact resistance [28]. Thus, in high-current 
applications, Kelvin connection resistors are more 
preferable since the high-current path is separated from 
the voltage measuring points [28], resulting in low contact 
resistance. Kelvin connection resistors are highly 
recommended if the shunt resistance is lower than 500 μΩ 
[14]. Hall-based sensors are another popular option since 
they naturally provide isolation and have very low power 
dissipation, making them suitable for applications where 
the load current is above 200 A [59]. However, Hall-based 
sensors are practically less accurate, noisier, more 
susceptible to the external magnetic field and temperature 
change [13].  

In terms of placement, there are two arrangements for 
placing a current sensor, low-side and high-side 
configuration. In the high-side configuration, the shunt 
resistor is placed between the battery positive pole and the 
load so it does not create ground disturbances, while the 
low-side shunt allows all load current to flow along the 
ground path, creating ground noise which might be 
problematic for the communication between load side and 
controller side [18]. The high-side shunt can detect a 
ground fault condition, whereas the low-side shunt is 
bypassed from the short-circuit path [18]. The amplifier 
used with a high-side shunt must be able to withstand high 
common-mode voltage [29] and load dump conditions, 
which generates an extra across the shunt resistor when 
the load is abruptly disconnected [19, 20]. Also, if the 
battery pack voltage exceeds 48 V, a galvanic isolation is 
required [14]. When using a low-side shunt, the common 
mode voltage is much lower, so non-isolated amplifier 
with a common-mode voltage of less than 36V can be 
used, which is easy to find and not as costly as the isolated 
type. The comparison of each current measurement 
method is shown in Table 1. 

For PHEVs, EVs, HEVs, the battery current is in the 
range of mA to kA [21, 22], or 1:1000000 measurement 
ratio. The accuracy of current measurement must be 
maintained at 0.5-1% for current up to 450A to meet 
ASIL-C requirements [23]. In addition, the operating 
temperature of the current sensor must cover the range of 
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-40 to 125 ºC.  To meet these requirements, the hall-based 
sensor becomes more expensive and bulkier than the 
shunt type at the same power rating. Instead, Kelvin 
connection resistors in the range of 50μΩ to 500μΩ 
complemented with an isolated modulator is more 
preferable due to their high resolution (>14 bits) and low 
power dissipation. However, the span of 1:100000 
measurement ratio is not practical since it requires at least 
17 bits resolution to cover this span [24]. This high-
resolution measurement is very sensitive to noise and 
requires complicated circuit design [25]. Thus, the range 
of current measurement should be divided into at least 2 
sub-ranges, covering the span of 1:1000, so the resolution 
of ADC can be in the range of 11 to 14 bits. At this 

resolution, ΔΣ ADC is recommended to provides low 
quantization noise, resulting in higher accuracy [14]. For 
small electric vehicles such as scooters, electric bikes or 
golf cart, the voltage range of a battery pack is usually in 
the range of 48V to 54V with continuous discharging 
current in the range of 10-100 A [26, 27], which is 
considered as low-voltage subsystem. So, the isolation 
barrier is typically not required. In this case, the low-side 
SMD resistors complemented with a non-isolated 
amplifier is the most cost-effective solution in term of 
accuracy, thermal drift, measurement range and ground 
fault detection.   
 

 

Table 1. Comparison of widely used current sensing approaches in battery management. 

 
 

Solution 
 

Accuracy 
[15] 

 

Thermal 
Drift 
[13] 

Current 
Range 
[28] 

Common 
Mode 

Voltage 
[13, 24] 

Bandwidth 
[22] 

Noise 
Sensitivity 

[13, 22] 

Sample 
Resolution 

[22] 

Power 
Loss 
(W) 

Shunt + 
non-isolated 

amplifier 

 
0.5% - 1% 

 
Moderate 

50-1400 
A 
 

 
-4 to 80 V 

 

Up to 300 
kHz 

 
Low 

 
n/a 

 
2-50 

Kelvin Shunt 
+ isolated 
amplifier 

 
0.1%-1% 

 
High 

120-1400 
A 

up to 275 
V 

Up to 300 
kHz 

 
Very Low 

 
11 bits 

 
7 – 50 

Shunt + 
isolated 

modulator 

 
0.5% - 1% 

Very 
High 

50-1400 
A 
 

up to 275 
V 

 
> 1 MHz 

 
Very Low 

 

 
>14 bits 

 
2-50  

Kelvin Shunt 
+ isolated 
modulator 

 
0.1%-1% 

Very 
High 

120-1400 
A 

up to 275 
V 

 
> 1 MHz 

 
Very Low 

 
>14 bits 

 
7 – 50 

Shunt + 
isolated 

amplifier 

 
0.5% - 1% 

 
High 

50-1400 
A 
 

up to 275 
V 

Up to 300 
kHz 

 
Very Low 

 
11 bits 

 
2-50  

Kelvin Shunt 
+ non-
isolated 

amplifier 

 
0.1%-1% 

 
High 

 
120-1400 

A 

 
-4 to 80 V 

 
 

 
Up to 300 

kHz 

 
Low 

 
n/a 

 
7 – 50 

 
Hall Sensors 

 

Less than 
2% 

(Needs 
Calibration) 

 
Moderate 

 
50-2000A 

 
Not 

required 

 
100-300 kHz 

 
High 

 
n/a 

Approx
imately 

10 

 

 

2.2. Voltage Measurement for Battery Management 
 

There are two aspects regarding the voltage 
measurement, the measurement range and sampling time. 
The measurement range shall cover the range of 0V to 5V 
to accommodate all types of battery chemistries including 
Li-Ions, super capacitors, Lead acid, and NiMH. Typical 
accuracy for and 0.1% for battery pack voltage up to 600 
V [17]. The sampling rate for voltage measurement widely 
depends on the dynamic behavior but as a rule of thumb, 
the sampling rate must be at least 20 times higher than the 
bandwidth of the system [30]. For low-dynamic 
applications such as stationary energy storage, the 
sampling rate can be in the range of a minute to 10 
seconds. However, for high-dynamic applications such as 

automotive applications in which the battery current is 
fluctuating rapidly, the sampling rate of 1 second shall be 
working fine [57]. The accuracy of measurement heavily 
depends on the measurement method, which can be 
categorized into three methods: 
1. Linear variable resistor is the simplest approach to 

measure battery cell voltage, the linear variable resistor 
found in BMS usually comes in a configuration of a 
fixed resistor divider or a trimpot resistor. This 
method is impractical because the accuracy decreases 
as the number of cells in the string increases. 
Moreover, the linear variable resistor drains out the 
battery energy all the time, resulting in less usable 
capacity. 
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2. Differential amplifiers [1, 6] are coupled with each 
battery cell to measure the cell voltage. This method 
is considered an economical solution for small BMS 
but not optimal for a large application due to the need 
for a higher number of components, making it 
difficult when reconfiguring the gain or the range of 
voltage measurement because it requires high efforts 
of soldering work, which is an extremely time-
consuming task, especially for a large battery pack.  

3. Dedicated BMS ICs are the most common method 
used in measuring cell voltages in applications where 
accuracy and power consumption are serious issues, 
such as automotive applications. The BMS ICs usually 
provide high accuracy for the voltage measurement 
over a 40 to 85 ºC range for up to 16 cells, together 
with temperature sensor input ports, adjustable 
protection voltage and isolated communication. Most 
of the commercial BMS ICs employ the principle of 
switched-capacitor sampling techniques which have 
the ability to simultaneously convert each of the cell 
voltage into a common signal, so the conversion time 
per cell is very fast. In addition, the multiplexer can 
withstand high common-mode voltage up to 60V [60]. 
These advantages make the BMS ICs the most 
preferable choice for the implementation of flexible 
BMS.  
 
For EVs, PHEVs, the battery pack usually composes 

of a large number of cells connected in series, usually more 
than 96 cells [31]. So, the conversion time must be fast 
enough to accommodate the voltage measurement of all 
cells. In terms of measurement accuracy, the accuracy 
must have a nominal accuracy of mV for the whole range 
of 0 V to 5 V to comply with the ASIL-C standard [23]. 
Thus, it is recommended to use a dedicated IC, which 
offers fast conversion time, high accuracy, and requires 
fewer components and less soldering work compared with 
the other methods. 

