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Abstract. This paper presents a systematic way to determine the trade-off optimized 
controller tunings using computation optimization technique for both servo and regulatory 
controls of the Multi-Tank System, as one of the applications under the multivariable loop 
principle. The paper describes an improved way to obtain the best Proportional-Integral 
(PI) controller tunings in reducing the dependency on engineering knowledge, practical 
experiences and complex mathematical calculations. Relative Gain Array (RGA) 
calculation justified the degree of relation and the best pairing for both interacted control 
loops. Genetic Algorithm (GA), as one of the most prestigious techniques, was used to 
analyze the best controller tunings based on factor parameters of iterations, populations 
and mutation rates to the applied First Order plus Dead Time (FOPDT) models in the 
multivariable loop. Amid simulation analysis, GA analysis’s reliability was justified by 
comparing its performance with the Particle Swarm Optimization (PSO) analysis. The 
research outcome was visualized by generating the process responses from the LOOP-
PRO’s multi-tank function, whereby the GA tunings’ responses were compared with the 
conventional tuning methods. In conclusion, the result exhibits that the GA optimization 
analysis has successfully demonstrated the most satisfactory performance for both servo 
and regulatory controls.  
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1. Introduction 
 
One of the most common operated control loops in 

many industries is the Multi-Input-Multi-Output (MIMO) 
loop [1], also known as the multivariable loop. Recently, 
the multivariable loop has been applied to several 
engineering practices include heat pump system [1], 
quadruple-tank process [2], aero-engine [3], domestic 
boiler system [4], energy storage [5] and buildings climate 
control [6]. Furthermore, Multi-Tank System has also 
applied multivariable loop, whereby the system controls 
several process parameters concurrently in their 
respective loops with the independent set values [7]. 
However, controlling one of the loops will directly or 
indirectly affect the control capability of the other loops 
due to the interactions among the controlled loops. 
Controller tunings should be applied to maintain the high 
performance and stability of the control loops. Literature 
reflects that most of the industrial control loops apply 
PID controller [8], which consists of the Proportional-
Integral (PI) and Proportional-Integral-Derivative (PID) 
control modes [9]. PID controller is chosen because is 
simple, cost-efficient, and effective in controlling the 
process, making it highly adaptable to various process 
conditions [10, 11]. The PID controller tunings can be 
manually done right in the first place to cope with the 
setpoint changes, imposed disturbances, or dynamic 
behavior changes after the modification has been made 
to the physical process. There are many tuning methods 
available for PID controllers, for instance, Ziegler-
Nichols (ZN), Internal Model Control (IMC), which can 
be comprehended by most of the users in their 
applications [12]. To improve control performance, three 
control terms of proportional, integral and derivative 
gains are adopted to single, cascade and feedforward 
control loops [13, 14].  

One typical example of a multivariable loop is the 
Two-Input-Two-Output (TITO) loop, as illustrated in 
Fig. 1. The interaction among the loops is known as 
cross-couplings. TITO loop has extended characteristics 
as compared to the single control loop, where TITO 
contemplates the interaction and control performance 

among two interacted processes [15]; in Fig. 1, 𝑈1 
interacts the effect of control action from the first loop 

to the second loop and 𝑈2 interacts the effect of control 
action from the second loop to the first loop. Therefore, 

both manipulated 𝑈1 and 𝑈2 affect the output values 𝑌1 

and 𝑌2. When the controller 𝐺𝐶1 manipulates value, 𝑈1 , 

to keep 𝑌1  at setpoint 𝑆𝑃1 , however, it will affect the 

performance of the output, 𝑌2 . Then, controller 𝐺𝐶2 

responds to maintain output, 𝑌2 at setpoint 𝑆𝑃2, causing 

further interaction to the output, 𝑌1  and consequently 

affects the control action of the controller 𝐺𝐶1 . The 
impact to both outputs consequence further changes to 

𝑈1 and 𝑈2 due to the adjustment of controllers of both 
loops. For the reasonable controller tunings, the outputs 
might be stabilized after a certain period.  

  

 
The controller tuning task for the multivariable loop 

is challenging. The interaction among each loop may 
deteriorate the controllers’ capability for both controlled 
loops [16]. As affected by other loops, the set controller 
tunings result in longer deadtime, more oscillatory 
responses, destabilizes the controlled loops and 
eventually result in the unforeseen loss of productivity in 
the process [17]. The authors in [18] stated that the 
manual detuned-PID controller settings could somehow 
minimize interaction between control loops, but the 
overall tunings strategy for multivariable loop still needs 
to be improved. In this sense, designing a highly efficient 
controller becomes extremely important in controlling 
the multivariable loop [1]. To date, the multivariable loop 
can be regulated by applying either the centralized or 
decentralized control scheme. The decentralized control 
scheme is more commonly applied via each loop’s 
independent PID controller tunings. In addition, a 
decentralized control scheme applies a pairing factor 
among the interacted loops but still requires state-of-the-
art refine tuning even after applying mathematical 
calculations to obtain the controller tunings. In a 
nutshell, it relies on the skills and end-user experiences, 
whereby only the experienced operators can reasonably 
obtain the controller settings for the satisfactory 
performance of the multivariable loop. 

To minimize the dependency on personal skills and 
experiences during the controller tunings, computational 
optimization is a good alternative of choice to consider. 
Among many optimization approaches, Genetic 
Algorithm (GA) is selected for the analysis. GA performs 
analysis based on exploration and exploitation 
capabilities of natural evolution in solving optimization 
problems [19]. The primary stage cover selection, 
crossover, and mutation supported by the developed 
objective function. GA develops a number of 
chromosomes as population of potential solutions for 
calculating the best fitness function in the search region 
[20]. The objective function would interactively go 
through many generations and eventually obtain global 
solutions to the analyzed engineering problems. This 
paper aims to present a sound and direct way to analyze 
the trade-off controller setting using GA analysis for the 
best control performance of both servo and regulatory 
controls, replacing the present tuning practices that 
require the repetitive tunings for the respective servo or 
regulatory controls, which is yet to commit the overall 

 

Fig. 1. Block diagram of TITO Loop. 
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control performance. The GA analysis covers factors 
such as iterations, populations and mutation rate and 
later the result is compared to Particle Swarm 
Optimization (PSO) analysis. As the First Order plus 
Dead Time (FOPDT) models is applied in the 
multivariable loop, this research can be sound reference 
to the future GA optimization research for other 
multivariable based engineering applications, which is 
formed by FOPDT models. The paper is organized as 
follows:  

Section 2 presents the literature study on 
multivariable control, PSO and GA. Section 3 depicts 
research methodology and development of block 
diagram for the LOOP-PRO software’s multi-tank 
function, Routh-Hurwitz necessity analysis, Routh Gain 
Array (RGA), PSO and GA analysis. Section 4 presents 
GA analysis based on iteration, population and mutation 
rate criteria. Then, it incorporates other criteria to 
perform GA analysis for obtaining the trade-off 
optimized tunings, where the simulation analysis was 
performed and compared to the performance of PSO 
analysis. Furthermore, the result is compared with 
manually calculated controller tunings. Last but not least, 
the conclusion is covered in Section 5. 
 

