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Nomenclature

BAM Bidirectional Associative Memory
CMOS Complementary Metal-Oxide Semiconductor
CNN Cellular Neural Network
CVNN Complex Valued Neural Networks
FFNN Feed Forward Neural Network
FOBAM Fractional-order BAM Neural Network
FOCNN Fractional-order Cellular Neural Network
FOCVNN Fractional-order Complex Valued Neural Networks
FOHNN Fractional-order Hopfield Neural Networks
FOMNN Fractional-order Memristive Neural Networks
FONN Fractional-order Neural Network
FOQVNN Fractional-order QVNNs
FOQVNNLDD Fractional-order QVNNs with Leakage and Discrete Delays
FOQMNN Fractional-order Quaternion-Valued Memristive Neural Networks
FOQVBAM Fractional-order Quaternion-Valued Bidirectional Associative Memory
LKF Lyapunov-Krasovskii functional
LMI Linear Matrix Inequality
MFOBNN Memristor-based Fractional-order BAM Neural Network
MVM Matrix-Vector Multiplication
NARX Nonlinear Auto-regressive Exogenous Network
NN Neural Network
PSO Particle Swarm Optimization
QVNN Quaternion-Valued Neural Networks
ReLU Rectified Linear Unit

1. Introduction

In recent years it has been proven that combining frac-
tional calculus and neural networks will give higher effi-
ciency in the overall model [1]. Compared to conventional
NN, the FONN describes the properties of the neurons
such as memory and hereditary of various systems effec-
tively. This effectiveness is because the fractional-order sys-
tems have infinite memory [2, 3, 4]. Also, it is to highlight
that the computation ability of FONN gives efficient data
processing, stimulus anticipation, and phase shift during the
oscillatory neurons firing. Therefore, the fractional-order
form of neural networks has been an excellent and powerful
tool in various computational fields. Recently, the authors
of [5] have proposed the fractional-order form of ReLU ac-
tivation functions and its variants. The developed activa-
tion functions have shown better performance compared to
conventional. Thus, this study provides a critical review of
recent advances in neural network structures such as Hop-
field, cellular, memristor-based, complex-valued, etc. Also,
a review of applications of these networks for system iden-
tification, control, stability, optimization, etc., is presented.

The remaining sections of the paper are organized as
follows: Section 2 presents the recent advances in FONNs.
The application of FONNs in various fields is described in
Section 3. Finally, the conclusions and future directions are

given in Section 4.

2. Advances in Fractional-Order Neural Net-
works

This section presents the critical review on various ad-
vances in the fractional-order form of Hopfield, Cellular,
Memristive, Complex-Valued, and other neural networks.

2.1. Feed Forward Neural Networks

FFNN is one of the most straightforward variants of
neural networks as they pass information in one direction
through various input nodes until it makes it to the output
node [6, 7, 8]. On the other hand, RNN is more complex
than FFNN. Here, each node in the RNN acts as a mem-
ory cell, continuing the computation and implementation of
operations [9]. The networks save the output of processing
nodes and feed them back into the model, and hence they
did not pass the information in one direction only [10].

In 2011, the researchers developed an FFNNwith PSO
to solve differential equations [11]. Later, the work in
[12] established FFNN based on sine and cosine, which
helped solve fractional wave and boundary value problems.
In 2020, the researchers considered fractional derivatives
based on Caputo’s derivative to develop a method for op-
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timizing fractional-order delay optimum control problems
[13]. Also, algorithms such as using Grünwald-Letnikov’s
derivative function have been equipped to model an FFNN
that focuses on reducing the number of parameters re-
quired for system identification. To study the dynamical
behavior of a multi-stable fractional-order system, in 2021,
the method of fractional-order behavior of robotic manip-
ulators has been equipped with the wolf algorithm [14].
Also, another reported work in [15] has used Grünwald-
Letnikov’s derivative function as a learning algorithm and
fractional calculus to reduce convergence error and conver-
gence speed. The single-point search algorithm has made
an efficient global learning machine to determine the opti-
mal search path [16].

2.2. Fractional-Order Neural Networks

In [17], the work deals with the discrete FONN with
a Fuzzy Lyapunov synthesis approach has been reported.
Here, a non-linear discrete FONN algorithm has been im-
plemented to apply this proposed NN in modeling a heat
transfer. In [18], the paper investigates a class of FONNs.
Initially, α-exponential stability is introduced along with a
novel differential inequality-based fractional-order method
for analyzing the network’s stability. The work also pro-
poses the use of fractional ordering for chaotic network
synchronization. The equilibrium point’s existence and α-
exponential stability have been considered based on investi-
gations. The work in [19] discusses a class of FONNs with
delay. This work establishes an adequate condition for the
uniform stability of such FONNs with a delay. Also, the
equilibrium point’s uniqueness, existence, and stability have
been shown.