For HEVs applications, the battery pack used in 
HEVs is usually a prismatic NiMH cell with 7.2V nominal 
voltage, which is beyond the range of BMS ICs. So, it is 
better to use isolated differential amplifier. This method is 
found in 2009 Toyota Prius [32]. However, to achieve a 
satisfying accuracy, the isolated amplifier might need a 
large current while performing sensing [33], typically 
higher than 4 mA. Which might not be acceptable in 
automotive application where capacity means travelling 
distance. Thus, it is suggested to have a transistor to 
disconnect isolated amplifier when it is not sensing the 
voltage [34]. 

For small electric vehicles such as scooters or electric 
bikes, the number of series-connected cells is usually in the 
range of 8 cells to 28 cells [31]. So, the conversion time 
does not have to be so fast, but the measurement accuracy 
and the measurement range shall be the same as in the EVs 
or HEVs to support all types of battery chemistry. To 
achieve the highest flexibility in terms of doing re-
configuration without engaging in a lot of soldering work, 
it is also recommended to use BMS ICs in which the 

number of cells is configurable in the range of 6 cells to 12 
cells, such as LTC6801 from Analog Devices or ISL94212 
from Renesas. 

 
2.3. Galvanic Isolation for Interconnection between 

BMS Module 
 

Several modern commercial BMSs support stackable 
design, so multiple BMS modules can be vertically added 
up to monitor a large battery pack. A popular approach is 
called daisy-chain, which is a bi-directional, differential AC 
coupled signals which provide high immunity against EMI, 
by using two-wire cables between two BMS ICs. In the 
high-voltage stacked configuration, the Daisy chain shall 
be galvanically isolated for safe operation and for reducing 
the noises coming into the system. The Daisy-chain 
isolation can be categorized into 3 types [35, 36] as 
illustrated below: 
1. Capacitive isolation [35] uses a series-connected 

capacitor and an RC network to provide galvanic 
isolation between the two BMS modules, the noise 
reduction is achieved by the RC network acting as 
low-pass filter. Capacitive isolation is considered a 
low-cost solution because it consists of only 
capacitors and resistors. However, the series 
capacitors are not capable of rejecting common mode 
noise, so this method is suitable for short-distance 
interconnections between two BMSs, less than 2 
meters, such as on the same PCB. 

2. Capacitor and choke isolation [35] a common mode 
choke is added to enhance common mode noise 
performance, making it widely used when the distance 
between 2 BMS modules is greater than 2 m, such as 
interconnection between 2 PCBs. 

3. Isolated SPI [35] is a type of current-source interface 
using an isolated transformer and two twisted-pair 
wires as an interconnection between two BMS ICs. 
This approach effectively eliminates common mode 
noise out of the communication lines and allows the 
data transmission rate up to 1 Mbps over a distance 
longer than 100m. Also, it is able to tolerate a high 
level of disturbance [36], making it very suitable for 
automotive applications where electrical noise is high 
and reliability is the most concern. 
 
Apart from daisy-chain, CAN bus is another popular 

communication approach in automotive applications due 
to its high reliability and robustness against 
electromagnetic noise. CAN bus can also be used to 
transfer the cells’ data between master boards and slave 
boards in the master/slave configuration [64].     

For small vehicles such as electric bikes or scooters, 
the battery pack usually comes in a small rectangular 
package composed of battery cells in the range of 8 cells 
to 28 cells [31], so the distance between each module is 
not greater than 1 meter. Thus, capacitive isolation is 
recommended if all of the BMS ICs are integrated on a 
single PCB, but if there are more than one PCB, capacitor 
and choke isolation seem to be the best choice. 
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For EVs, PHEVs, HEVs or even large transportation, 
the size of battery packs are usually in the range of 24-100 
kWh [37], usually consisting of multiple sub-modules 
connected in series and parallel arrangements to increase 
capacity and voltage. The total pack size is only around 1m 
x 2m, which is not a far distance. But the data transmission 
rate in the automotive application must be at least 1 Mbps 
[23]. In addition, the distance between each module is 
probably more than 2 meters, which may result in an EMC 
problem, especially when the operating environment of 
EVs has strong electromagnetic interferences. Thus, the 
most suitable isolation method for this application is 
isolated SPI. 

 

2.4. Protection Switches 
 

There are mainly two types of protection switches 
used in battery applications, contactors, and FETs. 
Contactors generally have high robustness, high tolerance 
to short circuit current, and do not require gate drivers and 
heatsink. However, the cost of high-current contactors is 
very high, might be up to 1,000 USD. The second 
protection choice is FETs, which are generally soldered on 
PCBs with a heatsink. The configuration of FET 
protection can be categorized as high-side and low-side 
configurations. High-side protection ensures the integrity 
of grounding and communication stability. However, 
driving high-side FET needs sophisticated charge pumps 
to be implemented with BMS ICs, resulting in higher 
overall cost and power consumption [38]. For low-side 
protection, the FETs are located at the negative terminal 
of the battery, so no charge pump is required, resulting in 
less driving circuit complexity and less power 
consumption. But low-side FETs might cause unstable 
communication if the battery ground is not galvanically 
isolated from the system ground. When the FETs are 
turned off, the MCU ground will lose connection with the 
BMS ground, leading to communication instability [20]. 

      For large automotive applications, such as EVs, 
PHEVs, or HEVs, two contactors are mandatory to meet 
the safety requirements and level of hazard associated with 
ISO 26262 [39] and to ensure complete isolation. One 
contractor shall be installed at the battery-positive pole, 
another contactor shall be installed at the battery-negative 
pole. The high-side contactor is controlled by two signals, 
to ensure that the contactor will not unintendedly turn on 
during the operation [15]. When selecting a contactor, one 
must make sure that the contactor shall be able to 
withstand at least 1.25 times higher than the working 
voltage and average currents. In addition, the fuses 
typically used in EVs have a very slow breaking 
characteristic. So, the contactor shall be able to withstand 
short-circuit current 16 times higher than the nominal 
current for 40ms to 100ms [40]. 

For small vehicle applications such as electric bikes, 
the battery pack usually comes in a small single module 
with a nominal capacity of around 8-160 Ah with 
continuous discharging current around 10-100A [26, 27]. 
At this current and voltage rating, using contactor might 

be space-consuming, costly, and inconvenient to be 
installed inside a small vehicle. Thus, power FETs 
soldered on PCBs are more preferable to serve as the main 
protection circuits. If the communication between the 
microcontroller and BMS ICs is not affected by the 
breaking ground, or the system has two isolated grounds. 
Using low-side FETs is the simplest and most cost-
effective choice. However, if the ground is unbreakable or 
the reference signals must be well grounded. Using high-
side FETs seems to be the best choice. 

 
2.5. Temperature Acquisition 

 

Battery management for automotive applications 
must be designed to comply with ASIL-C which states that 
the BMS module must perform temperature 
measurements in the range of -40 to +85ºC with a 
minimum accuracy of ±3ºC [23]. There are two types of 
temperature sensors widely used in the industrial field and 
automotive fields. One is thermocouples which work by 
measuring a small voltage across its junction when the 
temperature is changed. The measurement range of 
thermocouples is generally between -200 to 1200ºC, which 
is suitable for industrial applications, but not suitable for 
measuring battery temperature. Another approach is to 
use thermistors, which have high-temperature sensitivity 
across the range of temperature between -55 to 300ºC [41]. 
Also, the package of thermistors is relatively small and 
available in many form factors, making it popular to be 
embedded in large battery packs at critical points to 
analyze the overall temperature. 

Since there are many factors that influence the thermal 
behavior of a battery pack such as the 
charging/discharging rate, mechanical design, type of 
cooling solution, the arrangement of exhausted fans, etc. 
So, there is no such “one-size-fits-all” solution to address 
the thermal issue and to determine the optimal number of 
temperature sensors required for a particular battery pack 
of each application. Many works of literature find out the 
best thermal solution based on simulation, real 
experiments, or real experience. In [42] the 3-D thermal 
model 18650 Li-ion battery is constructed based on a non-
linear heat transfer equation using FEM simulation to 
predict the surface temperature distribution along with the 
high-temperature area. In [43], the author uses a battery 
simulator and heater to analyze the thermal behavior of 
battery cells under natural air cooling. In [31], the author 
roughly estimates the number of temperature sensors 
based on results from the research and experience but did 
not mention the optimal placement for those sensors. So, 
the best practice to find out an optimal number and 
placement of temperature sensors for a particular battery 
pack is to use simulation or carry out a real experiment. 
 