2. Literature Review 
 
The first systematic PID controller tuning was 

introduced by Ziegler-Nichols (ZN) [21], which is fixed 
to the single loop. The multivariable loop has involved 
more than one controller. It can apply a decentralized 
tuning approach, which enables each controller to 
perform control in its loop and is obtainable through 
detuning, sequential loop closing, simultaneous equation 
solving, trial-and-error and independent tuning. The 
authors in [22] applied sufficient condition to design the 
IMC multi-loop tuning method to guarantee stability for 
the stable filter. In [7], the authors extended Biggest-log-
modulus (BLM) to classical ZN tunings by applying the 
detune factors to the tuned PID controller for obtaining 
better control performances among the interacted loops 
[23]. This method was further applied to three inputs and 
two outputs energy management systems in [24]. The 
authors in [25] applied uncertainty and disturbance 
estimator (UDE) based control method to control water 
level of the coupled-tank system that obtains minimum 
settling time and zero steady-state error.  

The authors in [27] highlighted all stabilizing 
parametric regions under multivariable PID control 
structure by using Hermite-Biehler theorem, while [27] 
applied GA optimization to support PID controller 
tunings to a TITO system heavy oil molecule. 
Researchers in [28] analyzed the performance of 
improved PID control system applied to the automobile 
cruise control system (ACCS) by using Ant Lion 
Optimization (ALO). Paper [2] analyzed a design control 
approach to use primary controllers, auxiliary controllers, 
and correction numbers via the RGA tool to determine 
the optimal control pairs. Concurrently, paper [16] 

compared the responses of RGA, Neiderlinski Index, 
Morari Resiliency Index, Condition Number (CN), and 
robustness analysis (RA) and Singular Value 
Decomposition methods for a multiple loop process. 
Furthermore, researchers in [6] proposed Sliding Mode 
Control (SMC) to reduce the steady-state and overshoots 
responses of the Heating, Ventilation, and Air Condition 
(HVAC) system. In other applications, authors in [3] 
applied a multivariable type of tracking differentiator 
(TD) and linear extended state observed (LESO) for 
reducing the total disturbance for aero-engine. Besides, 
[15] used Matrix A to improve the disturbance ability of a 
MIMO system. In detailing the literature above, it is 
found that the literature has demonstrated significant 
improvements adopted to the servo or regulatory control 
objectives. In fact, the performance of both control 
objectives could be upheld together via adopting the 
stochastic optimization analysis to the tested models.  

Particle Swarm Optimization (PSO) is a 
metaheuristic optimization method used to solve 
optimization problems. Paper [29] applied the PSO 
technique to decrease overshoots with the new anti-
jamming capability to the pump system operation. In 
paper [30], PSO has obtained the optimal weighting 
matrices that reduce the oscillation of pitch motion for a 
helicopter. Researchers [31] applied PSO to Automatic 
Voltage Regulator Control (AVRC) to improve the 
transient response and robustness against external 
disturbance. Meanwhile, PSO was adapted to Fuzzy 
controller in paper [32] for empirical parameter selection 
and invariances to the robot tracker that reduced 
overshoot and settling time. In analyzing the 
convergence characteristic for nonlinear constrained 
optimization (NCO) problem, paper [33] proposed an 
easy particle of PSO to improve premature convergence 
by diversifying the searching direction. Paper [34] 
analyzed the velocity and acceleration correlation vectors 
in PSO to improve the robotic arms’ position control 
and obstacle avoidance. In other applications, paper [35] 
applied Modified Firefly Algorithm (MFA) - PSO based 
Fractional order PID (FOPID) controller to improve the 
torque and speed regulation for Brushless DC motors 
(BLDCMs). Besides, Paper [36] combined PSO analysis 
with median filter in a simulation-based experiment to 
improve the image quality of distorted tribal artworks, 
whereby the result is compared with Histogram 
Equalization (HE) techniques.  

GA optimization analysis has been used widely to 
solve many complex engineering problems concerning 
multi-objective function Genetic Algorithm [37, 38], 
temperature control for boiler’s superheater steam [39] 
and cascade control loop [40]. Researchers in [41] 
discussed the pros and cons and the future prospect of 
GA and paper [42] elaborated basic benchmarks tests 
and evolutionary algorithms with the respective 
improvements on the fitness values. Authors in [43] 
improved the cloud computing task scheduling via GA. 
Researchers in [19] extracted the requirements of a full-
fledged system and developed a highly flexible GA 
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algorithm to obtain various solutions, improving the 
requirements’ quality. In paper [4], the authors used CF-
optimization and WCF-optimization supported by the 
GA to analyze the stress and fatigue damage of the 
reduced structural weight of the jacket offshore platform 
SPD19A. Researchers in paper [44] developed a hybrid 
teaching-learning GA (HTLGA) to solve the fuel 
reloading optimization by dealing with three operators: 
coding, crossover and mutation. Paper [45] applied 
hybrid GA with variable neighborhood search algorithm 
(GAVNS) to analyze improvements on multi-period 
vehicle routing problems with random pickup and 
delivery for heterogeneous fleet, rest area and service 
duration time windows of vehicles. For the boiler’s 
application, paper [33] applied GA to determine the 
boiler’s optimum conditions that met the indoor’s 
temperature settings and minimized the total gas 
consumption. Paper [46] applied GA to develop 
optimized Weibull Distribution via minimization of six 
variables, including sampling interval, sample size, 
samples number in pre-maintenance, control limit width, 
warning control limit and subinterval in between two 
sampling times. It overall improved the mean total hourly 
cost. Authors in [47] achieved the optimum mathematical 
solutions for nonlinear equations (SNLs) system using a 
grasshopper optimization algorithm (GOA) with GA, 
whereas the authors in [48] obtained a global search 
based on the K-means clustering algorithm of hybrid GA 