Further, in [20], the paper investigates a category of
FONNs for their finite-time stabilities. It is worth high-
lighting that sufficient conditions have been introduced
to establish the time-stability of such a class of FONNs
with the Caputo fractional derivatives. These conditions
are based on the Gronwall theorem, Laplace transforms,
and Mittag-Leffler approximation approaches. Here, the
asymptotic stability results of such FONNs are also shown.
In [21], a category of FONNs with delayed systems has
been scrutinized for their finite-time stabilities. It has been
observed that the inequality technique is used to obtain
two novel sufficient conditions that are delay-dependent,
which ensures the stability of such FONNs. Also, the Ca-
puto derivative has been derived and verified with Cauchy-
Schwartz inequality. In [22], the paper focuses on the
FONNs based on Riemann-Liouville that have discrete and
distributed delays and analyses their asymptotic stability.
Here, two sufficient conditions are derived by constructing
a suitable Lyapunov functional to ensure that the addressed
NN is stable asymptotically.

In [23], stability analysis of FONNs with and with-
out delay using fractional approaches such as Lyapunov

and Razumikhin has been reported. It has been observed
that the non-linear constraints were handled using the S-
procedure to get a more comprehensive selection of the
systems. The uniqueness and existence of the point of equi-
librium have been proved in this work. Unlike the last,
in [24], the article focuses on FONN with double leakage
delays and analyzes their stability and bifurcation. This is
done by considering leftover delay as a bifurcation param-
eter after intercalating one delay. It has been observed that
incongruent critical values have been gained for different
delays-induced bifurcations. Also, the implementation of
Hopf bifurcation can be seen in this paper. In [25], the
problem of parameters synchronization and identification
of FONNs with time delays have been investigated. It has
been observed that some analytical techniques and an adap-
tive control method were designed here to synchronize the
two uncertain, complex networks with time delays.

Further, [26] investigates the global projective synchro-
nization of FONNs by combining open-loop control and
adaptive control. It is worth highlighting that based on Ca-
puto’s fractional derivation, a novel fractional-order differ-
ential inequality has been derived in this paper to establish
the monotonicity of the continuous and differential func-
tions. It also applies several control strategies to ensure
complete synchronization, anti-synchronization, and stabi-
lization of the addressed NNs. Contrary to [26], in pa-
per [27], the focus is on the non-identical FONN based
on the sliding mode control technique. Here, the global
projective synchronization of such FONNs is investigated.
It has been observed that the authors gave derived syn-
chronization conditions with uncertainty parameters for
memristor-based NNs with fractional-order multiple time-
delays that are based on Filippov’s solution and inclusion
theory. In [28], it has been observed that adaptive projec-
tive synchronization of time-delayed FONNs has been ana-
lyzed. Here, efficient hybrid control strategies are designed
for delayed FONNs with uncertain parameters using active
and adaptive control methods. Adaptive synchronization-
based method and Adams-Bashforth-Moulton predictor-
corrector scheme have been implemented.

The paper in [29] studies the synchronization for a cat-
egory of uncertain FONNs that have disturbed parameters.
In this paper, an adaptive synchronization controller is de-
signed based on the fractional-order extension of the Lya-
punov stability criterion. Also, a fractional-order adapta-
tion law is proposed to update the controller parameter on-
line. The work in [30] is based on Global Mittag-Leffler’s
synchronization in FONNs with discontinuous activation
functions. Here, singular Gronwall inequality with prop-
erties of fractional calculus is used to prove the existence
of a global solution under the framework of Filippov for
FONN with discontinuous activation functions. Also, the
framework of the Filippov solution for such NNs following
Caputo’s fractional derivative is given. This is based on the
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Lyapunov stability criterion. This paper also provided a clue
to study FONNs with discontinuous functions. Also, some
requirements have been established to ensure the asymp-
totic stability of FONNs based on the Lyapunov function’s
fractional derivative. In [31], a class of NNs with fractional-
order derivatives is investigated. Here, some new condi-
tions based on Krasnoselskii’s fixed point theorem and in-
equality technique are employed to ensure the uniqueness
and existence of the non-trivial solution. Also, the sta-
bility of the FONNs in fixed time intervals is proposed
here. In [32], LMI stability conditions for linear and non-
linear fractional-order systems have been presented. The
global stability analysis of FONNs is employed, and the re-
sults are obtained from LMI conditions. The two-norm
and fractional-order Lyapunov direct method has been im-
plemented in this paper. Now, in [33], the article focuses
on the parameter estimation problem of FONNs. Here,
the identification based on the synchronization method has
been generalized by applying parameter update laws and
adaptive control. Also, the technique has been used for pa-
rameter identification and synchronization simultaneously.

