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Abstract. The thickness eccentricity of a pipe occurs due to manufacturing limitations and 
may be exacerbated by service-induced degradation mechanisms. Fracture and remaining 
life assessments of a cracked eccentric pipe require a solution for the crack-tip parameters, 
e.g., the stress intensity factors (SIFs). However, the SIFs for this problem have not been 
examined. This study aimed to develop SIFs for an eccentric pipe with an infinitely 
longitudinal crack nucleated from an inner wall at the thinnest location of the pipe cross-
section subjected to internal pressure. The problem was simplified to a cracked eccentric 
ring in a plane-strain condition, and finite element analysis was utilized for the 
determination of the SIFs, which were presented in tabulated form and empirical relation. 
The SIFs included a wide range of configuration parameters, i.e., a thin to thick-walled 
pipe, a shallow to deep crack, and a concentric pipe to a pipe with moderate thickness 
eccentricity. The need to consider the effect of eccentricity in SIFs calculation increased 
when the relative thickness of a pipe decreased and the relative crack depth increased. 
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1. Introduction 
 
Pipes and pipelines are used extensively in the 

petrochemical, power, and offshore industries. Pipe 
manufacturers must control the geometrical 
imperfections of a pipe to satisfy product standards [1] 
since any imperfections can reduce the load-carrying 
capacity of a pipe. Two geometrical imperfections that 
are of significant concern in pipe strength calculations 
are ovality and thickness eccentricity. Ovality, or out-of-
roundness, represents a deviation from a circular cross-
section. Thickness eccentricity represents the non-
uniform wall thickness of a pipe. 

Even if the imperfections in an intact pipe meet the 
standard criteria, they may worsen during installation or 
servicing [2-4]. For a subsea pipeline, the influences of 
ovality and local wall thinning by corrosion on collapse 
pressure have been studied extensively [5-9]. Aside from 
subsea pipelines, the predominant load applied to the 
pipe is internal pressure meaning bursting is a prominent 
failure mode. For a pipe subjected to internal pressure, 
Huang et al. [10] reported that the thickness eccentricity 
had a critical influence on the pipe burst strength, while 
the effect of ovality was minor. 

Because the shape of a worn or corroded area can be 
arbitrary, several geometrical representations of these 
damaged areas have been proposed, as shown in Fig. 1. 
Including a double circular arc (DCA), a groove, and a 
crescent-shaped, these are proposed as shown in Fig. 1. 
The advantage of DCA geometry is that it can represent 
the non-uniform wall thickness found in an intact pipe as 
well as servicing pipe with internal or external corrosion. 
Chen et al. [11] developed a burst pressure prediction 
equation based on DCA geometry. The equation 
successfully predicted the burst pressure for a pipe with 
thickness eccentricity due to internal wear [12] and 
internal corrosion [13-15]. Figure 2 depicts the capability 
of Chen’s model in the prediction of the burst pressure 
for pipes made of medium and high-strength steel [15]. 
The plot suggests that the DCA geometry can model 
corroded pipe with a thickness eccentricity of up to 0.3 

with an accuracy of 15%. 
Besides bursting, a pipe could be susceptible to 

cracking during service. The problem of cracking in a 
pipe with a non-uniform thickness could be found in two 
scenarios: crack-in-corrosion (CIC) [16-19], where a 
crack emanates from the bottom of a corroded area, and 
crack-in-erosion (CIE) [20, 21], where a crack emanates 
from an erosion groove. Studies have been conducted 
concerning a variety of shapes and locations for 
corrosion or erosion damage as well as crack types [16-
21]. One of the main purposes of these studies was the 
development of solutions for stress intensity factors 
(SIFs) [18-21]. However, SIFs to analyze a crack in a 
corroded pipe with a pipe wall thickness represented by 
DCA geometry are unavailable. 

Considering the internal pressure as a basic load case, 
a crack is prone to be oriented longitudinally due to the 
hoop stress. In addition, maximum hoop stress occurs at 
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 (c) 

 
Fig. 1. Geometrical models for a pipe with a non-
uniform thickness including (a) Double circular arc 
(DCA) model, (b) Groove model, and (c) Crescent-
shaped model. 