2.6. Balancing Algorithm 
 

The main methods widely used for balancing Li-ions 
cells can be classified into 2 methods, active balancing, and 
passive balancing. The active balancing method is proven 
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to be efficient due to low power dissipation, but very 
costly. So, active balancing usually comes into play only 
when the battery packs undergo a “gross balancing 
process”, which is an approach to re-balance the whole 
pack right after the manufacturing process or when the 
quality of cells used to build the packs is severely unequal 
[57]. Passive balancing is employed to replenish the 
unbalanced charge inside battery cells, which occurs 
because the leakage current of any random cell is not 
identical to the leakage current of other cells, causing the 
cells' SOC to end up at a different level compared to the 
others, as shown in Fig 2. This phenomenon shrinks the 
battery capacity by limiting the charging capability to the 
cell having the highest SOC and limiting the discharging 
capability at the cell having the lowest SOC level. Passive 
balancing equalizes the level of SOC by bleeding out the 
excess energy from the high SOC cells in form of 
balancing current. The optimized value of the balancing 
current can be calculated from the difference between the 
maximum and minimum leakage current of each cell, over 
a balancing time allowed in each automotive application, 
as shown in Eq. (1)  

 

           Ibalancing=
Ileak,max−Ileak,min

balancing time per day [hrs]
x 24 [hrs]     (1) 

 

 
 
Fig. 2. Unbalance caused by difference of leakage current 
in each cell (a) start at balanced condition (b) start at 
unbalanced condition. 

 
Typically, the value of leakage current is not 

mentioned in the battery datasheet, but Li-ion batteries 
usually have a typical leakage current of around 1-3% per 
month (or 0.03-0.1% per day) and for around 30% per 
month (or 1% per day) for NiMH battery [44]. Assuming 
that the difference of leakage current (Ileak,max - Ileak,min) in 
Eq. (1) is assumed to be 0.07% per day for Li-ion batteries 
and 1% per day for NiMH batteries.  

Passive balancing algorithm can be categorized into 3 
algorithms, voltage-based algorithm, Full-SOC voltage-
based algorithm, and SOC history algorithm.  

Voltage-based algorithm [57] determines the starting 
point and the ending point of the balancing process by 
measuring the battery terminal voltage and maps it with 
the SOC-OCV relationship to determine a corresponding 
SOC value. This algorithm is very simple but not practical 
because the terminal voltage usually suffers from the 

voltage drop across internal battery resistance. Also, some 
chemistry like LiFePO4 has a very flat curve during the 
middle region of the SOC-OCV relationship, making it 
very difficult to differentiate the voltage level during this 
region.  

Full-SOC-based algorithm [57] uses terminal voltage 
at the end-of-charge to determine which cells need to be 
balanced. This method can address the issue of the flat 
region in LiFePO4 since the SOC-OCV curve at the end-
of-charge is not flat. However, the end-of-charge usually 
occurs for a very short time right after the charging 
process. So, there is only a short time left to perform the 
balancing. This issue is problematic for some applications 
in which the charging time is very limited.  

SOC-based algorithms [57] use sophisticated battery 
models to calculate the actual SOC. Then, the SOC 
difference of each cell is carried out to determine the cells 
that need to be balanced. The advantage of this method is 
that the balancing can be performed along the entire 
charging or discharging cycle, which gives a good 
flexibility in terms of balancing time and balancing current. 
The balancing current can be freely chosen as large to 
shorten the balancing time or can be chosen as small to 
reduce power dissipation. However, the SOC-based 
algorithm needs sophisticated battery modeling to extract 
a precise SOC value in real-time operation, which requires 
a huge computational power. Thus, SOC based algorithm 
is not suitable for small applications where the 
computational power is limited. 

   For EVs or PHEVs, the type of battery is usually 
Li-ion cell, which has the difference of leakage current 
around 0.07% per day and the cell capacity is usually in the 
range of 15 Ah to 100 Ah [45]. On average, the daily 
charging time is approximately 12 hours per day, divided 
into 8 hours for charging and 4 hours for balancing [57]. 
Thus, the most suitable balancing strategy shall be the full-
SOC based algorithm.  The recommended balancing 
current is in the range of 63mA to 420 mA, calculated 
from Eq. (1).  

For HEVs, the battery packs are usually not fully 
charged or discharged but is kept at around 50%, making 
the battery pack not prone to over discharge/over charge, 
so balancing is less demanding in HEVs. However, the 
battery cells can be balanced once a week by going to 
100% SOC and perform full-SOC balancing [57] for 10 
minutes. The typical capacity of each HEVs cell is around 
6-10 Ah [32]. So, the most suitable strategy is performing 
full-SOC-based balancing for 10 minutes, once a week 
with a balancing current of 175-300 mA, determined from 
Eq. (1).  

For small vehicles like E-bikes, scooter, the standard 
battery capacity is between 8 and 15 Ah [26], so the 
maximum difference of leakage current is around 15 
mA/day. The SOC of the cells is usually kept in the range 
of 30% to 70% during the driving [57], so the battery cells 
are rarely experiencing the overcharge/over-discharge 
situation, same as in HEVs. Thus, the balancing process 
can be performed once a week for 10 minutes by going to 
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100% SOC [57] with a balancing current of 235-450 mA, 
determined from Eq. (1).  

To increase the flexibility of balancing circuit, it is 
recommended to use external balancing transistors or 
FETs, to enable the use of high balancing currents and to 
support a wide range of battery capacity. All in all, the 

recommended implementation of flexible BMS based on 
6 crucial aspects, has been summarized in Table 2. The 
sign (++) indicates this configuration is highly 
recommended, whereas (+) is moderately recommended 
and (o) is not recommended. 

 
Table 2. Recommended implementation of flexible BMS based on 6 crucial aspects. 
 

Vehicle 
Types 

Current 
measurement 

Voltage 
Measurement 

Interconnection 
Protection 
Switches 

Balancing algorithm 
Balan
cing 

Curre
nt 

(mA) 
Shunt 

Kelvin 
Shunt 

Hall 
Sensor 

Differential 
amplifiers 

Dedicated 
ICs 

Capacitive 
isolation 

Capacitor 
and choke 
isolation 

Isolated 
SPI 

High 
side  

Low 
side  

Voltage 
based 

Full 
SOC 
based  

SOC 
base 

PHEV 
EVs 

o ++ + o ++ o + ++ 
++ 

(Both sides are 
required) 

o ++ 
 

+ 
 

63-
420 

HEVs o ++ + ++ o o + ++ o ++ 
 

+ 
 

175-
300 

Small 
Vehicle 

++ + o 
 

+ 
 

 
+ 
 

++ 
 

+ 
 

 
+ 
 

 
+ 
 

++ 
 

+ 
 

++ 
 

+ 
 

235-
450 

 
 

It is worth to mention that, the control of passive 
balancing can be implemented by a number of ways such  

as in [62] the balancing current of a modular BMS is 
controlled by adjusting the PWM duty cycle with a fixed 
resistor. Similar modular BMS is found in [61], where the 
linear region of a MOSFET is used as the balancing 
resistors. As a result, the balancing current can be precisely 
controlled in a real-time by adjusting the amplitude of Vgs 

of the MOSFET. Another FET-based balancing is found 
in [63], where a balancing scheme can perform both 
passive and active balancing by using a parallel connection 
of NMOS and PMOS. The linear region of an NMOS is 
used as a balancing resistor, and the PMOS is used to 
control the charging process. This design is flexible and 
economical because it can perform both passive and active 
balancing by using only a single circuit. In [65], A BMS for 
13S2P 18650 Li-ions for e-bike was developed based on 
ESP32 WiFi module to wirelessly control the charging and 
balancing processes. During the charging, parallel resistors 
are connected to the first 4 cells with the highest voltage 
to ensure that all cells’ voltage shall be equalized. The 

result shows that all of the cell voltage became equalized 
within just 60 minutes.   