2.3. Fractional-Order Hopfield Neural Networks

The architecture of the Hopfield network model is
shown in Fig. 1. The model contains several linear and non-
linear elements, with the size of the network being N . The
block ‘A’ in the circuit simulates biologic neurons’ synapse
and non-linear characteristics. At the same time, block ‘B’
is used to simulate the biologic neurons’ time-delay charac-
teristics. The governing equations of the model are given
as [34],

Ci
d
dt
Pi =

N∑
j=1

(
1

Rij

)
Vj − Pi

(
1

Ri0
+

N∑
j=1

1

Rij

)
+ Ii,

(1)

Pi =

(
1

λ

)
φ−1
i Vi, (2)

where, Pi denotes the input of operational amplifier at ith
neuron, Vi represents the output of operational amplifier at
ith neuron, and λ is the learning rate.

Fig. 1. Architecture of the Hopfield network model.

The governing equations for the fractional-order form
of Hopfield network model is obtained from Eqs. (1) and
(2) as follows:

Ci
dα

dtα
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(
1

Rij

)
Vj

− Pi

(
1

Ri0
+
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j=1

1

Rij

)
+ Ii,

(3)

Pi =

(
1

λ

)
φ−1
i Vi, (4)

where dα
dtα is the fractional-order derivative of order α ∈

(0, 1).
The first attempt to undertake Hopf bifurcation phe-

nomena in FONN by theoretically characterizing has been
developed in 2011 [35]. The authors have replaced frac-
tance in the typical capacitor from the Hopfield NN, which
formed a familiar FOHNN model. In 2012, they put for-
ward a theoretical stability analysis by characteristic param-
eters for the FONN of Hopfield type [36]. The work
observed that the FONN might show rich dynamical be-
havior. Their dynamics become increasingly complex as
the fractional-order rises, leading to the chaotic behavior
of the system. In [37], the Mittag-Leffler function has
been proposed to synchronize a Class of Fractional-Order
Chaotic NN. The theoretical results obtained are applied
to a FOHNN model. During the same year, the complex
dynamical behaviors of such networks have been inspected
and observed that an expansive range of interesting dynam-
ical phenomena has been found to exist. In 2014, to present
a theoretical stability analysis of FOHNN with time delays,
two FOHNNwith different ring structures and delays were
introduced; the derivation for the adequate conditions for
stability of the systems are also provided [38]. In 2015,
Shuo Zhang et al. investigated their solutions’ existence
and stability conditions within the frame of Filippov solu-
tions. Under the proposed requirements, the uniqueness of
the equilibrium point of the system is broken down [39].
In 2016, the global Mittag-Leffler stability condition pre-
sented linear matrix inequalities by applying the fractional
Lyapunov method with impulses [40].

2.4. Fractional-Order Cellular Neural Network

In CNN, the cell is the fundamental circuit element, as
shown in Fig. 2. It is to note that any CNN cell is connected
only to its neighbor cells. For the circuit, the input, state,
and output equations are given as follows [41]:
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Fig. 2. Architecture of the cellular network model.

uij(t) = Eij , (5)

C
d
dt
xij(t) = − 1

Rx
xij(t)

+
∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl(t)

+ C(i, j; k, l)xkl(t) + I,

(6)

yij(t) =
1

2
(|xij(t) + 1| − |xij(t)− 1|), (7)

where C(i, j) is the cell of ith row and jth column, uij , xij
and yij are the input, state and output voltages respectively
of each neighbor cell C(k, l). The voltage controlled cur-
rent sources are given as,

Ixy(i, j; k, l) = A(i, j; k, l)ykl, (8)

Ixu(i, j; k, l) = B(i, j; k, l)ukl, (9)

Ixx(i, j; k, l) = C(i, j; k, l)xkl. (10)

In (8), (9) and (10), A, B and C are coefficients known
as cloning templates. In (6) is given as,

Nr(i, j) = C(k, l) : max(|k − i| − |l − j|) ≤ r. (11)

From the above circuit in Fig. 2, the governing equa-
tions for the fractional-order form of CNN are given as
follows:

uij(t) = Eij , (12)

C
dα

dtα
xij(t) = − 1

Rx
xij(t)