 

 
 
Fig. 2. Capability of the DCA geometry in the burst 
pressure prediction for a corroded pipe made of medium 
and high strength steels (Data from Ref. [15]; ppred and pexp 
denotes predicted and experimental burst pressures, 
respectively). 
 
an inner wall of the thinnest location of a pipe cross-
section [22]. Therefore, it is reasonable to assume that an 
inner-wall surface crack is likely to be nucleated from 
that location. Although the typically idealized shape of a 
surface crack assumed for a pipe is semi-elliptical [23], 
the crack-tip parameter calculation for this crack type is 
laborious. Kirkhope et al. [24] showed that the SIF for an 
internally pressurized concentric pipe with an infinitely 
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long crack was the upper limit of the SIF at the deepest 
point for an internally pressurized concentric pipe with a 
semi-elliptical surface crack. A similar trend was reported 
for a buried pipe [25]. These studies demonstrate a 
practical aspect of the SIF solution for this idealized 
crack shape (i.e., infinitely long crack) and the solution 
has been included in recognized fitness-for-service (FFS) 
standards [26].  

This paper develops SIFs for a cracked pipe with a 
non-uniform thickness that can be represented by DCA 
geometry. The study concerns an infinitely long axial 
crack emanating from an inner wall at the thinnest 
location of a pipe cross-section in a pipe that is under 
internal pressure. The problem is simplified to an 
eccentric ring with an internal radial crack in a plane-
strain condition. Two-dimensional FE analysis is 
employed to determine the SIFs. Validation of the results 
is demonstrated. The effect of thickness eccentricity on 
the SIF is discussed. The present SIFs could be utilized 
for predicting the critical pressure, critical crack size, and 
remaining life of a pipe with thickness eccentricity. 
 

2. Finite Element Analysis 
 

2.1. Geometry and Analyzed Cases 
 

The geometry of an eccentric ring with an internal 
radial crack is shown in Fig. 3. The inner and outer walls 
of the ring have radii of Ri and Ro, respectively. The 
distance between the centers of the inner and outer walls 

is equal to . A crack with a depth of a is nucleated from 
the inner wall at the thinnest location of the ring. From 
this geometrical model, the maximum thickness tmax and 
the minimum thickness tmin of the pipe can be derived 
respectively as: 

 

 max o it R R = − +  (1) 

and  min o it R R = − − , (2) 

 
Equations (1) and (2) are substituted into the definition 
of an average wall thickness tavg, which is given by (tmax + 
tmin)/2 yields: 
 

 avg o it R R= −  (3) 

 

a 
Ri



tmax tmin

O O' 

Ro

 
 
Fig. 3. Schematic representation of a cracked eccentric 
ring by DCA geometry. 

The pipe thickness eccentricity e is defined as [11]:  
 

 
−

=
+

max min

max min

t t
e

t t
 (4) 

 
Equations (1) and (2) are substituted into Eq. (4) and, 
using Eq. (3), the eccentricity can be rewritten as: 
 

 


=
avg

e
t

 (5) 

 
Based on the dimensionless geometrical parameters for a 

cracked concentric ring (i.e.,  = 0), which are tavg/Ri and 
a/tavg [26], the proposed dimensionless parameters for a 
cracked eccentric are tavg/Ri, a/tmin, and e.  

Table 1 summarizes the FE analysis cases. Six values 
of a relative thickness tavg/Ri were chosen from 0.025 to 1, 
covering both thin-walled (tavg/Ri ≤ 0.1) and thick-walled 
ranges (tavg/Ri > 0.1). The relative crack depth a/tmin 
ranged from 0.05 to 0.8. The eccentricity e varied from 0 
(a concentric ring) to 0.30. This upper limit value of 
eccentricity was chosen because a fitness-for-service 
(FFS) assessment of a cracked component requires 
evaluation of both the fracture and the fully plastic 
yielding criterion. The DCA geometry could be used for 
an assessment of fully plastic yielding for a pipe with 
eccentricity up to 0.3, as shown in Fig. 1. As a result, the 
SIFs for FFS evaluation of a cracked eccentric pipe with 
eccentricity up to 0.3 were required. It should be noted 
that the eccentricity range studied covers the allowable 
eccentricity of an intact pipe (e = 0.125 [1]). However, it 
does not cover the eccentricity found in servicing pipe, 
which can reach 0.7 as shown in Fig. 2. 
 