(HGA). [49] applied GA analysis for Vendor-managed 

Inventory (VMI), whereby GA analysed the minimum 
size and number of trucks to reduce transportation costs. 
[50] applied GA to the modularization concept that was 
used in designing the engine room. GA obtained the best 
module by considering pipe connection numbers and 
pipe cost constraints.   
In paper [51], the authors applied GA to obtain the best 
Fused Deposition Modelling (FDM) process parameters 
that contributes to fabricating copper-reinforced ABS 
components for electronics, automobiles and the 
aerospace industry. Paper [5] used an improved GA to 
optimize the operation of Thermal Energy Storage (TES) 
based on the established hourly operation model. Indeed, 
those success stories have inspired a new idea by utilizing 
GA optimization to analyze highly interacted TITO 
system controller tunings. Parameter factors such as 
iteration, population size and mutation rates are in-depth 
considered in the optimization analysis conducted using 
the MATLAB simulation tool. Later, the control 
capability is visualized via the Multi-Tank function of the 
LOOP-PRO software. 
 

3. Methodology 
 
This section describes the methodology for empirical 

model identification and controllers for a Two-input-Two-

Output (TITO) loop, stability analysis, RGA and the 

proposed optimization algorithms for the analysis. Besides, 

the section describes the used software for validation test.  

 

3.1. Algorithms for TITO Model and Controller 
 

In Fig. 1, the TITO loop consists of two process 
models for the feedback loops and two models interact 
with the other loop as disturbances. Therefore, four 
mathematical models are presented. The output is looped 
back to the input and contemporaneously receives the 
interaction from another loop. Both outputs are shown 
in Eq. (1) and Eq. (2), respectively: 
 

𝑌1(𝑠) =  𝐺𝑝11(𝑠)𝑈1(𝑠) +  𝐺𝑝12(𝑠)𝑈2(𝑠)    (1) 

 
 

𝑌2(𝑠) =  𝐺𝑝21(𝑠)𝑈1(𝑠) +  𝐺𝑝22(𝑠)𝑈2(𝑠)    (2) 

 

where, 
𝑌1(𝑠)

𝑈1(𝑠)
=  𝐺𝑝11(𝑠); 

𝑌1(𝑠)

𝑈2(𝑠)
=  𝐺𝑝12(𝑠);               

          

            
𝑌2(𝑠)

𝑈1(𝑠)
=  𝐺𝑝21(𝑠);  

𝑌2(𝑠)

𝑈2(𝑠)
=  𝐺𝑝22(𝑠) 

 
In the vector-matrix notation, the characteristic is 

represented as Eq. (3): 
 

 𝑌(𝑠) =  𝐺𝑝(𝑠)𝑈(𝑠) (3) 

 

where 𝑌(𝑠) and 𝑈(𝑠) are vectors 
 

  𝑌(𝑠) =  [
𝑌1(𝑠)
𝑌2(𝑠)

]    ;     𝑈(𝑠) =  [
𝑈1(𝑠)
𝑈2(𝑠)

] 

Therefore, the overall 𝐺𝑝(𝑠) in the transfer function 

matrix form is shown in Eq. (4): 
 

TITO model, 𝐺𝑝(𝑠) =  [
𝐺𝑝11(𝑠) 𝐺𝑝12(𝑠)

𝐺𝑝21(𝑠) 𝐺𝑝22(𝑠)
]              (4) 

 
Transfer function of each component in vector 

matrix 𝐺𝑝(𝑠) is represented in the FOPDT model [52] as 

Eq. (5):  

Process FOPDT model, 𝐺𝑝𝑖𝑗(𝑠) =  
𝐾𝑝𝑖𝑗𝑒

−𝜃𝑝𝑖𝑗𝑠

(𝜏𝑝𝑖𝑗𝑠+1)
        (5) 

 

where, 𝐾𝑝𝑖𝑗 = Process gain; 𝜏𝑝𝑖𝑗 = Process time constant; 

𝜃𝑝𝑖𝑗 = Process dead time; 𝑖 = 1, 2;  𝑗 = 1, 2 

  

The disturbance model in vector matrix 𝐺𝑑 (𝑠) is 
represented in the FOPDT model as Eq. (6): 

Disturbance FOPDT model, 𝐺𝑑𝑖𝑗(𝑠) =  
𝐾𝑑𝑖𝑗𝑒

−𝜃𝑑𝑖𝑗𝑠

(𝜏𝑑𝑖𝑗𝑠+1)
  (6) 

 

where, 𝐾𝑑𝑖𝑗 = Disturbance gain; 𝜏𝑑𝑖𝑗 = Disturbance time 

constant; 𝜃𝑑𝑖𝑗 = Disturbance dead time;  𝑖 = 1, 2;  𝑗 = 1, 

2. 
Besides, the respective controller models are 

designed to match the process characteristic, which is 
depicted as Eq. (7): 
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Controller model,  𝐺𝑐(𝑠) =  [
𝐺𝑐1(𝑠) 0

0 𝐺𝑐2(𝑠)
]          (7) 

 
This research applies the PI controller mode for each 

controlled loop that is represented as Eq. (8): 
 

 PI controller mode, 𝐺𝐶𝑖(𝑠) = 𝐾𝐶𝑖 (1 +
1

𝜏𝐼𝑖𝑠
)   (8) 

 

where,  𝐾𝐶𝑖 = Proportional gain;  𝜏𝐼𝑖   = Integral gain; 

 𝑖  = 1, 2 
 
3.2. Stability Analysis 

 
The stability of the closed loop transfer function is 

developed based on the Routh-Hurwitz necessity 
criterion; please refer to paper [38]. The obtained 
characteristic equation is shown as Eq. (9): 

 

(1 + 𝐺𝑐1𝐺𝑝11)(1 + 𝐺𝑐2𝐺𝑝22) − 𝐺𝑐1𝐺𝑐2𝐺𝑝12𝐺𝑝21 = 0       (9) 

 
For the best controller settings, the feedback control 

loop should be ignored by expecting the zero 
interactions in between two control loops, where it is 

expected that 𝐺𝑝12 = 0 and 𝐺𝑝21 = 0. Therefore, the 

interactive loop’s stability is merely dependent on the 
stability of the respective individual feedback loops. Its 
characteristic equations are respectively shown as 

(1 + 𝐺𝑐1𝐺𝑝11) = 0 and (1 + 𝐺𝑐2𝐺𝑝22) = 0. 