+
∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl(t)

+ C(i, j; k, l)xkl(t) + I,

(13)

yij(t) =
1

2
(|xij(t) + 1| − |xij(t)− 1|), (14)

where dα
dtα is the fractional-order derivative of order α ∈

(0, 1).
There have been various advancements in FOCNN in

techniques and learning algorithms that have potential ap-
plications. In 2012, to establish secure communications by

improving the security of the chaotic communication sys-
tem, FOCNN had been proposed with Fractional-order
four-cell CNN [42]. Then in 2014, fractional Lyapunov
method and Mittag-Leffler functions provided leverage
to the development of FOCNN with time-varying delays
[43]. Although in 2018, to deal with multiple-time delays
and fractional-order linear delayed systems, fractional-order
adaptive laws have been used to examine the stability theory
in fractional linear-delayed systems for controlling FONNs
with or without sector nonlinearities [44]. As advance-
ment in this domain, fractional-order differential inequal-
ity, including time delays, has been proposed in 2020 with a
feedback controller to inspect the multi-weighted complex
structure, robust synchronization of on FOCNN under lin-
ear coupling delays [45]. Researchers in 2021 have used the
contraction mapping principle with FOCNN to analyze S-
asymptotically w-periodic oscillations in FOCNN [46]. A
fractional-order system of a multidimensional-valued neu-
ral network is split into four or two fractional-order systems
of real-valued neural networks based on Hamilton rules. A
novel inequality comprising a quadratic term is inferred and
analyzed on the synchronization and stability problem [47].
Also, LKFs are constructed from these new inferred in-
equalities with quadratic coefficients.

2.5. Fractional-Order Memristor-Based Neural Net-
works

A memristor is a hardware and electrical component
which performs the same function as a resistor but re-
members the amount of charge that has previously flowed
through it. This hardware’s specific vital properties are ex-
ploited using complex and computational intensive neuro-
morphic systems such as CNNs and their derivatives. Mem-
ristors are two-terminal nano solid-state switching devices.
They tend to fix the issues of memory wall and communica-
tion bottlenecks raised from the conventional CMOS tech-
nology. With the Non-Volatility property of this memris-
tor, the capability to retain memory even without power, a
memristor crossbar array architecture is proposed for prac-
tical use in real-world applications because of its high den-
sity and parallel computational ability. Memristors allow
in-memory computing. They accelerate MVM, search, and
bitwise operations. Most NN architectural layers include
a convolutional layer whose computation pattern is MVM,
and the fully-connected layer is memory-intensive. Using a
memristor allows efficient hardware acceleration of CNN
and other variants of NNs [48, 49, 50, 51].

In 2014, the authors proposed network stability con-
ditions by applying an inequality approach and analysis
method [52]. Further, proposed adequate requirements to
ensure the equilibrium point is existing, unique, and stable.
In the same year, Jiejie Chen et al. introduced memristor-
based FONN, the dynamic behavior of a class of FOMNN
has been proposed [53]. Moreover, sufficient criteria for

ENGINEERING JOURNAL Volume 26 Issue 27, ISSN 0125-8281 (https://engj.org/) 53



DOI:10.4186/ej.2022.26.7.49

the uniqueness of the equilibrium point synchronization of
the networks are also proved. In the same year, using ap-
proaches like Gronwall inequality, Laplace transforms, and
estimates of Mittag-Leffler functions, the finite-time stabil-
ity criterion of Fractional-Order distributed delayed BAM
NN have been proposed [54]. In [55], within the frame of
the Filippov solution and using differential inclusion the-
ory, a comparison theorem has been presented for a set of
fractional-order systems with multiple time-delays.

The presented requirements for attractivity for
memristor-based FONN and global boundedness with
non-Lipschitz activations. Further, the derivation for syn-
chronization conditions of the system as mentioned above
with parameter uncertainty is shown. Additionally, a de-
velopment condition to make sure the solutions exist has
been introduced by Shuo Zhang et al. [56]. In 2017, Xu-
jun Yanget et al. proposed Quasi-uniform synchronization
of delayed FOMNN and several adequate criteria to en-
sure the quasi-uniform synchronization for the FOMNN
with delay is put forward [57]. In 2018, Master-Slave syn-
chronization for some MFOBNN with mixed time-varying
delays and switching jumps mismatch had been proposed.
Some new projective lag synchronization criteria have been
conferred for such networks obtained by differential inclu-
sions theory, set-valued map, fractional Barbalat’s lemma,
and control scheme [58]. In 2019, proposed a generic frac-
tional Halanay inequality with multiple time-varying delays
[51]. The delayed FOMNN is discussed by capitalizing this
new upper bound and presenting inequality based on the
Lyapunov function method. In the same year, Hong-Li Li
et al. handled FOQVNNLDD without any disintegration
[59]. The work transformed the FOQVNNs into real-
valued systems, which is more concise and naturalistic than
the actual decomposition method.