Table 1. Summary of FE analysis cases. 
 

tavg/Ri a/tmin e 

0.025, 0.05, 
0.1, 0.2, 0.5, 
1 

0.05, 0.1, 
0.2, 0.4, 
0.6, 0.8 

0, 0.01, 0.02, 0.04, 
0.06, 0.08, 0.10, 
0.15, 0.20, 0.25, 0.30 

2.2. Finite Element Model and Post-Processing 
 

Due to symmetrical geometry and loading, only half 
of a cracked eccentric ring was modeled, as shown 
schematically in Fig. 4. On the symmetry line, the 
uncracked wall (i.e., line AB) and uncracked ligament (i.e., 
a line from crack tip to D) were restrained in the y-
direction. Further, point A was restrained in the x-
direction. Internal pressure p was applied at the inner wall 
and the crack surface. 

For all analysis cases, the inner radius Ri and internal 
pressure p were set to 100 mm and 1 MPa, respectively. 
Additionally, the ring material was assumed to be 
isotropic linear elastic with Young’s modulus and 
Poisson’s ratio of 200 GPa and 0.3, respectively.  
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Fig. 4. Schematic representation of the FE model for a 
cracked eccentric ring. 

 
ANSYS Mechanical APDL 2021 R1 was used in the 

FE modeling and analysis. A two-dimensional plane-
strain linear elastic stress analysis was performed. The 
applied load was divided into 20 steps (from 0 to 1 MPa). 
The crack tip was encompassed with triangular quarter-
point elements degenerated from an 8-node quadrilateral 
element (PLANE 183 element type in the software 
library). The remaining area of the ring was discretized 
using an 8-node quadrilateral element. The SIF was 
extracted from the FE solution using a displacement 
extrapolation technique via the KCALC command of the 
software. 

 
 

Cracked concentric rings with tavg/Ri = 0.5 and 
relative crack depth a/tavg of 0.1 and 0.8 were selected as 
representative cases for determining proper mesh size, 
particularly at the crack tip, points C and D. Tables 2 and 
3 show the effects of mesh size and the number of 
elements surrounding the crack tip on the SIFs. For all 
cases in the tables, mesh sizes at points C and D were set 
to tavg/100 and tavg/10 for a/tavg of 0.1 but changed to 
tavg/10 and tavg/100 for a/tavg of 0.8. A mesh with a size of 
tavg/100 or finer and a number of surrounding elements 
of 10 or more resulted in SIFs with excellent 
convergence rates for both crack lengths. Tables 4 and 5 
show the effects of mesh size at points C and D on the 
SIFs. According to the results, the mesh size of the point 
closest to the crack tip (point C for a/tavg = 0.1 or point 
D for a/tavg = 0.8) should be tavg/80 or finer. 

Finally, crack tip mesh size and the number of 
triangular quarter-point elements surrounding the crack 
tip for all analyzed cases were tavg/200 and 12 elements, 
respectively. Element size at point C was set to either 
tavg/100 for a/tmin = 0.05, 0.1, and 0.2 or tavg/10 for a/tmin 
= 0.4, 0.6, and 0.8, whereas the element size at point D 
was set to either tavg/10 for a/tmin = 0.05, 0.1, 0.2, 0.4, and 
0.6 or tavg/100 for a/tmin = 0.8. Figure 5 illustrates an 
example of the FE meshes for a cracked eccentric ring 
with tavg/Ri = 0.5, a/tmin = 0.2 and e = 0.1. The number of 
nodes and elements used in this FE model were 4,574 
and 1,443, respectively. 

 
Table 2. Effect of crack tip mesh size on the SIFs for a cracked concentric ring with tavg/Ri = 0.5. 
 