Through the mathematical operation, the stability 

margin covers the range for both Proportional gain, 𝐾𝐶𝑖 

and Integral time constant, 𝜏𝐼𝑖  , which is depicted in Eq. 
(10) and (11). When both values have the same integer as 

the range, the lower limit for 𝐾𝐶𝑖 could be set as 0, while 

the upper limit of 𝜏𝐼 could be a reasonable value larger 
than (11). 

 𝐾𝐶𝑖 <  
𝜏𝑝𝑖

𝐾𝑝𝑖𝜃𝑝𝑖
  (Upper Limit for proportional gain)   (10) 

 

   𝜏𝐼𝑖 >
𝜃𝑝𝑖𝐾𝑐𝑖𝐾𝑝𝑖

1+𝐾𝑐𝑖𝐾𝑝𝑖
  (Lower Limit for time constant)      (11) 

 
3.3. Relative Gain Array (RGA) 

 
RGA is a quantitative technique developed by Bristol 

[8] that measures the degree of interaction between the 
controlled and manipulated variables. It also determines 
the need to pair input-output when any negative or larger 
elements exist in the produced RGA matrix [16], 
allowing the multivariable loop to improve control 
performance [10]. The pairing loop aims at mitigating the 
impact or influence from another loop by adjusting the 
control weight or ratio to the deviated Process Variable 
(PV) due to the setpoint change or imposed disturbance 
[9]. The RGA for a TITO loop is shown in Eq. (12) 

 

 𝜆 = [
𝜆11 𝜆12

𝜆21 𝜆22
]            (12) 

where, 𝜆 = relative gain. 

 
For the steady-state coupling, only the process gain 

of every process model is considered and allocated into 
the matrix structure and all elements of the matrix are in 
Eq.  (13): 

                            𝐾 = [
𝐾11 𝐾12

𝐾21 𝐾22
]                           (13) 

where, 𝐾11 = 
1

1−
𝐾21𝐾12
𝐾22𝐾11

 ;  𝐾12 =  𝐾21 = 1 −  𝐾11; 

                   𝐾11 =  𝐾22  
The determination is based on the interaction of the 

TITO loop, which is reflected by all 𝐾  values. The 

pairing of 𝐾12 < 0 and 𝐾21 < 0 means either the open or 
closed loops for that control loop will have a strong 
unfavorable effect on the other loop and potentially 
causes the oscillatory response. In this case, decouplers 
are needed to minimize or eliminate the interaction 
between two loops. 
 
3.4. Genetic Algorithm Optimization Analysis 

 
GA is a stochastic optimization technique that uses 

genetic-based mechanism to generate new solutions 
iteratively from the best solutions of the previous 
generations in the competing environment. The 
preliminary analysis of the search region and objective 
function must be obtained. The Upper and Lower bound 
settings determine the obtainable search region via 
Routh-Hurwitz stability analysis. In the optimization 
analysis, the algorithm randomly chooses the first 
generation of chromosomes. For the PI controller, a 
group of chromosomes comprises controller parameters 

𝐾𝑐𝜏𝐼 ,  where  𝐾𝐶 = 𝑐1, 𝑐2, … . . 𝑐𝑛 , 𝜏𝐼 = 𝐼1, 𝐼2, … … 𝐼𝑛 
are coded (see [53]). All the chromosomes are going 
through the computational calculation and fitness test. 
The fitness test runs the objective function’s algorithm to 

produce the performance index, 𝐽, where the formula of 
Integral Absolute Error (IAE) is depicted in Eq. (14): 

 

Integral Absolute Error, IAE =  ∫ |𝑒(𝑡)|𝑑𝑡
∞

0
             (14) 

 
The lower the produced IAE value, the better the 

quality of the new chromosome [54] in that generation 
cycle. Every iteration determines the two best 
chromosomes to be the best children or local minima. 
This is then proceeded with formulating a new group of 
chromosomes containing the best children of the 
previous iteration and other randomized chosen new 
chromosomes. Then, the optimization analysis would 
repeat its iteration cycles until the global minima is 
obtained.  

GA performs three main stages in the optimization 
analysis known as Selection, Crossover and Mutation [41].  
In the stage of Selection, GA chooses the chromosome 
to be analyzed within the search region, where the above-
average strings are copied in a probabilistic manner [55]. 
The Roulette Wheel method is applied to select 
chromosomes as parents. Crossover operation exchanges 
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the genes in between parents to form new offsprings. 
The offsprings inherent partially characteristic of two 
parents that exchanges information with each other 
before. In this research, the uniform crossover operator 
has been selected, where it will randomly choose the bit 
of strings among parents that improve the exploitation 
capability to converge and produce better offsprings in 
shorter period. The composition of two sample 
chromosomes is shown as Eq. (15) and (16). 

 
 

Parent 1:  𝑋1 =  ( 𝑋11 + 𝑋12 + ⋯ +  𝑋1𝑛 )               (15) 
 

Parent 2:  𝑋2 =  ( 𝑋21 + 𝑋22 + ⋯ + 𝑋2𝑛 )               (16) 
 

The unicrossover produces the offsprings with the 
algorithm as shown in Eq. (17) and (18). 