 

3. Battery Modelling and SOC Estimation 
Algorithm  

 
3.1. Battery Modelling 
 

There are two techniques vastly used to implement 
battery modeling in automotive applications, 
electrochemical modelling method and equivalent circuit 
modelling (ECM) method [46]. ECM method is 
considered as a cost-effective solution for onboard BMS 
due to the ease of parameter identification and their 
structural simplicity. There are several types of ECM 
models used in BMS application, such as first order model, 
2-RC model, third-order and n-RC model [30]. The higher 

order the model is, the higher estimation accuracy the 
model can provide, but at the expense of higher 
computational power. Most of the literature published 
recently usually use a second-order model as the optimal 
trade-off between computational time and accuracy [47, 
48]. The processor used in these works are powerful 
desktop CPUs, but the processing units found in most 
BMSs are usually a small-scale to middle-scale 
microcontroller, which is much less powerful than the 
desktop CPUs. Therefore, determining the computational 
time and resources usage based on CPUs is not practical 
for the implementation of onboard BMSs.  

In this work, the comparison of 1-RC, 2-RC and 3-
RC ECM under Luenberger observer (LO) and Extended 
Kalman filter (EKF) have been carried out based on a 32-
bit Arm Cortex microcontroller to find out the optimal 
trade of between computational time and estimation 
accuracy. The battery model illustrated in Fig. 3 mainly 
consists of three parts [30]: (1) parallel RC branches which 
represent the short-time and long-time polarization and 
concentration effect inside the battery. (2) ohmic 
resistance which represents an abrupt change of battery 
terminal voltage. (3) a DC voltage source representing 
open-circuit voltage as a function of SOC. 

In order to complete the n-order ECM, the time-
varying internal parameters including series resistance 
polarization resistance and polarization capacitance need 
to be identified. Starting by deriving the Laplace transform 
of n-order ECM and applying Kirchhoff’s voltage law, Eq. 
(2) is obtained as 

 
Fig. 3. n-order battery electrical circuit model. 
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Vbatt(s) = VOCV(s) − IL(s) (R0 +
R1

1+R1C1s
+

R2

1+R2C2s
+

R3

1+R3C3s
+⋯+

Rn

1+RnCns
)    (2) 

where Vbatt(s), VOCV(s) and IL(s) are the Laplace transform 
of battery terminal voltage, open-circuit voltage and 
battery current, respectively, n denotes the number of RC 
circuits. This continuous transfer function shall be 
converted into a discrete transfer function by using bi-

linear transformation, replacing the term s= 
2

Ts

1-z-1

1-z-1
. Then, 

the discrete form of ECM equation can be achieved as Eq 
(3). 
 
 

(z-n+a1z-n+1+…+an-1z-1+an)Vbatt 

-(z-n+a1z-n+1+…+an-1z-1+an)VOCV 

=(z-n+b1z-n+1+…+bn-1z-1+bn)IL         (3) 
 
Since the term VOCV is a state-dependent variable, which 
needs to be changed to a time-independent variable by 
considering the complete OCV equation in microscopic 
level with respect to temperature and SOH over time, as 
described in Eq. (4) [49] 
 

 V̇OCV = V̇OCV(SOC,T, h) =
∂VOCV

∂SoC

∂SoC

∂t
+
∂VOCV

∂T

∂T

∂t
+
∂VOCV

∂h

∂h

∂t
      (4) 

 

Equation (4) can be further simplified to  V̇OCV ≈0 by 
considering that a battery cell is being charged/discharged 
at 10C (generally less than this value at most time) with a 
sampling rate of 1s. The approximated SOC variation at 

each step is 
∂SOC

∂t
 ≈  -0.277%, which is small enough to 

holds the assumption of  
∂SOC

∂t
≈ 0 . Moreover, for a battery 

cell with a good BMS, the battery cell temperature shall be 
controlled and regulated by a proper cooling or heating 
system to avoid a rapid temperature change, which might 

cause a thermal runaway situation. Thus, 
∂T

∂t
≈ 0  holds 

during normal operating condition. In addition, when 
considering only a short time usage history of a battery cell 
in a normal operating condition (no abusive use, over 
charge/discharge), the SOH of the cell does not change 

much, so the assumption 
∂h

∂t
≈ 0 is valid for a short time 

usage. By considering these assumptions, the term VOCV is 
no longer time-dependent and becomes just an unknown 
parameter, which shall be included in the unknown matrix 

θk. Thus, Eq. (3) is further simplified as shown in Eq. (5)  
 

(z−n + a1z
−n+1 +⋯+ an−1z

−1 + an)Vbatt − αVOCV =
(z−n + b1z

−n+1 +⋯+ bn−1z
−1 + bn)IL                  (5) 

 

where α is a constant term, this discrete Laplace transform 
shall be used to identify all internal parameters by using 
the process of RLS which is summarized in Algorithm 1 

To verify the estimation results, the Hybrid Pulse 
Power Characterization (HPPC) test are performed to 
extract the battery internal parameters. The HPPC test is 
made up of multiple repetitive 100 second 
charge/discharge cycles at 1C to 6C current rating, then 

followed by 400 second resting times. These cycles are 
repeated at the level of SOC from 100% down to 0%. The 
voltage and current characteristic of the HPPC test are 
shown in Fig. 4(a) and Fig. 4(b), respectively. 
 

 
 
Fig. 4. HPPC profile (a) voltage profile (b) current profile.  

 
The dataset of HPPC test was carried out by 

McMaster University, Ontario, Canada [53] using LG 
18650HG2 NMC cell. The relationship between SOC and 
OCV of this cell is shown as in Fig. 5. 

 

 
OCV = (4.0114e-11)*(SOC)6-(1.1714e-8)*(SOC)5+(1.2618e-6)* 

(SOC)4 -(6.0708e-5)*(SOC)3+0.0011755*(SOC)2+0.0079*(SOC)1 

+3.1845  
 
Fig. 5. OCV-SOC relationship of LG 18650HG2.   

 
When the cell is discharged with a pulse current, the 

equivalent series resistance (R0) and the time constant (τ) 
of the battery cell can be extracted. Since R0 causes the 
terminal voltage to suddenly drop when the cell is being 
discharged, and suddenly rise back to a certain value when 
discharging pulse is removed. So, by considering the 
abrupt change of terminal voltage V0 the value of R0 can 
be calculated as Eq. (6): 
 

R0 =
∆V0

∆IL
        (6) 
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Algorithm 1: Recursive Least Square algorithm  

 
0 
 

Initializing the parameter vector at k = 0     

θ̂0 = (0 0 0 0 0)
T 

P0 = (φ0
Tφ0)

−1 
1 Construct unknown vector θk and input vector φk 

θk = [αVOCV  a1  a2  a3… an  b1  b2  b3…bn]  
φk = [1  − Vbatt(k − 1)  − Vbatt(k − 2)  − ⋯− Vbatt(k − n)  IL(k)  IL(k − 1)  IL(k − 2)  IL(k − 3) ]

T 

2 
Update the covariance matrix P: Pk+1 = Pk −

Pkφk+1φk+1
T Pk

1+φk+1
T Pkφk+1

 

3 Calculate unknown vector θ̂k: θ̂k = (φk
Tφk)

−1φk
TVbatt,k 

where Vbatt,k = [Vbatt,k−1, Vbatt,k−2, … , Vbatt,k−n]
T ; n is total number of data samples. 

4 Calculate the gain vector: Lk = Pkφk = Pk−1φk(I + φk
TPk−1φk)

−1 

5 Update unknown vector: θ̂k+1 = θ̂k + Lk(Vbatt,k+1 − φk
Tθ̂k) 

 
 
 

After the discharging pulse is gone, the cell goes into 
a so-called “diffusion period”, which causes the terminal 
voltage to slowly recover its amplitude back to its steady-
state OCV. The diffusion voltage is changing as an 
exponential function which can be described as Eq. (7)  

 

              ∆Vterminal = Vocv,steady (1 − e
−
t

τ)           (7) 

 

where Vocv,steadyis the value of steady-state OCV at each 

level of SOC, obtained from the SOC-OCV curve shown 
in Fig. 5.  