Crack tip 
mesh size 

a/tavg 

0.1 0.8 

SIF 

( MPa mm ) 

Convergence 
rate (%) 

SIF 

( MPa mm ) 

Convergence 
rate (%) 

tavg/50 16.170 - 94.220 - 
tavg/100 16.176 0.04 94.185 0.04 
tavg/150 16.162 0.09 94.090 0.10 
tavg/200 16.161 0.01 94.101 0.01 
tavg/250 16.153 0.05 94.065 0.04 
tavg/300 16.148 0.03 94.029 0.04 

 
Table 3. Effect of the number of elements surrounding the crack tip on the SIFs for a cracked concentric ring  
with tavg/Ri = 0.5. 
 

No. of 
elements 

a/tavg 

0.1 0.8 

SIF 

( MPa mm ) 

Convergence 
rate (%) 

SIF 

( MPa mm ) 

Convergence 
rate (%) 

4 16.221 - 94.470 - 
6 16.237 0.10 94.513 0.05 
8 16.181 0.35 94.297 0.23 

10 16.193 0.07 94.283 0.01 
12 16.161 0.20 94.101 0.19 
18 16.159 0.01 94.083 0.02 
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Table 4. Effect of mesh size of point C for a cracked 
concentric ring with tavg/Ri = 0.5 and a/tavg = 0.1. 

 

Mesh 
size 

SIF 

( MPa mm ) 

Convergence 
rate (%) 

tavg/10 16.092 - 
tavg/20 16.151 0.37 
tavg/40 16.150 0.01 
tavg/60 16.166 0.10 
tavg/80 16.160 0.04 

tavg/100 16.161 0.01 
tavg/120 16.162 0.01 

 
Table 5. Effect of mesh size of point D for a cracked 
concentric ring with tavg/Ri = 0.5 and a/tavg = 0.8. 

 

Mesh 
size 

SIF 

( MPa mm ) 

Convergence 
rate (%) 

tavg/10 93.163 - 
tavg/20 93.942 0.83 
tavg/40 94.043 0.11 
tavg/60 94.080 0.04 
tavg/80 94.091 0.01 

tavg/100 94.101 0.01 
tavg/120 94.102 0.01 

 
(a) 

 

 
(b) 

 
Fig. 5. Example of a FE mesh generated for the case of 
tavg/Ri = 0.5, a/tmin = 0.2, and e = 0.10. (a) A half-model. 
(b) closed-up around the crack tip. Image courtesy of 
ANSYS, Inc. 

2.3. Verification of the Finite Element Model   
 
The validity of the FE model was confirmed by 

comparison with the SIF solution published in the API 
579 code for the problem of a cracked concentric ring 
[26]. Most of the geometrical factors (also SIFs) for the 
present FE model conformed to the code solution as 
shown in Fig. 6. The deviations were less than 1.2% 
except for three cases including tavg/Ri = 0.5 and a/tavg = 
0.8; and tavg/Ri = 1 and a/tavg = 0.6 and 0.8, where the 
deviations were 2.9%, 4.7%, and 13.7%, respectively. A 
mesh refinement was performed on these problematic 
cases. The convergence rates of SIFs were found to be 
less than 0.35%. Therefore, this research adopted the 
current FE solutions for these three cases. Moreover, the 
present FE models with previously specified element 
sizes were sufficient for application to the problem of a 
cracked eccentric ring. 

 

3. The Stress Intensity Factor Solution 
 

Based on the SIF solution for a cracked concentric 
ring [26], the following form of the mode-I SIF solution, 
KI for a cracked eccentric ring was adopted. 
 

 

2

I 2 2
, ,

avgo

o i i min

tpR a
K a F e

R R R t


 
=   

−  
 (6) 

 
where p is the internal pressure, a is the crack depth, Ri 
and Ro are the inner and outer radii, respectively, tavg is the 
nominal thickness, and F is a geometrical factor that is 
dependent on the chosen dimensionless parameters, i.e., 
tavg/Ri, a/tmin, and e. By substituting the SIF obtained from 
the FE analysis and the relevant dimensional variables 
into Eq. (6), the geometrical factor F can be determined. 
The values of F for all analysis cases are tabulated in 
Table 6. 
 