 

Offspring 1: 𝑌1𝑖 =      𝑋𝑖𝑋1𝑖      +     ( 1 − 𝛼𝑖)𝑋2𝑖      (17) 
                                        (Inherent 1st             (Inherent 2nd parent’s 

                                        parent’s genes)        genes with factor values)      

 

 Offspring 2: 𝑌2𝑖 =  ( 1 − 𝛼𝑖)𝑋1𝑖    +       𝑋2𝑖           (18) 
                                        (Inherent 1st parent’s        (Inherent 2nd 

                                   genes with factor values)       parent’s gene)      

 

Factor parameter of binary numbers, 𝛼 =  ( 𝛼1 + 𝛼2 +
⋯ +  𝛼𝑛);   𝛼 ∈ (0,1) 
 

Mutation is known as the error in copying the genes. 
Applying this mechanism improves GA’s possibility and 
exploration capability to create evolutionary solutions. 
Mutation chooses the newly produced best child in the 
bit of strings by flipping a few genes in it to seek any 
possibility of further improving the fitness of strings 
through minimum local searches, where the optimum 
values are very close to the presented best child. It can be 
set by applying mutation rate in the range between 0 to 1. 
Over setting on mutation rate can cause highly flipped of 
children, that will affect the attainment of the best 
solutions. Mutation rates could be set based on the 
problem’s condition and search space. As the iteration 

continues, the 𝑙𝑏𝑒𝑠𝑡 of the new generation is repetitively 

is compared to 𝑔𝑏𝑒𝑠𝑡 . If the varies becomes less than 

the fitness value, 𝐹𝑠 the 𝑔𝑏𝑒𝑠𝑡 solution is obtained and 
termination criteria is trigged to cease the operation. 
Otherwise, the optimization analysis will keep repeating a 

new cycle until the maximum iteration, 𝑀𝑎𝑥𝐼𝑡  is met. 
The success and termination of optimization analysis can 
occur either after obtaining the maximum number of 
iterations or with the attainment of average fitness that is 
less than the best fitness [40]. Eventually, the GA 
analysis has obtained the best PI controller tunings for 
both servo and regulatory controls. 

Figure 2 elaborates the pseudo code of GA 
optimization in relation to the imposed input settings. 
Stability analysis determined the range of Upper limit, 

𝑈𝐵 and Lower Limit, 𝐿𝐵. During optimization analysis, 
the children are to be simulated by the identified 

FOPDT models to obtain IAE value. The GA analysis 
performed the setpoint and disturbance transfer function 

concurrently, which 𝐽1  and  𝐽2  are for the left tank and 

𝐽3 and  𝐽4 are for the right tank. Both the chromosomes 
of PI controller for left and right tanks produced IAE 
values. The respective IAE values are summazed and 
compared. The smaller total integral error reflects better 
control performance and has a higher probability to be 

selected as the local best solution, 𝑙𝑏𝑒𝑠𝑡.  In the if loop 

function, Absolute values of 𝑙𝑏𝑒𝑠𝑡 is a minus to the stage 

best global solution, 𝑔𝑏𝑒𝑠𝑡  for obtaining fitness value, 

𝐹𝑠, which would trigger termination option when ‖ 𝐹𝑠‖ 
< 1e-6.  
 
 
Indices:  

𝑛             number of variables 

𝑃             population size 

𝑚𝑢          mutation rate 

𝑀𝑎𝑥𝐼𝑡     maximum iteration 

𝑈𝐵           Upper limit 

𝐿𝐵           Lower limit 

 𝐽             Objective function value 

𝐹𝑠            fitness value 

𝐾𝑐(𝐿𝑒𝑓𝑡)   Proportional gain of left tank 

𝜏𝐼(𝐿𝑒𝑓𝑡)     Integral time constant of left tank 

𝐾𝑐(𝑅𝑖𝑔ℎ𝑡)  Proportional gain of right tank 

𝜏𝐼(𝑅𝑖𝑔ℎ𝑡)   Integral time constant of right tank 

𝐺𝑝(𝐿)          Process model of left tank 

𝐺𝑑(𝐿)        Disturbance model of left tank 

𝐺𝑝(𝑅)        Process model of right tank 

𝐺𝑑(𝑅)        Disturbance model of right tank 

𝑙𝑏𝑒𝑠𝑡        Local best 

𝑔𝑏𝑒𝑠𝑡        Global best  

𝑖               Integer number 
 

Input  

𝑛 =4; 𝑃 ∈ (0, 80); 𝑀𝑎𝑥𝐼𝑡 ∈ (0, 100); 𝑈𝐵 ∈ (0, 40); 𝐿𝐵 ∈ 

(0, 40); ‖ 𝐹𝑠‖ = 1e-6 

Begin 

    Initialize and evaluate Population [𝑃(0)] 

     𝑖      1; 

      Select Individual Population [𝑃(i)] = {𝐾𝑐(𝐿𝑒𝑓𝑡), 𝜏𝐼(𝐿𝑒𝑓𝑡) , 

                                                                                   …  𝐾𝑐(𝑅𝑖𝑔ℎ𝑡), 𝜏𝐼(𝑅𝑖𝑔ℎ𝑡)} 

      Unicrossover of chromosomes. Refer Eq. (17) and (18).  
      Mutation on the selected children.  
      Performance test. Refer Eq. (5) and (6)  
      Calculating error values, 

             e1      = 1 -  step (𝐺𝑝(𝐿) ) 

             e2      = 1 + step (𝐺𝑑(𝐿)) 

             e3      = 1 -  step (𝐺𝑝(𝑅)) 

             e4      = 1 + step (𝐺𝑝(𝑅)) 

      Integrating error values, refer to (14) 

             𝐽1      =∫ |e1(𝑡)|𝑑𝑡
∞

0
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             𝐽2      =∫ |e2(𝑡)|𝑑𝑡
∞

0
  

             𝐽3      =∫ |e3(𝑡)|𝑑𝑡
∞

0
 

             𝐽4      =∫ |e4(𝑡)|𝑑𝑡
∞

0
 

      Total Integral Absolute Error, 𝐽 is referred  
             to the total number of populations, J[P]          

              J[P] = 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4.  
      Evaluation (start with population P=1) 
             F_obj[1]=J[1] 
             F_obj[2]=J[2] 
              ……. 
             F_obj[P]=J[P] 
      Fitness 
              Fitness[1] = 1/(1+F_obj[1]) 
              Fitness[2] = 1/(1+F_obj[2]) 
               ……. 
              Fitness[P] = 1/(1+F_obj[P]) 
            Total Fitness = Fitness[1] + Fitness[2]…..+Fitness[P] 
       Probability of each child 
             Probability [1] = Fitness[1] / Total Fitness 
             Probability [2] = Fitness[2] / Total Fitness 
              …….. 
             Probability [P] = Fitness[P] / Total Fitness 
        Selecting two children with highest Probability 