An example of R0 and τ calculation was taken from 
the HPPC test at the point of SOC 90% as shown in Fig. 
6, the cell was discharged first with an 18A (6C) pulse 
current for 100 seconds, then rested for 400 seconds, 
allowing the cell to enter the diffusion region. So, the 

values of R0 and τ at a particular level of SOC (R0|SOC 

and τ|SOC ) can be calculated as Eq. (8) and Eq. (9), 
respectively. 
 

 
 
Fig. 6. Response to the 18A (6C) discharge pulse of HPPC 
voltage profile . 

R0|SOC =
∆V0|SOC
18 A

 

 

(8) 

τ|SOC =
−400 s

ln (1 −
Vocv,2 − Vocv,1
Vocv,steady

)
 

 
 (9) 

               

The values of R0 and τ with respect to SOC level, 
ranging from 100% down to 0% can be calculated as 
shown in Table 3. These values shall be used as the 

reference R0 and τ to compare with the estimated results 
obtained from the recursive least square estimation. In Fig. 
7(a), Fig. 7(c) and Fig. 7(d) show the estimated transient 
voltage response obtained from the HPPC test under all 
ECM levels. It can be observed that the abrupt change of 
3-RC model can best fit with the reference SOC value, and 
also closest to the reference time constant and reference 
ohmic resistance obtained from Table 3, whereas the 2-
RC model offers a moderate fit. Figure 7(b) shows that the 
error produced from 1-RC is in the range of 1.5-2% when 
SOC is in the range of 80-100% and when the SOC is near 
to 0%. Whereas, the error of 2-RC and 3-RC are 
maintained close to 1%.  
 

 
 
Fig. 7. HPPC estimation results of each ECM level 
according to the change of SOC (a) estimated terminal 
voltage, (b) estimated terminal voltage error, (c) time 
constant, (d) ohmic resistance. 
 

Thus, having just 1-RC might not enough to produce 
a satisfactory estimated result, but might require at least 2-
RC for a good estimation accuracy. The ohmic resistance 

obtained from all ECM levels are around 20 mΩ, and it is 
kept constant during the SOC of 90% to 0% as shown in 
Fig. 7(d). This indicates that the ohmic resistance is not 
affected much by the SOC level and the complexity of 
ECM model. 
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Table 3. Calculated equivalent series resistance (R0) and time constant (𝜏) obtained from the HPPC profile, from 
100% SOC down to 0% SOC. 

 
SOC 
(%) 

∆V0 
(V) 

∆IL 
(A) 

Calculated R0 

(mΩ) 

Vocv,1(V) Vocv,2 
(V) 

Vocv,steady (V) Calculated τ 
(s) 

100%   
 
 
 
 

18 

 4.016 4.115 4.160 1067.57 

90% 0.304 16.888 3.984 4.082 4.130 1003.41 

80% 0.294 16.333 3.957 4.055 4.096 1144.47 

70% 0.288 16.000 3.858 3.949 3.995 977.71 

60% 0.282 15.666 3.771 3.857 3.903 933.58 

50% 0.282 15.666 3.655 3.757 3.795 1263.15 

40% 0.281 15.611 3.558 3.655 3.700 1049.55 

30% 0.282 15.666 3.479 3.570 3.610 1097.88 

20% 0.282 15.666 3.329 3.472 3.530 1174.88 

10% 0.284 15.777 3.107 3.264 3.333 1098.03 

0% 0.302 16.777 3.101 3.165 3.195 1040.55 

 
3.2. Discrete State-space Representation of the ECM 

Battery Model 
 

In order to perform SOC estimation, it is necessary to 
realize the discrete state-space representation of the 
battery, by applying the Kirchhoff’s voltage law on a 3-RC 
ECM model shown in Fig. 3, Eq. (10) is obtained as 

 

 Vbatt(t) =  VOCV(SOC) − V1(t) − V2(t) − V3(t) − R0IL(t)      (10) 
 

where VOCV(SOC) is the open-circuit voltage as a function 
of SOC. V1, V2, V3 are the voltage across each RC circuit, 
which is defined by its derivative as 

 

 V̇RC(t) = −
VRC(t)

RC
+

IL(t)

C
       (11) 

 

And the relationship between the level of SOC and the 
load current IL(t) can be described as in Eq. (12). 
 

                 SOC(t) = SOC(0) − ∫
IL(t)

Qn
dt

t′

0
         (12) 

 
where Qn is the nominal capacity of the battery, SOC(0) is 
the initial value of SOC. By considering Eq. (10) to Eq. 
(12), the continuous state equation of ECM model can be 
expressed as Eq. (13) and Eq. (14) 
 

          ẋ(t) = Aconx(t) + Bconu(t)                      (13) 
     

       y(t) =  VOCV(SOC)− V1(t) − V2(t) − V3(t) − R0u(t)       (14) 
 

where  u(t) =  IL(t),  x(t) =  [SOC,V1,V2,V3]T and 
 

{
 
 
 
 
 

 
 
 
 
 

 Acon = 

[
 
 
 
 
 
 
 
1 0 0 0

0 −
1

R1C1
0 0

0 0 −
1

R2C2
0

0 0 0 −
1

R3C3]
 
 
 
 
 
 
 

 Bcon = [
1

Q
n

,
1
C1
,
1
C2
,
1
C3
]

T

 

 
Then, these continuous state-space equations shall be 

transformed into discrete state-space equations to be used 
with real-time SOC estimation, by using discretization of 
continuous system, we will get discrete state-space 
equations as shown in Eq. (15). Please note that the 
exponential terms in matrix  Adis and  Bdis can be further 

simplified by using the Taylor expansion, ex ≈ 1 +
x

1!
+ 

x2

2!
+⋯.  

 
xk+1 = Adisxk + Bdisuk      (15) 

 
where Adis and Bdis are the discrete state-space matrices, 

with the sampling time Ts.  
 
 

{
 
 
 

 
 
 

 Adis =

[
 
 
 
 
1 0 0 0

0 e
−
Ts
R1C1 0 0

0 0 e
−
Ts
R2C2 0

0 0 0 e
−
Ts
R3C3]

 
 
 
 

 Bdis = [
Ts
Qn

R1 (1 − e
−
Ts
R1C1) R2 (1 − e

−
Ts
R2C2) R3 (1 − e

−
Ts
R3C3)]

T

 

  
Since the time constant of ECM model is usually 

much larger than the sampling time (R1C1, R2C2, R3C3 >>> 

Ts), so the exponential term can be further approximated 
using Taylor series expansion ex ≈ 1 + 𝑥  
 

{
 
 
 
 

 
 
 
 

 Adis ≈

[
 
 
 
 
 
 
 
1 0 0 0

0 1 −
Ts
R1C1

0 0

0 0 1 −
Ts
R2C2

0

0 0 0 1 −
Ts
R3C3]

 
 
 
 
 
 
 

 Bdis ≈ [
Ts

Q
n

Ts

C1

Ts

C2

Ts

C3
]

T
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Algorithm 2: Extended Kalman Filter algorithm 

 
Step 1:  
Initialization Step 

Initialize the values of matrix Qk, Rk and error covariance matrix P0 and x̂0 

x̂0 = [1 0 0 0] ,P0 = [

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

] , Rk = 0.27 mV, Qk  ≈ 0 

Step 2:  Prediction Step Estimate the next state variables  x̂k+1 = Akx̂k + Bkuk 

Step 3:  Calculate 
covariance matrix 𝐏𝐤 
 

 

Pk = AkPkAk
T + Qk   

Step 4:  
Correction Step 

Update Kalman gain Lk = Pk+1Ck
T[CkPk+1Ck

T + Rk]
−1

  

Step 5:  
Update next state 

Update the next state variables   xk+1 = x̂k+1 + Lk[yk − Ckx̂k+1 − Dkuk] 
Update the covariance matrix Pk+1 = (I − LkCk)Pk 

 
 