 
 
Fig. 6. Verification of the present FE results with the 
API 579 solution for a cracked concentric ring. Cases of 
significant deviation are indicated by red arrows. 
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Table 6. Values of the geometrical factor F for a ring with a single internal radial crack under internal pressure. 
 

e a/tmin tavg/Ri 
0.025 0.05 0.1 0.2 0.5 1 

0 0.05 2.277 2.273 2.266 2.250 2.205 2.137 
0.1 2.372 2.364 2.347 2.314 2.225 2.091 
0.2 2.715 2.694 2.652 2.571 2.360 2.087 
0.4 4.116 4.020 3.841 3.528 2.850 2.221 
0.6 7.518 7.051 6.284 5.187 3.529 2.474 
0.8 17.983 14.567 10.778 7.414 4.354 2.974 

0.01 0.05 2.298 2.295 2.286 2.267 2.217 2.144 
0.1 2.395 2.386 2.368 2.332 2.237 2.099 
0.2 2.741 2.719 2.676 2.591 2.374 2.096 
0.4 4.157 4.059 3.877 3.557 2.869 2.232 
0.6 7.592 7.121 6.339 5.232 3.554 2.490 
0.8 18.161 14.709 10.880 7.480 4.387 2.992 

0.02 0.05 2.321 2.317 2.306 2.285 2.229 2.151 
0.1 2.418 2.409 2.389 2.350 2.250 2.107 
0.2 2.768 2.745 2.700 2.612 2.388 2.105 
0.4 4.198 4.098 3.913 3.586 2.887 2.243 
0.6 7.667 7.189 6.399 5.277 3.579 2.503 
0.8 18.343 14.854 10.985 7.547 4.420 3.010 

0.04 0.05 2.369 2.362 2.348 2.321 2.254 2.166 
0.1 2.470 2.456 2.433 2.389 2.276 2.124 
0.2 2.824 2.799 2.749 2.655 2.418 2.124 
0.4 4.283 4.179 3.986 3.648 2.928 2.267 
0.6 7.824 7.332 6.522 5.373 3.632 2.532 
0.8 18.720 15.155 11.202 7.689 4.491 3.048 

0.06 0.05 2.418 2.409 2.392 2.358 2.280 2.182 
 0.1 2.518 2.505 2.479 2.428 2.303 2.141 
 0.2 2.883 2.855 2.802 2.701 2.448 2.145 
 0.4 4.372 4.264 4.063 3.712 2.969 2.292 
 0.6 7.987 7.483 6.648 5.473 3.689 2.562 
 0.8 19.115 15.471 11.430 7.838 4.565 3.088 

0.08 0.05 2.468 2.457 2.437 2.398 2.308 2.198 
0.1 2.571 2.556 2.526 2.470 2.331 2.158 
0.2 2.944 2.914 2.855 2.748 2.482 2.165 
0.4 4.465 4.352 4.142 3.780 3.016 2.323 
0.6 8.156 7.639 6.785 5.573 3.744 2.591 
0.8 19.528 15.804 11.670 7.995 4.643 3.130 

0.10 0.05 2.521 2.508 2.484 2.439 2.336 2.216 
0.1 2.626 2.609 2.576 2.513 2.361 2.177 
0.2 3.007 2.975 2.912 2.797 2.515 2.187 
0.4 4.562 4.444 4.225 3.850 3.062 2.351 
0.6 8.334 7.801 6.926 5.684 3.809 2.629 
0.8 19.963 16.153 11.917 8.160 4.726 3.174 

0.15 0.05 2.664 2.647 2.613 2.552 2.412 2.261 
0.1 2.776 2.754 2.710 2.630 2.442 2.228 
0.2 3.179 3.141 3.065 2.930 2.608 2.246 
0.4 4.824 4.696 4.457 4.044 3.183 2.423 
0.6 8.811 8.240 7.305 5.980 3.981 2.722 
0.8 21.145 17.109 12.612 8.614 4.953 3.296 