                𝑙𝑏𝑒𝑠𝑡 = max
𝐽

∑ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃
𝑖=1    

         while ‖ 𝑙𝑏𝑒𝑠𝑡‖ > ‖ 𝑔𝑏𝑒𝑠𝑡‖ 

             𝑙𝑏𝑒𝑠𝑡 = 𝑔𝑏𝑒𝑠𝑡   
          else  
          endwhile 

        if (‖𝑙𝑏𝑒𝑠𝑡 − 𝑔𝑏𝑒𝑠𝑡‖ > 1e-6  or   𝑖 < 𝑀𝑎𝑥𝐼𝑡) 

             𝑖    𝑖 +1; 
           return 
         else 
        end if 
 end  

Output 

Best solution: min
𝐽

∑ 𝐽𝑀𝑎𝑥𝐼𝑡
𝑖=1  

𝑔𝑏𝑒𝑠𝑡 = 𝐾𝑐(𝐿𝑒𝑓𝑡), 𝜏𝐼(𝐿𝑒𝑓𝑡), 𝐾𝑐(𝑅𝑖𝑔ℎ𝑡), 𝜏𝐼(𝑅𝑖𝑔ℎ𝑡). 
 

Fig. 2. The developed GA algorithm pseudocode.  
 
 

3.5. Particle Swarm Optimization Analysis 
 
PSO regenerates new particles in continuous 

iterations via random selection of new samples. The 
generated particles are applied to the defined objective 

function for determining the personal best position, 𝑃𝑖𝑑 

and global best position, 𝑃𝑔𝑑  [56]. Two algorithms are 

fundamental to the PSO analysis: random position, 𝑋𝑖𝑑 

and the random velocity, 𝑉𝑖𝑑, respectively, shown in Eq. 
(19) and (20). 

 
Velocity update,  

𝑉𝑖𝑑(𝑡+1) = 𝑊𝑉𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑃𝑖𝑑 − 𝑋𝑖𝑑(𝑡) + ⋯ 

                                       … +  𝑐2𝑟2(𝑃𝑔𝑑 − 𝑋𝑖𝑑(𝑡))     (19) 

 

Position update,                     

                       𝑋𝑖𝑑(𝑡+1) = 𝑋𝑖𝑑(𝑡) + 𝑉𝑖𝑑(𝑡+1)𝑡            (20) 

 

where, 𝑊= inertia weight,  𝑡 is 1 in each interactive step, 

𝑟1  and 𝑟2  are random values ∈  (0, 1), 𝑐1  and 𝑐2  are 
coefficients of the particle acceleration value, which 

affects the convergence trend are ∈ (0, 2), 𝑋𝑖𝑑(𝑡)  is initial 

position, and 𝑉𝑖𝑑(𝑡)  is initial velocity. In addition, the 

included critical settings cover lower and upper limits are 

set to 2 - 35 (%/m) for the 𝐾𝐶 and 0 – 3 (s) for 𝜏𝐼 , 𝑃 ∈ 

(20, 80) and 𝑀𝑎𝑥𝐼𝑡  ∈  (40, 100), which are adequately 
used for the PSO optimization analysis to the tested loop 
of this research. 

The PSO algorithm has begins with randomly select 

a new group of particles, 𝑋𝑖𝑑(𝑡)  = 𝐾𝐶𝜏𝐼 , where 𝐾𝑐 =

𝑐1, 𝑐2, … . . 𝑐𝑛, 𝜏𝐼 = 𝐼1, 𝐼2, … … 𝐼(𝑡). The objective function 

covers process, disturbance, PID controller and integral 
error algorithms. While running the iteration, each 
particle is evaluated by the objective function that 
produces the respective integral error values. The tested 

particle with the least integral error value is 𝑃𝑖𝑑(𝑡+1), and 

then is compared with 𝑃𝑔𝑑(𝑡) . If the 𝑃𝑖𝑑(𝑡+1) < 𝑃𝑔𝑑(𝑡) , 

𝑃𝑖𝑑(𝑡+1)  replace the existing value of 𝑃𝑔𝑑(𝑡)  to give 

𝑃𝑔𝑑(𝑡+1) . Then, the analysis would repeat for the next 

iteration, where the 𝑋𝑖𝑑(𝑡+2)  are randomly selected 

particles. The iteration analysis results on the 

convergence of the 𝑃𝑔𝑑 until the most updated 𝑃𝑔𝑑 value 

possess the 𝐾𝐶 and 𝜏𝐼 values and the least integral error 
value. 

 
3.6. The Research Simulation Tool 

 
This research utilizes the multi-tank function of the 

LOOP-PRO software. Refer to [56]. The main objective 
is to regulate the water level in left and right tanks. It 
uses two PID controller tunings respectively for the 
independent closed-loop control of both tanks. On the 
servo control, the setpoint tracking performance is tested 
by adjusting the setpoint of each control loop between 
the level 2m – 3m – 2m. Adjustment on the setpoint 
regulates the control valve’s opening and changes the 
water flow rate to the controlled tank. However, it also 
affects the channel of water flow to another tank. On the 
regulatory control, the disturbance rejection performance 
is tested by adjusting the outflow water rate between 1 
m3/min - 2 m3/min - 1 m3/min, via adjusting the hand 
valve located at the bottom of both left and right tanks. 
Adjustment on the opening of the hand valve changes 
the water level in the tank and consequence changes of 
control action to control water inflow to the tank and 
concurrently affects the channeled water flow to the 
other tank.  
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4. Analysis and Result Discussion  
 
This section explains the obtained FOPDT models, 

RGA, and stability analysis of the multi-tank function. It 
is followed by developing the Simulink model and 
determining PID controller tunings for both left and 
right tanks. Analysis of criteria settings has been 
conducted to GA optimization analysis and the reliability 
of GA-based optimization analysis is compared with 
PSO analysis. At last, all generated process responses 
from various tuning methods are described, whereby the 
performance of GA-based tunings is discussed and 
finalized. 

 
4.1. Empirical Model Identification 

 
Empirical model identification for the multi-tank 

function of the LOOP-PRO software is directly obtained 
from this software after conducting the open loop test. 
The obtained models consist of process and disturbance 
models for both left and right tanks. All the identified 
models are listed in Table 1. 