Two novel methods are proposed in [60] for the syn-
chronization problem of FOQVNN. The first includes a
new establishment of LKFs and fractional-order deriva-
tive inequality. The latter method equips both norm com-
parison rules and generalized Gronwall-Bellman inequal-
ity with the help of the Laplace transform of the Mittag-
Leffler function. A Lyapunov stability theory and Caputo
fractional derivative with several algebraic criteria are es-
tablished in [61] for guaranteeing the finite-time Mittag-
Leffler synchronization of FOQVNNs. This method has
shown less conservatism than existing results. To de-
crease the computational complexity and avoid the non-
commutativity of quaternion multiplication, FOQVNN is
separated into four real-valued FONNs. Inequality tech-
niques and Lyapunov functional criteria are proposed in
[62] to ensure Mittag-Leffler stability and impulsive con-
trol. The principle of homeomorphism, the Lyapunov
fractional-order method, and the matrix inequality ap-
proach are applied in [63] to derive sufficient conditions to
study the global asymptotic stability problem for the FO-

QVBAM neural network. The technique has shown bet-
ter results confirming the existence, uniqueness, and global
asymptotic stability of the system’s equilibrium point.

The global synchronization criteria are first derived by
employing the second method of Lyapunov. A new set
of FOQMNNs and a unique scientific expression for the
quaternion-value inductance has been proposed following
its features. A new sufficient criterion has been presented
to verify the finite-time stability of the FOQMNN sys-
tem by ignoring the impulsive effects by employing the
Laplace transform in the same year. In 2020, proposed
a synchronization for commensurate Riemann-Liouville
FOMNN with unknown parameters through Lyapunov’s
second method. Further, two inequalities of Riemann-
Liouville fractional derivatives that play a vital role are pro-
vided to theoretically analyze the Riemann-Liouville frac-
tional differential system [64]. Similarly, a fractional–based
theorem has been introduced to deal with the effects of
reaction-diffusion and time delay of FOMNN [49].

Additionally, the activation function has been extended
to sporadic cases on the Filippov solution and set value
mapping theory. In addition, a finite-time projective syn-
chronization of FOMNN with mixed time-varying delays
and several criteria to ensure that along with the set-valued
map and frame of fractional-order differential inclusion has
been proposed by Meng Hui et al. [48]. Also, three prop-
erties are established, which significantly increases some re-
sults of settling time of FOMNN.

In [65], a new model is designed to counter the fixed-
time synchronization problem. The approach takes two
general inequalities, extended Cauchy-Schwarz inequality
and generalized derivative of the fractional-order absolute
value function, to realize the analysis with the acquisition
of this less conservative fixed time. Further, two new in-
equalities to deal with global Mittag-Leffler synchroniza-
tion are deduced and compared with the existing inequal-
ities in [66]. Also, with Lyapunov theory, two more novel
functionals are constructed along with multiple more flex-
ible criteria and a numerical example to demonstrate the
proposal’s effect on this problem. Similarly, a benchmark
technique is used in [67] for the delayed fractional-order
systems of multidimensional-valued memristive neural net-
works stability. The proposed Lyapunov method with sev-
eral new lemmas has shown many advantages, including
lower conservatism and higher flexibility. Using impul-
sive and effective analysis techniques, the system’s dynamic
behavior is studied in [68]. The Lyapunov method ob-
tains some specific conditions to ensure the stability and
passivity of the Memristor-based fractional-order competi-
tive neural networks. To counter stability issues, the tech-
nique in [69] uses the framework of Filippov solutions
with suitable Lyapunov-functional and differential inclu-
sion theoretical analysis. By employing specific order of
value, fractional-order stability of orders 0 to 1 and 1 to
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2 are discussed separately by creating a sufficient criterion
using Laplace transform and Mittag-Leffler function and
Generalized Gronwall inequality. Original fractional-order
quaternion-valued systems are divided into four fractional-
order real-valued systems based on the non-commutativity
of quaternion multiplication. Sufficient conditions are es-
tablished in [70] by employing Lyapunov fractional-order
derivative, fractional-order differential inclusions, global
Mittag-Leffler stability, and set-valued maps.