0.20 0.05 2.825 2.802 2.758 2.679 2.498 2.314 
0.1 2.945 2.916 2.862 2.762 2.533 2.285 
0.2 3.372 3.327 3.238 3.080 2.712 2.313 
0.4 5.122 4.979 4.710 4.257 3.321 2.511 
0.6 9.353 8.743 7.739 6.321 4.178 2.831 
0.8 22.490 18.201 13.409 9.142 5.214 3.434 
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Table 6. (Cont’d) Values of the geometrical factor F for a ring with a single internal radial crack under internal 
pressure. 
 

e a/tmin tavg/Ri 
0.025 0.05 0.1 0.2 0.5 1 

0.25 0.05 3.008 2.979 2.923 2.820 2.596 2.370 
0.1 3.136 3.100 3.033 2.910 2.636 2.349 
0.2 3.592 3.539 3.434 3.249 2.830 2.388 
0.4 5.453 5.294 5.003 4.506 3.491 2.613 
0.6 9.969 9.314 8.236 6.708 4.399 2.960 
0.8 24.031 19.458 14.331 9.747 5.515 3.593 

0.30 0.05 3.219 3.182 3.110 2.984 2.707 2.439 
0.1 3.354 3.311 3.228 3.081 2.754 2.423 
0.2 3.843 3.780 3.659 3.448 2.965 2.475 
0.4 5.834 5.658 5.338 4.794 3.678 2.728 
0.6 10.678 9.972 8.814 7.161 4.659 3.088 
0.8 25.807 20.915 15.403 10.457 5.868 3.779 

 
To facilitate the fracture assessment and the 

remaining life prediction, it is beneficial to express the 
geometrical factor by using a closed-form equation. The 
appropriate expression was developed using a systematic 
trial-error approach. First, the F values at specific a/tmin 
and various tavg/Ri ratios were plotted against e, as shown 
in Fig. 7(a). It was found that the second-order 
polynomial function fitted the plots very well for all 
tavg/Ri ratios. Next, the polynomial coefficients of the 
second-order, first-order, and zeroth-order terms at 
specific tavg/Ri were plotted against a/tmin as shown in Fig. 
7(b). It was found that the coefficients of the same order 
terms correlated with a/tmin by the fourth-order 
polynomial function. Lastly, the polynomial coefficients 
of the second-order, first-order, and zeroth-order terms 
at specific a/tmin were plotted against ln(tavg/Ri), as shown 
in Fig. 7(c). It was found that the third-order polynomial 
function fitted the plots accurately.  

From a systematic observation of the variation of F 
on the parameters tavg/Ri, a/tmin, and e, the following 
empirical equation for the geometrical factor F was 
proposed. 

 
2 3 4

0 0 0

ln

ji

avg k

ij k

k j i min i

ta
F M e

t R= = =

    
=       

     
  (7) 

 
This equation can be used to determine the geometrical 
factor for a cracked concentric ring by replacing a/tmin 
with a/tavg (since both parameters are equivalent for 
concentric case) and substituting e = 0. 

Non-linear regression with the aid of MathCAD 
Prime 4 software was applied to the F values in Table 6. 
The best-fit coefficients Mijk are listed in Table 7. A total 
of 86% of the deviations for the closed-form values from 
the FE results in Table 6 were within 1%, while all 
predictions were within 3.1%. The sixty coefficients Mijk 
could be implemented into a computer code that allows 
the program to directly calculate the SIFs for any cracked 
eccentric ring. Consequently, the program becomes 
simpler and faster since it is not necessary to manipulate 
a large-size array variable which stores the tabulated F 
values for interpolation. An increase in calculation speed 
is noticeable in the case of a crack growth analysis where 
it is necessary to calculate the SIFs repeatedly. 