 
 
4.2. Relative Gain Array and Stability Analysis 

 
The steady-state coupling only considers each 

model’s process gain, refer to Eq. (13), therefore the 
arrangement of gains is shown in matrix form as below:  

 K=  [
0.06 0.03

0.035 0.063
]  

 

where, 𝐾11 =
1

1−
(0.03)(0.035)

(0.06)(0.063)

= 1.3846 

  
As referred to the Eq. (13), the calculation 

determines the new RGA value in matrix form shown as 

 RGA, K= [
1.3846 −0.3846

−0.3846 1.3846
]  

 

Both 𝐾12 and 𝐾21 are < 0, implying that the control 
loop would significantly impact another loop. Therefore, 
a proper pairing or decoupler for compensating the 
interacted loop is unavoidable.  

For the stability analysis, substituting FOPDT's 
parameters of Table 1 into Eq. (10) and (11) yielded the 

stability margin of the left tank as 𝐾𝑐 < 30.46 and 𝜏𝐼 > 

8.45, while the right tank as 𝐾𝑐 < 35.0 and 𝜏𝐼  > 9.82. 

Incorporating the 𝑈𝐵  and 𝐿𝐵  settings range give the 

most appropriate stability margin of 𝐾𝑐 < 30.46 and 𝜏𝐼  > 
9.82, allowing the GA to analyse the best PI controller 
settings for both left and right tanks. 
 
4.3. PID Tunings of Multi-tank Function for the 

Performance Analysis 
 

       Table 2 tabulates various PI controller tuning 
methods. All tuning methods applied the two 
decouplers-based decentralised multivariable control 
scheme. It covers IMC-Moderate tunings, followed by 

ZN tuning scheme with detuning factors (𝐹𝑇) of 0.8, 1.0 
and 1.2. Furthermore, the PI controller tunings of GA 
optimization analysis is listed for comparison with other 
tuning methods. 
      The tuning of PI controllers for both left and right 
tanks are conducted simultaneously.  In operation, both 
loops for left and right tanks are operating and is 
connected with each other. The parameter changes of 
one loop will affect the performance of the other loop, 
whereby the PI controller of the other loop will react to 
the changes in maintaining stability control of that loop. 
Therefore, all the pair of PI controller settings in Table 2 
are simultaneously applied to the TITO system, including 
the GA_Optim. tunings.       

 
 
4.4. Simulink Model for Simulation Analysis 

 
Simulation analysis was performed in the 

SIMULINK of the MATLAB simulation tool. Figure 3 
shows the design of TITO control loop with the 
developed decouplers to mitigate the interaction among 
the left and right tanks. Besides, it shows the position of 
process and disturbance models in the overall control 
loops. Meaning to say that the dynamic process will have 
one FOPDT model for the process and another FOPDT 
model reflects the behaviour of system after the 
disturbance is imposed. The setpoint change can be 
performed by applying step unit signal to port 2 or 3, 
whereas the disturbance imposes a unit step signal to 
port 1 or 4.  The process response is obtained from ports 
3 to 7.  

 

Table 2. PI controller tunings for left and right tanks. 
 

Tuning 
Method 

PI Tunings 
(Left Tank) 

PI Tunings 
(Right Tank) 

𝐾𝐶(𝐿𝑒𝑓𝑡), 

%/m 

𝜏𝐼(𝐿𝑒𝑓𝑡), 
min 

𝐾𝐶(𝑅𝑖𝑔ℎ𝑡),
   %/m 

𝜏𝐼(𝑅𝑖𝑔ℎ𝑡), 
min 

IMC_ 
Moderate 

3.42 13.00 3.71 14.26 

ZN_𝐹𝑇 =0.8 34.5 18.96 37.5 18.16 

ZN_𝐹𝑇 =1 27.6 23.7 30 22.7 

ZN_𝐹𝑇 =1.2 21.23 30.81 23.08 29.51 

GA_Optim. 20.47 15.54 22.03 16.55 

 

 

Table 1. Dynamic models of the left and right tanks. 
 

Model Left Tank Right Tank 

 
Process Model 

 

FOPDT, LL

=  
0.06e−7.1s

13.05s + 1
 

 

FOPDT, RR

=  
0.063e−6.8s

14.28s + 1
 

 
Process Model 

(interaction from the 
other tank) 

 

FOPDT, RL       

=  
0.035e−5.8s

14s + 1
 

FOPDT, LR 

=  
0.03e−7.49s

14.11s + 1
 

 

 
Disturbance Model 

(external) 

FOPDT (Dist − L)

=  
−0.3512

3.543s + 1
 

 

𝐹OPDT (Dist − R) 

=  
−0.408

4.811s + 1
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4.5. Analysis of Criteria Settings for Iteration 

( 𝑀𝑎𝑥𝐼𝑡) , Population (𝑷)  and Mutation Rate 

(𝑚𝑢) 
 

As referred to Fig. 2, the analysis of 𝑀𝑎𝑥𝐼𝑡, 𝑃 and 
𝑚𝑢 are conducted by rating the 𝑀𝑎𝑥𝐼𝑡 at 40, 80 and 100, 
where the best solution (integral absolute error values) 
from the respective populations is observed. It helps to 
clarify the best criteria setting for GA analysis on the 
tested multi-tank function, which FOPDT models have 
identified. 

Figure 4(a) illustrates the obtained best solution for 

the 𝑀𝑎𝑥𝐼𝑡 of 40 while the 𝑃 and 𝑚𝑢 are increasing. It is 
found that the mu of 0.02 is not adequately used because 
it has generally produced higher integral error values, 
therefore the poorer solutions compared to other 

settings. Besides, it’s seemed that increasing 𝑚𝑢 
improves the best solutions (smaller total integral error 
values). However, the rate of improvement has been 

reduced after the 𝑀𝑎𝑥𝐼𝑡 = 40. The 𝑃 of 20 - 40 and 𝑚𝑢 
of 0.1 - 0.14 can be considered for this iteration.   

Figure 4(b) illustrates the best solution for the 

𝑀𝑎𝑥𝐼𝑡 = 80 in varying the 𝑃 and 𝑚𝑢. Regardless of 𝑚𝑢, 
overall GA analysis obtains very close total integral error 

values as the 𝑃 exceeds more than 40. This is particularly 

true for the 𝑚𝑢 of 0.1 (population=40), which produces 
the best solution compared with other mutation rates. 