3.3. SOC Estimation Based on Extended Kalman 
Filter (EKF) 

 
Extended Kalman Filter (EKF) is an improved 

version of Kalman filter methods (KF), which is designed 
to handle a state estimation on nonlinear systems, 
especially in battery models where the relationship 
between SOC and OCV exhibits a strong nonlinear 
characteristic, by linearizing the mean and covariance 
vectors of the battery model. The EKF takes into account 
the previous state of SOC, and polarization voltage to 
generate the optimal estimated values based on the 
measurement noises and the new incoming inputs. The 
discrete nonlinear state equation of the ECM model can 
be represented as shown in Eq. (16) and Eq. (17) 

 

 xk+1 = f(xk, uk) + wk =  Adisxk +  Bdisuk +wk     (16) 
  

    yk = h(xk, uk) + vk       (17) 
where  
h(xk , uk) = VOCV(SOCk) − V1,k − V2,k − V3,k − R0,kIL,k 

 

 Adis ,  Bdis  are the discrete state-space matrices 

obtained from section 3.2.  wk and vk are the zero-mean 

process noise and measurement noise with the covariance 

of Q
k
 and Rk (wk~(0,Qk

), vk ~(0,Rk)), respectively. The 

first step of EKF algorithm is to linearize of the state 

equations Eq. (16) and Eq. (17) around the operating point 

by calculating the Jacobian matrices Ak  and Ck  of each 

sampling, as shown in Eq. (18) 

{
 
 
 

 
 
 Ak =

∂f(xk,uk)

∂xk
|
xk=xk

+
=  Adis

Bk = Bdis = [
Ts

Qn

Ts

C1

Ts

C2

Ts

C3
]
T

 

Ck =  
∂h(xk,uk)

∂xk
|
xk=xk

+
= [

∂VOCV

∂SOC
|
SOCk

 − 1 − 1 − 1]

Dk = [R0]

      (18) 

The term 
∂VOCV

∂SOC
|
SOCk

is obtained from the slope of 

SOC-OCV curve in Fig. 5. The values of R1C1 , R2C2 , 

R3C3 and R0 inside the matrix Ak  Bk and Dk are obtained 
from the parameter estimation in the section 3.1. 

Next, the EKF requires the initialization of x̂0,  Qk
, Rk 

and P0. In this study, since all of the tests are started with 
100% SOC, so x̂0 = [1 0 0 0] . There is no disturbance in 

the estimation process, so the process noise matrix Q
k
 is 

assumed to be zero. The covariance of voltage 

measurement noise Rk is approximately 0.27 mV, which is 
obtained from the 16-bits ADC of RA2A1 MCU, which is 
used as the voltage sensor. The error covariance matrix P0 
is first assumed to be an identity matrix. The summary of 
EKF process is described in the algorithm 2. 
 
3.4.  SOC Estimation Based on Luenberger 

Observer  
 

Luenberger observer (LO) [51] is a state estimator 
widely used to predict state variables of a given linear 
dynamic system because it has a good estimation accuracy 
and low complexity. The structure of LO is constructed 
from the summation of the parameters obtained from the 
typical state equation and a correction term, which can be 
written as Eq. (19) and Eq. (20). 

 

                 ẋ̂k+1 =  Ak x̂k +  Bk uk + L( yk − ŷ)     (19) 
  

      ŷ
k
=  Ck x̂k +  Dk uk                    (20) 

 

where L is the observer gain vector and L( yk − ŷ) is the 
correction term which defines the dynamic behaviour of 
the observer.  Ak ,  Bk ,  Ck  and  Dk  are the linear state 
matrices mentioned in Eq. (18).  To satisfy good 
estimation accuracy and dynamic performance, the 
observer gain L shall be selected in such a way that makes 
the eigenvalues of  Ak − LCk are asymptotically stable and 
located inside a left-half plane unit circle to guarantee that 
the observer error converges to zero for any initial 
condition. The observer gain L shall be selected using the 
direct-substitution approach [52], by assuming that the 
desired poles are placed at ω1 , ω2 ,…, ωnwhich shall be 

selected by considering dynamic performance and stability. 
The observer gain matrix L can be determined as shown 
in Eq. (21) 
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   L = [L1  L2… Ln]
T        (21) 

   

eig(sI − (Ak − LCk)) = (s − ω1)(s − ω2)… (s − ωn)        (22) 
 
By equating the coefficients on both sides of Eq. (22), the 
values of observer gain L can be determined.  

The key point in selecting the location of ω1, ω2 and 
ω3  is that we need ω1  to be the significant pole, which 
determines the response of the system. The other poles 
must be insignificant to make sure that they will not have 
an influence on the desired response. So, by setting ω1 to 
be 10 times smaller than ω2. ω1 will become the dominant 
pole located at the desired location poles.  

 
3.5. SOC Estimation Validation from Standard 

Driving Cycles 
 
To validate the performance of each level of ECM 

models under LO or EKF, numerous standard driving 
cycles such as California Unified cycle (LA92) which is a 
chassis dynamometer driving schedule for light-duty 
vehicles, Urban Dynamometer Driving Schedule (UDDS) 
which represents the certification of light-duty and 
passenger vehicles, and US06 which represents aggressive 
driving, or high-speed driving behavior, are required to 
evaluate the accuracy and robustness of the models. The 
dataset of these driving cycles was prepared by McMaster 
University, Ontario, Canada [53], using NMC cell from 
LG. The battery cell was initially at 100% SOC before 
undergoing each test, then the cell was 
charged/discharged at different C rates until the SOC 
reached 5%. Apart from the standard driving, a special 
case of pulse discharge of LiFePO4 battery cell was also 
carried out to be used as a test case. This is because the 
OCV-SOC relationship of LiFePO4 is very flat during the 
middle region, making the SOC prediction between the 
SOC of 30% to 80% become a challenging task. The 
battery cell used in this study is HDCF26650 from 
TiraThai, whose nominal voltage is 3.2V and nominal 
capacity 4000 mAh. The sampling time was set at 1 second 

(Ts = 1 s). 
In the experiment, the reference SOC was carried out 

through the noiseless coulomb-counting method. Then, 
the value of estimated SOC values obtained from 1-RC, 2-
RC, and 3-RC under the standard driving datasets UDDS, 
US06, LA92 and a pulse discharging of LiFePO4 were 
carried out and compared with the reference SOC, which 
was conducted through coulomb-counting method. Fig. 
10 shows the current/time curves of the estimation results 
of these driving cycles. It is observed that all algorithms 
under all levels of ECM follow the reference SOC value. 
However, the closest results to the reference SOC value 
are obtained with 3-RC ECM.  

In case of pulse discharging of LiFePO4, it can be seen 
that the largest deviation of results from the reference 
SOC value occurred during the SOC of 40% to 80%, 
because this region is typically the flat region of LiFePO4.  

The estimation errors are illustrated in the form of a 
statistical box plot as shown in Fig. 9(a) which represents 
the distribution of SOC error of UDDS, LA92, US06, and 
discharge pulse under 1-RC, 2-RC, and 3-RC with EKF 
and LO algorithm, respectively. The central mark indicates 
the median value, the bottom and top marks of the box 
indicate the and percentiles (IQR interval) of the 
distribution. Considering the position of each box, the 
typical tendency of IQR interval of the 1-RC model falls 
into the range of 2.8% to 5% for both EKF and LO 
algorithms. Followed by the 2-RC model and 3-RC model 
whose IQR intervals fall in the range of around 1.5% to 
3.5% and 1.3% to 3.4%, for both algorithms, respectively. 

It is worth mentioning that, the 3-RC model generally 
gives a slightly lower percentile SOC error, and also a 
slightly shorter IQR interval compared with the 2-RC 
model. However, in the case of the US06 driving cycle, the 
IQR interval of the 2-RC model is almost identical to the 
IQR interval of the 3-RC model. Thus, these outcomes 
can be used to make a generalization that the change from 
the 2-RC model to the 3-RC model does not provide a 
significant improvement in SOC estimation, for both 
EKF and LO algorithms. In the case of discharge pulse, 
the IQR interval and the percentile of SOC error were 
significantly decreased when the model was changed from 
a 1-RC model to a 2-RC model and even got lower the 
model was changed from 2-RC to 3-RC.  In the 1-RC 
model, the error produced by the EKF was in the range of 
3.5% to 4.2% for the EKF and 4.2% to 5% found in LO.  