 

 
 (a) (b) (c) 
 
Fig. 7. A systematic plot to find basis functions for forming an empirical equation (Eq. (7)). 
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The empirical equation for SIFs (Eqs. (6) and (7)) 
was applied to six additional cracked eccentric pipes 
having different dimensions and Young’s modulus from 
those listed in Section 2.2. For all cases, the inner radius 
Ri and internal pressure p were set to 50 mm and 1 MPa, 
respectively. The material properties of a pipe were 
assumed to be linear elastic with Young’s modulus of 207 
GPa, and Poisson’s ratio of 0.3. The values of tavg/Ri, 
a/tmin, and e for each case are listed respectively in 

columns 2-4 of Table 8. FE analyses were carried out and 
the SIFs were compared with those determined from the 
empirical equation as shown in Table 8. The F values for 
calculating the SIFs from the empirical equation were 
obtained either from Table 6 or Eq. (7). All results were 
in good agreement. The maximum difference was less 
than 0.6%. Accordingly, the empirical equation for SIF 
calculation for an eccentric pipe was confirmed. 

 
Table 7. Coefficients Mijk in empirical equation for the geometrical factor F (Eq. (7)). 

 

k i j 
0 1 2 3 

0 0 2.2148 0.0031 -0.0174 -0.0087 
1 -1.9680 -2.5417 -0.2763 0.1580 
2 9.0554 2.9413 -2.7179 -1.7035 
3 -13.9425 -14.7220 5.8089 4.4865 
4 9.0959 16.9207 1.3737 -2.7976 

1 0 0.5788 -0.8683 -0.2191 -0.0273 
1 1.3773 3.2474 2.7222 0.6258 
2 -0.9049 -14.7485 -12.4810 -3.2967 
3 -0.0571 15.1798 21.7085 6.9442 
4 1.3745 -2.1311 -9.0086 -4.3173 

2 0 1.1190 -0.7999 0.1873 0.0551 
1 -0.1442 -9.9300 -6.6262 -0.9157 
2 17.3114 53.8905 35.3024 4.2334 
3 -36.9801 -135.1406 -78.4000 -7.8115 
4 25.5518 100.3569 63.8231 6.1041 

 
Table 8. Comparison of the SIFs determined by the empirical equations (Eqs. (6) and (7)) with the FE results for 
eccentric cracked pipes with an inner radius Ri of 50 mm.  
 

Case tavg/Ri a/tmin e 
KI ( MPa m ) % Difference 

FEA F from Table 6 F by Eq. (7) F from Table 6 F by Eq. (7) 

1 0.025 0.4 0.01 3.4071 3.4020 3.3912 0.15 0.47 
2 0.025 0.4 0.20 3.7716 3.7681 3.7568 0.09 0.39 
3 0.1 0.4 0.01 1.7647 1.7619 1.7616 0.16 0.18 
4 0.1 0.4 0.20 1.9289 1.9241 1.9250 0.25 0.20 
5 1 0.4 0.01 0.7449 0.7422 0.7407 0.36 0.56 
6 1 0.4 0.20 0.7529 0.7506 0.7488 0.30 0.54 

 
4. Discussion 

 
The need for involving eccentricity in the SIFs 

calculation can be understood by comparing the 
geometrical factors for cracked concentric and eccentric 
rings with the same tavg/Ri and crack length a. The relative 
crack depth in a cracked concentric ring a/tavg is related to 
the relative crack depth in a cracked eccentric ring a/tmin 
by the following relationship: 
 

 (1 )
avg min

a a
e

t t
= −  (8) 

 
Let the geometrical factors for cracked concentric 

and eccentric rings (same tavg/Ri and a) be denoted as F0 

and F, respectively. Figure 8 conceptually depicts the 
meaning of F0 and F of the cracked rings with the same 
crack length. Thus, the ratio F/F0 represents the effect of 
eccentricity on the SIFs when compared to those that 
neglected it. Figure 9 shows the trends of F/F0 versus 
a/tmin for cracked eccentric rings with tavg/Ri = 0.025 and 
1, and e = 0.1 and 0.2. The F/F0 ratios are higher than 
unity which indicates that the SIFs are always higher for 
a cracked eccentric ring than those for a cracked 
concentric ring having equal tavg/Ri and a/tmin. For the 
same value of tavg/Ri, F/F0 for e = 0.2 is higher than that 
for e = 0.1 for any values of a/tmin. In addition, F/F0 is 
more sensitive to a/tmin for higher eccentricity. For higher 
tavg/Ri, however, the significance of including eccentricity 
in the SIF calculation and the sensitivity to a/tmin is lower. 
In other words, the SIFs of a thin-walled pipe are more 
sensitive to eccentricity than a thick-walled pipe. 
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Fig. 8. Concept for comparing the geometrical factors of 
a cracked eccentric ring F with a concentric ring F0 that 
has the same tavg/Ri and crack length a.   