2.6. Fractional-Order Complex Valued Neural Net-
works

Stability analysis of FOCVNN has been studied over
the years. In 2014, a FOCVNN had been proposed using
fractional-order differential equations to examine the stabil-
ity of FOCVNN using memristor-based NNs [71]. In the
same year, the work in [72] has presented a complex-valued
recurrent NN to find a proper activation function in vari-
ous complex processes. Continuous FOCVNNwith a time
delay algorithm has been equipped in the model. In [73],
the dissipativity of NNs with time delay is analyzed using a
FOCVNN model developed with Lyapunov functions and
fractional Halanay inequality and Caputo fractional-order
differential equations, which helps in the study of linear,
non-linear systems and economic systems.

2.7. Other Neural Networks

2.7.1. Fuzzy-based Neural Networks

In [74], proposed a T-S fuzzy-based NN model us-
ing fuzzy Lyapunov synthesis. This paper equipped the
Adams-Bashforth-Moulton algorithm and synchronized
fractional-order Duffing-Holmes chaotic system. Also, as
an advancement in this domain, Recurrent Fuzzy NN is
proposed in 2020, which uses sliding mode control and
fractional calculus [75]. This model helps in fractional slid-
ing mode control for the micro gyroscope. A fractional-
order learning algorithm using Grünwald-Letnikov’s and
Riemann-Liouville’s definition is used to develop the model
where a two-loop recurrent fuzzy NN is employed to ap-
proximate the system uncertainties.

2.7.2. Feedback

In [76], the paper has proposed fractional-order mod-
eling, along with an analysis of stability and control of two
robotic manipulators. The pole placement method has
been used to derive the control law. Here, the research in
the time domain is done using the Mittag-Leffler approach.

2.7.3. Backpropagation

In [77], the screen variables have been screened using
the adaptive lasso method, and the various neural network
models are established by choosing variables for the seven

countries. This paper aims to screen the economic growth
in these seven countries, and the local quadratic approxima-
tion algorithm has also been implemented.

2.7.4. Forward-Rolling Empirical Decomposition
Method

The Forward-Rolling Empirical Decomposition
method algorithm uses the fractional calculus predicting
model and principal component analysis method to pro-
pose a stochastically new financial stock market analysis
and financial pricing of stocks model based on Taylor’s
formula [78].

2.7.5. NARX Neural Network

In [79], proposed a NARX Neural Network model us-
ing fractional-order calculus and a backpropagation algo-
rithm. This model helps in the reduction of large-scale
systems with fractional-order non-linear structures. Also,
a new type of update rule using fractional calculus is ob-
tained, which has provided good results in fractional-order
system model reduction [80].

2.7.6. ResNet

In 2019, introduced a generalization methodology for
automatically selecting the activation functions inside NN,
which led the neurons within the network to adjust their
activation functions to precisely fit the input data and con-
siderably reduce the output error [81].

2.7.7. Multilayer Perceptron Network

By using CNN and PSO, in 2019, Brazilian researchers
equipped the fractional-order Darwinian PSO segmenta-
tion algorithm K-fold cross-validation technique to pro-
pose a method recognizing plotting polynomials using a hy-
brid segmentation method by fractional calculation [82].

2.7.8. Inverse and Forward Problem

In [83], a variable-order based fractional model is pro-
posed. This model can predict the mean fluid velocity pro-
file, and Reynolds stresses of the fluid with accuracy better
than 1% for any range of Reynolds number. Direct numeri-
cal simulation data and a Physics-InformedNeural Network
have been used to obtain the fractional-order.
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Fig. 3. Classification of various fractional-order neural
network structures.

The summary of these advances in fractional-order
neural networks in terms of structure, learning algorithm,
and others is given in Table 1. From the table, the classifi-
cation of various fractional-order neural network structures
is shown in Fig. 3. Further, the different types of stability
analysis approaches used in the literature are summarized in
Fig. 4.

Fig. 4. Various stability analysis approaches used for
fractional-order neural networks.

3. Applications of Fractional-Order Neural Net-
works

This section presents the critical review on the applica-
tion of FONNs in various fields such as system identifica-
tion, control, optimization, stability, and synchronization.

3.1. System Identification and Control

In 2011, a T-S fuzzy-based NN was proposed to syn-
chronize fractional-order Duffing-Holmes chaotic systems
[74]. The researchers in 2012 used α-exponential stability.