Apart from the IQR distribution, the root means 
square error (RMSE) [54] of all driving cycles under each 
level of ECM have been calculated as another 
performance evaluation criteria, as shown in Fig. 9(b). It 
can be observed that the average RMSE of 1-RC ECM is 
approximately 3.5% for NMC cell under all standard 
driving cycles, and 4.5% for LiFePO4 under the pulse 
discharging. 
 

 
 
Fig. 8. Voltage and Current profile of standard driving 
cycles (a) US06, (b) UDDS, and (c) LA92, (d) Pulse 
discharge of LiFePO4 
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Fig. 9. SOC estimation error of under 1-RC to 3-RC ECM 
model (a) statistical box plots, (b) Root-mean-square error 
cycle and LiFePO4 discharge  

 
When the model is changed to 2-RC ECM, the RMSE 
decreased to around 2.0% for the NMC cell and to 2.6% 
for the LiFePO4 cell. These decreases are considered as 
significant changes, especially in the case of 2-RC EKF in 
which the RMSE decreased from 4.6% to 2.6%. However, 
there was no significant change in the RMSE values 
between 2-RC ECM and 3-RC, which gives only around 
0.5% to 1% decrease in RMSE.   

 
3.6. Dynamic Convergence 
 

Typically, when a BMS is plugged into a battery cell, 
the process of SOC estimation begins by initializing a SOC 
value at time t = 0, either by using a look-up table or open-
circuit voltage (OCV). If the value of SOC is not initialized 
correctly or the data is corrupted, the estimated SOC value 
will deviate from its correct value. So, the estimation 
algorithm must be able to quickly converge from the 
wrong SOC to its correct value. To achieve a satisfying 
convergence response, the desired observer eigenvalues 
shall be set to balance between convergence speed and 
noise level [55, 58], too fast response might lead to the loss 
of accuracy and unacceptable level of noise [56]. The 
slowest response of the NMC battery cell is approximately 
950 seconds, found in the 3-RC ECM model as shown in 
Fig. 11(c). This value shall be used to realize the optimized 
range of poles by varying the speed of pole from 1 time to 
20 times faster than the slowest response. The LO gain is 

determined by Eq. (21) and Eq. (22) and the evaluation of 
dynamic performance is analysed by discharging a battery 
cell with a constant current from 100% SOC to 0% SOC. 
Then, the initial SOC value was set incorrectly at 50% at t 
=0. 

It can be observed from Fig. 11(a) and Fig. 11(b) that, 
both LO and EKF have the ability to converge the 
incorrect SOC value back to its correct value. In terms of 
dynamic robustness, it can be seen in Fig. 11(a) that the 
noise level was insignificant when the pole was set equal 
to the system pole (1x pole), but it took more than 3,000s 
to reach the reference SOC with an error of around 1%. 
When the pole is set to be 20 times faster than the system 
pole (20x pole), the convergence time is reduced to only 
around 200s, but the noise becomes very obvious, and the 
terminal error is more than 5% due to the accumulated 
noise. When comparing LO with EKF, the convergence 
time of EKF is comparable to the LO when the pole was 
set at 5 times faster than the open-loop pole. However, the 
noise level of LO is almost as twice as the EKF (2.35% vs 
1.48%) as shown in Fig. 11(b). Since the accuracy of SOC 
estimation must fall in the range of 3–5% for automotive 
applications, the observer poles in the range of 2 to 5 times 
faster than the system poles are recommended to achieve 
a fast convergence while minimizing the effect of 
disturbance on the system. 

 
3.7. Computational Time 

 

Apart from the SOC estimation accuracy and 
dynamic performance, computational time is another 
important point for evaluating the performance of the 
SOC estimation algorithm. This time indicates the number 
of the battery cell in which a microcontroller can handle 
within a defined sampling interval. In this section, the 
computational time of all ECM models with EKF and LO 
are compared to find out the optimal trade-off between 
the accuracy and computational time. The microcontroller 
used in this study is RA2A1 32-bit 48 MHz Arm Cortex 
M23 from Renesas, the total computational time of each 
level of ECM with LO/EKF is determined as shown in 
Table 4. 
 
Table 4. Computational time and average RSME of each 
level of ECM under LO and EKF algorithm. 

Configuration Computational 
Time (ms) 

Average 
RMSE (%) 

LO 1-RC 1.19 3.88 

LO 2-RC 2.58 2.83 

LO 3-RC 4.48 2.53 

EKF 1-RC 1.43 3.75 

EKF 2-RC 2.58 2.42 

EKF 3-RC 4.86 2.21 
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Fig. 10. SOC estimation curves of LO and EKF under 3 levels of ECM for UDDS, US06, LA92 driving cycle and 
LiFePO4 discharge. 
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Fig. 11. SOC estimation error under different poles from 
1-20 times faster than the slowest system poles (a) 
Compare with reference SOC, (b) Compare with EKF, (c) 
Closed-up view of SOC error in percent.   

 
From Table 4, it can be observed that the total 

computational time was significantly increased when the 
model was changed from 1-RC to 2-RC, and from 2-RC 
to 3-RC. The average RMSE is found to be the lowest in 
the 3-RC model for both EFK and LO algorithms. But 
also takes the highest computational time. The change of 
computational time with respect to average RMSE shall be 
compared to determine the optimum level of the ECM 
model for SOC estimation, as shown in Fig. 12. 
 

 
Fig. 12. Comparison of average RMSE and computational 
time under each level of ECM (upper) LO algorithm 
(lower) EKF algorithm. 

 

From Fig. 12, changing the ECM from 1-RC to 2-RC 
has doubled the computational time in both LO and EKF 
algorithms, and the average RMSE decreased by 22.42% 
and 32.80% in LO and EKF, respectively. These decreases 
in RMSE are required to suppress the SOC estimation 
error lower than 3% in average. However, from 2-RC to 
3-RC, the computation time increased by approximately 
70% but the RMSE decreased only by 10.6% and 8.67% 
in LO and EKF, respectively. These decreases in RMSE 
are very small when being compared with the additional 
computational time required to run the 3-RC ECM, which 
is considered not worth it because the number of battery 
cells which the microcontroller can handle in one 
sampling time interval will be significantly lower than the 
case of using 2-RC ECM. Thus, it is recommended to use 
2-RC ECM as an optimal trade-off between 
computational time and estimation accuracy. 

 

4. Flexible BMS Design Example and 
Discussion 
 
As mentioned in the introduction part that the 

flexibility of the previous works [2, 3, 9, 10] rarely 
mentioned the details of flexible hardware design because 
they focused primarily on certain purposes. Thus, another 
innovative topic of this study is to give a comprehensive 
design example of flexible BMS for automotive 
applications which utilized the knowledge presented 
previously. The goal of the flexible design shall achieve 
good scalability to support a wide range of number of cells 
and chemistries. The measurement parts shall have good 
accuracy and can be easily adapted with a little effort. The 
communication shall provide ease of data exchange 
between BMSs, or between other automotive systems, and 
shall be robust enough to tolerate interferences. This 
flexible design would help the BMS designers to reduce 
the development cycles when the design requirement is 
changed, resulting in less cost and time-to-market.   

 

 
Fig. 13. Structure of the proposed flexible BMS. 
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Fig. 14. Actual board of the proposed flexible BMS (left) 
top layer (right) bottom layer.  

 
PCB design and communication: the structure of the 
proposed flexible BMS is shown in Fig. 13 and its PCB 
was 130cm x 85cm as shown in Fig. 14, which is compact 
enough to be installed inside a small-size vehicle. The PCB 
mainly consists of 5 parts, BMS IC ISL94212, 
microcontroller RA2A1(MCU) with internal CAN 
controller, power supplies, isolated CAN driver and SPI, 
and passive balancing circuit. Each BMS board can 
supervise 6 to 12 cells, but can be stacked up to support 
up to 192 cells, making it suitable for hybrid/electric 
vehicles. In terms of scalability, the BMS board comes 
with an empty solder pad to install microcontroller, so the 
board can be used as a standalone centralized BMS (Fig. 
15(a)) to supervise a small battery pack with 6-12 cells. 
However, to supervise a large-scale battery pack, the users 
can re-configure the board to be distributed BMS (Fig. 
15(b)) by installing an MCU on the master board, then 
connecting all of the slave BMS modules to the master 
board via daisy chain as shown in Fig.16. The daisy chain 
in ISL94212 is a 2-wires communication that adopts an 
external RC circuit to terminate its differential port to 
increase the robustness against interference, and to 
provide a galvanic isolation up to 1000V. The data rate of 
daisy chain can be set up to 500 kHz. The maximum 
distance between each board is 2 meters, which is 
sufficient for automotive applications. In addition, the 
board is equipped with SPI and an isolated CAN driver, 
which can withstand up to 5kV. The data rate of CAN and 
SPI was set at 1Mbps, which is compliant with the ASIL-
C standard. The CAN frame of RA2A1 MCU can support 
both 11 bits standard ID, and 29 bits CAN extended ID 
to support a large data transmission. 
 