 

 
 

Fig. 9. Dependence of F/F0 on the relative crack depth 
a/tmin for different eccentricities e and relative thickness 
tavg/Ri of a cracked ring. 
 
The effect of eccentricity on the SIF manifested the 
necessity for a measurement of a pipe thickness profile 
during an inspection in addition to a measurement of 
crack size. Furthermore, thickness eccentricity should be 
determined from the measured profile and incorporated 
into the calculation of the SIF to improve the fracture 
and remaining life analyses. 

When considering an intact pipe, standard 
specification for a steel pipe, e.g., the ASTM standard [1], 
specify that the permissible variation of the minimum 
thickness from a nominal (average) thickness should be 
within 12.5%. This permissible limit is equivalent to the 
thickness eccentricity of 0.125. The F/F0 ratios for this 

eccentricity at different tavg/Ri, and a/tmin were linear 
interpolated from F/F0 at e = 0.1 and e = 0.15. The 
results are summarized in Table 9. If a crack with a 
relative crack depth of 5% is nucleated in an eccentric 
ring, the F factor (also SIF) will increase 13.4% for tavg/Ri 
= 0.025 but will decrease continually to 4.3% for tavg/Ri = 
1. From a fracture mechanics standpoint, the results 
support the importance of improving manufacturing 
processes to control or reduce the thickness eccentricity 
of a pipe, especially for a thin-walled pipe. Yet previous 
studies [24, 25] have shown that the influence of 
eccentricity on the SIFs might be lower in the case of a 
semi-elliptical surface crack with a low aspect ratio. 
Therefore, a permissible limit for the minimum thickness 
variation specified in the standard was reasonable. Future 
studies are still required to evaluate the influence of 
eccentricity on SIFs for the other crack and load 
configurations in a pipe. 

 
Table 9. F/F0 ratio of a pipe with minimum thickness 
variation at a permissible limit (e = 0.125).  
 

a/tmin tavg/Ri 

0.025 0.05 0.1 0.2 0.5 1 

0.050 1.134 1.134 1.126 1.110 1.077 1.043 
0.1 1.147 1.145 1.135 1.118 1.084 1.048 
0.2 1.189 1.180 1.164 1.143 1.105 1.063 
0.4 1.268 1.271 1.253 1.219 1.156 1.094 
0.6 1.483 1.432 1.370 1.298 1.192 1.130 
0.8 1.802 1.643 1.498 1.356 1.197 1.227 

 

5. Conclusions 
 

Commercial FE software (ANSYS) was utilized to 
determine the SIFs for an eccentric ring with a single 
radial crack at an inner wall and subjected to internal 
pressure. The accuracy of the FE models was confirmed 
with the solution from the API 579 code for the case of 
a cracked concentric ring. The maximum difference was 
less than 1.2%. The geometrical factors for both cracked 
concentric (36 cases) and eccentric rings (360 cases) 
derived from the FE analysis covered thin to thick-walled 

rings (i.e., 0.025  tavg/Ri  1), shallow to deep cracks (i.e., 

0.05  a/tmin  0.8), and nil to moderate eccentricity, (i.e., 

0  e  0.3).  The results are presented in tabulated form 
and empirical relation. The accuracy of the empirical 
relation is better than 3.1% within the studied ranges of 

geometrical parameters (i.e., 0.025  tavg/Ri  1, 0.05  

a/tmin  0.8, a/tmin, and 0  e  0.3).  
The need to consider the effect of eccentricity in the 

SIFs calculation increased as tavg/Ri decreased or a/tmin 
increased. For an intact pipe, the specified permissible 
thickness variation in the ASTM standard [1] was 
quantitatively evaluated based on the fracture mechanics 
concept and found to be appropriate. The importance of 
controlling the thickness eccentricity from manufacture 
and acquiring the wall thickness profile of a pipe in 
service was emphasized. 
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