They produced a novel fraction order differential inequality
that helps in information processing, stimulus anticipation,
and frequency independent shifts of oscillatory neural fir-
ing [18]. A FOHNN based controller synchronizes a class
of Fractional-order Chaotic Neural Networks [37]. In [25],
a controller investigating the parameter identification and
synchronization problem of FONN with time-delays has
a direct behavior of the non-linear dynamical systems. In
2014, the authors studied an Impulsive NN of fractional-
order Caputo system of varying time delays and proposed a
linear non-impulsive controller [43]. With the help of BAM
NN, the Caputo fractional-order BAM neural network is
established and analyzed the finite-time stability for pattern
recognition and automatic control [54]. In 2016, the neu-
ral net’s dissipative analysis was studied, which is used to
analyze linear, non-linear, and economic systems [73]. In
2017, parameter estimation of NN models was proposed
using adaptive control methods [33]. FONN with multiple
time-delays is investigated, and some stability criteria are de-
rived with which it is used to control FONNs with or with-
out sector nonlinearities in control inputs [44]. In 2019,
fractional calculation and classification proposed a hybrid
segmentation method through CNN to recognize simple
handwritten polynomials [78]. In [88], the paper researches
the stability and bifurcation of a FONN with double de-
lays in application to system control. Also, in the same
year, the authors of [83] have used direct numerical sim-
ulations data and designed a physics-informed neural net-
work to obtain an order that helps in a turbulent Couette
flow system. In 2020, the indirect method for solving a
class of DFOCPs had been based on the NN approach and
optimal control problems [13]. Model reduction of large-
scale systems with Fractional-order non-linear structure is
discussed, and a new type of fractional update rule is ob-
tained [79]. A simple and more accurate FONN model for
system identification with minimal parameters is received in
the paper [75].

3.2. Stability Analysis & Synchronization

In [1], the paper analyzes FONNs with double delays
for their stability and bifurcation. The bifurcation results of
the FONNs have been deduced once the leakage delays are
not identical to the communication delays. Further research
has been conducted on a FONN with two unequal delays
for its stability and bifurcation [24]. It has been obtained by
intercalating one delay and taking the remnant delay as a bi-
furcation parameter. This paper aimed to analyze the NNs
with different delays for their bifurcation problem and gen-
eralize the derived results to more high-order FONNs with
numerous delays. The authors of [23] examine the stability
of both FONNs with and without delay using S-procedure.

The analysis of quaternion-valued FONNswith leakage
and discrete delays for their synchronization is reported in
[59]. The investigation has been carried out by applying the
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Table 1. Summary of advances in fractional-order neural networks.
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Table 1. Summary of advances in fractional-order neural networks (continued).
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Table 1. Summary of advances in fractional-order neural networks (continued).
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Table 1. Summary of advances in fractional-order neural networks (continued).
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properties of quaternion and Caputo derivatives. Further,
the global asymptotical stability condition, comparison the-
ory, and global synchronization for FONNs with multiple
time delays have been reported [89]. Here, measures like
memristor-based anti-synchronization control have been
applied. In [22], sufficient conditions have been obtained
on the asymptotic stability for Riemann-Liouville FONNs
with discrete and distributed delays. Here, the Lipschitz
continuous functions have been used as activation func-
tions. Similar analysis on the NNs with time delays for their
dissipativity has been reported in [73]. Here, the fractional
Halanay inequality has been used to obtain new algebraic
conditions. This new Lyapunov function guarantees the
global asymptotic stability of FVCNNs with time delays.

In [40], the paper investigates the global Mittag-Leffler
stability for FOHNN with impulsive effects. Here, the tanh
function has been used as the activation function. The
global synchronization for FOMNNwith parameter uncer-
tainty has been obtained in [55]. In [29], the paper aimed to
establish a framework for the fundamental stability analysis
of the FONNs. Here, the authors worked towards relax-
ing the knowledge requirements of system uncertainties in
the controller design. For activation functions, here, a tanh-
non-linear function has been used.

On the other hand, the work reported in [90] com-
pares and studies the linear delayed systems’ stability. Lip-
schitz continuous functions have been used here as acti-
vation functions. The work in [21] discusses the class of
delayed FONNs finite-time stability. Here, two effective
criteria were derived to ensure the finite-time stability of
fractional-order systems. For activation function, tanh has
been used here. The uniform stability analysis conditions
for FOCNNs with time delays have been reported in [72].
The paper [71] investigates the stability of memristor-based
FOCVNN with time delays. CNN’s have complex-valued
states, connection weights, and activation functions. In
[53], the paper studies the dynamic behavior of the class
of FOMNN.