 
Fig. 15. Structure of BMS (a) centralized BMS; (b) 
distributed BMS. 

 
 

Fig. 16. Connection of two BMSs via Daisy chain 
communication.  

Measurement: the ADCs of this BMS shown in Fig. 17, 
is 16-bit delta-sigma ADCs which can provide the 
measurement accuracy in the range of ±10mV, compliant 
with the ASIL-C requirements. The signal conditioning 
circuit as shown in Fig. 17 is designed to support both 
single-ended input or differential input. The single-ended 
input can reduce the space required for ground connection 
and lowering the cost. While the differential input 
provides more robustness against high inference. The 
solder pads R_Hall_1 and R_Hall_2 in Fig.17 are left 
available for installing shunt resistors, so the ADCs can 
support the connections of shunt current sensor, current-
mode hall sensors (ex. LEM LA100p), and voltage-mode 
hall sensors (ex. LEM LXSR 6-NPS), and can be used in 
all noisy environment. In addition, to monitor the 
temperature using a thermistor, the ADCs were equipped 
with an LM334 current source, which converts the 
temperature-dependent of NTC/PTC to voltage. Users 
can easily change the configuration of ADCs by installing 
or removing the zero-ohm resistors shown in Fig. 17. 
 

 
 

Fig. 17. Structure of flexible ADCs.  

Power supply: the power supply of this BMS can 
generate 4 voltage levels, +3.3V, +5V, +12V, -12V, to 
supply all peripheral components including hall sensors 
and automotive contactors. In addition, +12V lead-acid 
battery can be used as the input of these power supply, so 
the board can be operated in standalone mode, even when 
the high-voltage battery pack is disconnected. Protection: 
the BMS is also equipped with 2 opto-isolated contactor 
drivers, to meet the safety requirements and ISO 26262. 
In the case of small vehicles, the contactor drivers can be 
used to operate the FETs to control the charge/discharge 
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process. Balancing: the proposed BMS uses passive 
balancing to equalize the SOC level of all cells. The value 
of balancing resistors (Rbalancing) is determined based on the 
maximum balancing current recommended for 100 kWh 
EVs or PHEVs, which is 420mA as mentioned in the 
section 2.6. Assuming that the maximum unbalanced 
voltage is 2V, the value of Rbalancing can be approximated as 

Rbalancing  ≈  2 V /420 mA ≈  4.76Ω, and the maximum 
power loss is around 0.83W. To handle this power loss, 
the solder pads with the size of 2512 SMD resistors are 
provided for installing the balancing resistors, which can 
dissipate up to 2W of power without the need for a heat 
sink, resulting in a smaller overall size.  

The innovation of this study was made in terms of 
maximizing the level of scalability, adaptability, along with 
the compatibility with automotive standards. The flexible 
design is compact enough to be used in small automotive 
applications such as e-bikes but can be easily scaled up to 
supervise a medium-scale automotive battery pack, whose 
number of cells is less than 192 cells with the voltage level 
in the range of 36-1000 V, and the total power of less than 
100 kWh. The built-in CAN bus supports both standard 
and extended ID with the baud rate of 1 Mbps, so it can 
be used to communicate directly with other systems such 
as vehicle control units (VCU), EV charger or a data logger.  
In term of software, the use of 2-RC ECM model provides 
the estimation accuracy in the range of 2.5%, and the 
computational time of around 2.6ms, which is fast enough 
to perform the SOC estimation of 192 cells under highly 
dynamic driving cycles such as UDDS or LA92.   

Therefore, when the BMS requirement has been 
changed, such as changing the type of voltage or current 
sensor, or increasing/ decreasing the number of cells, the 
BMS designers can quickly re-adjust the system to suit the 
new requirement without having to spend a large effort to 
develop a new hardware or software, resulting in shorter 
development time and labour cost.  

 
5. Real-time Testing: Passive Balancing 
 

The real-time passive balancing in this study was 
performed using the SOC-based method. The balancing 
process starts from measuring the open-circuit-voltage 
(OCV) of all 24 cells, then determines the SOC level of all 
cells in a real-time using 2-ECM with EKF shown in the 
section 3. Then, sorting the values of SOC in descending 
order to search for the cell which has the lowest SOC. This 
lowest value will be used as a based-line value to determine 
the balancing time of each cell by using Eq. (23)  

 

           Tbalancing ≈ (SOCdifference x Rbalancing) / Vcell (23)

                 
where Rbalancing is set to be 25Ω to carry the balancing 
current around 150mA. The balancing process keeps 
going on until the SOC difference between the highest 
SOC cell and the lowest SOC cell is less than 3%. The 
terminal voltage was recorded by using Graphtec gl840 
data logger, the real-time test setting is shown in Fig. 18.  
 

 
 
Fig. 18. Real-time microcontroller-based experiment. 

 
The sampling rate was set to be 1 second, 

corresponding to the sampling rate used in section 3. The 
battery cells under test are 24 cells Toriyama laptop series 
2600mAh, with the actual capacity of 9360 C. The initial 
voltages of all cells before performing the balancing 
process are in the range of 3.77 to 3.86 V or SOC in the 
range of 49% to 57%, estimated from SOC-OCV curve 
shown in Fig. 5. 

 

 
 
Fig. 19. Cell voltage during balancing (a) cells 1-12 (b) 
cells 13-24. 

 
As shown in Fig. 19(a) and Fig. 19(b), the balancing 

process took around 2000 seconds to reduce the voltage 

difference from 40 mV (~3.75% ΔSOC) to 16 mV (~2% 

ΔSOC) and around 3500 seconds to reduce the voltage 

difference from 80 mV (~7.34% ΔSOC) to 30 mV 
(~ 2.88% Δ SOC). It can be seen that the balancing 
resolution of SOC-based method is very high that the 
unbalance of the cells can be reduced to less than 30mV 

(~2.88% ΔSOC). This resolution is comparable to the 
balancing criteria found in many studies [2, 12, 61, 62] that 
the BMS will terminate the balancing when the cells’ 

voltage is in the range of 30-50mV (~2.88% - 5% ΔSOC).  
 

6. Conclusion  
 

In this study, a guideline on flexible battery 
management for automotive application has been 
presented by focusing on six crucial aspects, 1) voltage 
measurement 2) current measurement 3) Temperature 
acquisition 4) SOC estimation algorithm and 5) balancing 
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algorithm, by considering the real-life driving pattern, 
operation, size of battery and automotive standard. The 
results provide a quick suggestion on which configuration 
or balancing algorithm is suitable for a particular vehicle 
and particular battery pack. In the later section, a 
comparison of 3-levels ECM model under Luenberger 
observer and Extended Kalman Filter (EKF) has been 
performed to find out the optimal solution for a small-
scale real-time BMS operation. The tests were performed 
under 3 standard driving conditions, UDDS, US06, LA92 
and a pulse discharging of LiFePO4 then, the estimation 
accuracy and the computational time of each test case 
were used as the criteria to evaluate the performance of 
each algorithm. The results suggest that the optimal ECM 
model for real-time SOC operation is the second order 
model which give the best trade-off between accuracy and 
computational burden. The pole of Luenberger observer 
should be set in the range of 2-5 times faster than the 
system poles to achieve a satisfying convergence 
performance while minimizing the disturbance on the 
system. These results can be used as a basic guideline to 
shorten development time when developing a BMS for 
automotive applications. 
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