The theoretical stability analysis for FOHNNs with
time delays has been reported in [38] for two FOHNNs
with ring structures with time delays. Also, the work derived
the corresponding sufficient conditions for the system’s sta-
bility. The stability analysis of FOBAM with delays is re-
ported in [52]. The investigation is based on the inequality
technique. Also, Lipschitz continuous functions have been
used as activation functions. In [19], the paper presents a
sufficient condition for a class of FONNs with time delay
has been given to ensure the networks’ uniform stability.
Here, piecewise linear and Lipschitz continuous functions
have been used as activation functions. The finite-time sta-
bility for a class of FONNs with time delays has been re-
ported in [20]. The analysis helps in the design and applica-
tion of fractional networks. The work in [37] synchronizes
a class of chaotic FONNs by using Mittag-Leffler func-

tions. Here, Lipschitz continuous function has been used as
an activation function. The theoretical stability analyses of
FOHNN in [36] reported that the FONNs exhibit chaotic
dynamic behavior. A unified form is first established in [92]
for fractional-order multidimensional-valued BAM neural
networks. A criterion is derived from new LKFs in a vec-
tor form and two new inequalities. This has shown higher
flexibility, more negligible computation, more diversity, and
lower conservatism. The work presented in [93] has pro-
posed a proper LKF by using the differential inclusions to
achieve global asymptotic stability of fractional-order un-
certain BAM competitive neural networks. This is based
on the LMI technique and has shown the feasibility and ef-
fectiveness of this method.

A novel fractional-order differential inequality has been
introduced, i.e., the α-exponential stability in [18]. Also,
some effective criteria have been derived for such kind of
stability. Here, Lipschitz and tanh functions have been used
for activation functions. A novel approach using fuzzy
and sliding models has been proposed to synchronize the
fractional-order Duffing-Holmes chaotic system [74]. The
theoretical stability analysis for the FOHNN has been pre-
sented in [35]. The proposed study is the first attempt to-
wards theoretically characterizing the Hopfield bifurcation
phenomena in FONN. The tanh function has been used
here as the activation function.

3.3. Optimization Problems

In 2011, an attempt to solve Fractional-order differen-
tial equations using NN was made using the swarm intelli-
gence technique and log sigmoid function as activation func-
tion. Statistical data such as fitness values, best, worst, stan-
dard deviation are used as performance measures [11]. In
2016 Shuo Zhang et al. analyzed the dynamic properties of
the FOMNN system’s global attractivity. Firstly, a growth
condition is presented. Later, the global Mittag-Leffler sta-
bility for a FOMNN system is analyzed. In 2020, solv-
ing the Fractional-order partial differential equations using
NN is proposed. The analysis has been applied in various
problems such as fractional wave equations, boundary value
problems, fractional heat conduction equations [12]. In the
same year, an approach using NN in solving the delay frac-
tional optimal control problems by an indirect method is
presented. Suitable transfer functions are used as activation
functions [13, 94, 95, 96, 97]. Within the year 2021, a way
to numerically approximate the initial and boundary value
problems by using the Haar wavelets technique has been
proposed. The proposed method is applied to linear and
non-linear fractional-order differential equations, and nu-
merical results show that the proposed method is efficient
[84]. Later, an efficient fractional global learning machine
called Fragmachine was developed to find a model’s global
optimal solution and determine the optimal search path
[16]. Also, a quantum backpropagation algorithm based on
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the fractional Grünwald–Letnikov is proposed in [15] to re-
duce the convergence speed and error.

3.4. Communication Systems

In 2012, the researchers investigated the hyperchaotic
phenomena in the newly proposed FOCNN model in the
application of secure communication to improve the sys-
tem’s security [42]. In 2013 Xia Huang et al. investigated
complex dynamics of FOHNN with time delays. They dis-
covered a wide variety of interesting dynamic behavior of
the system, such as periodic and chaotic [91]. In 2016 the
global projective synchronization of non-identical FONN
based on sliding mode control technique was studied, and
sufficient criteria were derived [27]. In 2017 an attempt to
explore the Fractional-order application of a FONN sys-
tem synchronization in the areas of secure communication
was made. Also, they created an integral sliding surface
model, and the generalized projective synchronization of
the FONN system with time delays is explored [28].

4. Conclusion

The advances made in the field of fractional-order neu-
ral networks along with the development of their struc-
tures, learning algorithm, methods, dynamics in the last
decade are discussed and summarized in this paper. Various
forms of fractional-order neural networks such as FFNN,
FOHNN, FOCNN, FOMNN, FOCVNN, and other net-
works are analyzed critically. Also, a review of applications
of these neural networks in system identification and con-
trol, stability analysis and synchronization, optimization,
and communication is presented.
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