However, 𝑚𝑢 of 0.02 is less preferably used for the GA 

analysis because the solutions are much biasing in 𝑃 < 10. 

Figure 4(c) depicts the GA analysis of 𝑀𝑎𝑥𝐼𝑡 = 100 

in varying the 𝑃 and 𝑚𝑢. The figure shows that overall 

best solutions are very close after 𝑃 > 40. A 𝑚𝑢 of 0.06 
to 0.14 could be used for the GA analysis. However, the 

𝑚𝑢 = 0.02 is not considered due to higher 𝐽 values.  
As referring to the findings of GA to the tested 

model, it is noted that the 𝑃 = 40 can be selected as the 

best choice for the GA analysis, where the resultant 𝐽 as 
shown in Fig. 4(b) and 4(c) have less variation even 

afterward the larger 𝑀𝑎𝑥𝐼𝑡  has been used for GA 
analysis to the multi-tank system. Figures 4(b) and 4(c) 
also show that all the produced J from the variation of 

𝑀𝑎𝑥𝐼𝑡 and 𝑚𝑢 has accumulated at one point for 𝑃 = 80, 
which means that this point is adequate to obtain a 

consistent result for GA optimization analysis. Further 

extending the 𝑃  is not improving the result but 
more time- consuming. Therefore, the analysis of the P 

value for 𝑀𝑎𝑥𝐼𝑡= 100 was not further extended to 100.  

Besides, the larger 𝑀𝑎𝑥𝐼𝑡, the more extended period is 

needed for the GA analysis. The obtained 𝑀𝑎𝑥𝐼𝑡 = 40 in 
Fig. 4(a) seems unable to obtain the best solutions in 

overall. Nevertheless, the 𝑀𝑎𝑥𝐼𝑡 = 100 is considered too 
time-consuming as reflected in Fig. 4(c) that the obtained 

𝐽 has stabilised after the 𝑀𝑎𝑥𝐼𝑡 = 40. Therefore, 𝑀𝑎𝑥𝐼𝑡 
= 80 is preferably selected as compared to 40 and 100.  

In addition, 𝑚𝑢 = 0.1 seems to produce more consistent 
results for various iterations and mutation rates and 
therefore is selected for the GA analysis to the developed 
FOPDT models. 

                      
 

 

 
Fig. 3. Simulink model of multi-tank process with decouplers. 
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4.6. Comparison on Control Performance of GA and 
PSO Optimization Analysis 

 
The simulation analysis of control performance is 

compared between GA and PSO tunings. It is obtained 
by simulating the developed FOPDT models in Fig. 3 
with the controller tunings from the respective tuning 
values produced by GA and PSO analysis. Servo and 
regulatory controls are implemented. The process 
reaction and interaction response from other tanks are 
obtained via simulation analysis are shown in Fig. 5. 

Figure 5(a) depicts the unit setpoint change is applied 
to the left tank. Control action drives the PV to a new set 
level and produces disturbance to the interacted right 
tank. Both GA and PSO tunings produce consistent 
response curves when PV is driven to the new set level. 
Fortunately, the impact to the right tank is minimal and 
consistent in applying either GA or PSO analysis for 
controller tunings. In Fig. 5(b), the unit setpoint changes 
at the right tank drive the PV to the new set level. GA 
tuning has performed better than PSO analysis because it 

does not produce the additional overshoots at the right 
tank. For the disturbance to the left tank, GA reacted 
reasonably in maintaining the PV without significant 
oscillations.  

Figure 5(c) depicts the response of the developed 
models that react to the applied unit disturbance to the 
left tank. Both GA and PSO tunings perform reasonably 
in responding to the disturbance of the left tank. For the 
interaction to the right tank, it is noted that PSO 
converges faster than GA in driving the PV back to the 
initial load level. Figure 5(d) above depicts the responses 
of the developed TITO module after being imposed by a 
unit disturbance to the right tank. For the reaction to the 
disturbance, both GA and PSO tunings produce slight 
oscillations, and surprisingly it is found that PSO tunings 
produce more oscillations than GA tunings. Besides, the 
response curve due to interaction to the left tank shows 
that PSO produces responses faster than the GA tunings. 
However, PSO tunings also produced overshoots in 
same response. Overall, it is found that the process 

 

       (a) 

 

                                                 (b)                                                                                         (c)                               

Fig. 4. GA analysis on the obtained total integral error for (a) 𝑀𝑎𝑥𝐼𝑡 = 40; (b) 𝑀𝑎𝑥𝐼𝑡 = 80; and (c) 𝑀𝑎𝑥𝐼𝑡 = 100. 
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response of GA is better than PSO tuning for multi-tank 
function of TITO system with FOPDT models. 

  

 
4.7. GA Performance Analysis for Multi-tank 

Function 
 

The performance analysis discusses the output 
response curve, settling time and integral error values to 
the tested multi-tank function in servo or regulatory 
control objectives. It reflects the sustainability of GA 
analysis to improve the control performance. Both servo 
and regulatory controls were applied by changing the 
water level setpoint between 2m – 3m – 2m and imposed 
load change between 1m3/min - 2m3/min - 1m3/min. 
The produced output responses, settling time and IAE 
values are then recorded. 

Figure 6(a) compares the output responses of 
various PI controller settings in controlling the left tank. 
The responses show that GA-Optim. produced more 
consistent control action to drive PV to the new setpoint 
within shortened period and fewer oscillations at the 
output response. Figure 6(b) elaborates the produced 
response of the left tank resulting from the changes of 
control action from the right tank. The left tank accepts 
the changes as a disturbance, whereby disturbance 
rejection performance among various tuning methods is 
compared.  Respective settling times and IAE values are 
tabulated in Table 3. For the column Setpoint Changes 
of Left Tank, the produced overshoots and steady-state 
error (SSE) are also tabulated for more apparent 
observation.  

 

 

                             

(a) (b) 
Fig. 6. Left Tank - setpoint change and reaction to the disturbance (a)Setpoint changes 2m - 3m; (b) Disturbance 
from the right tank. 

   
(a)                                                                             (b) 

  
                                           (c)                                                                                  (d)  

 

Fig. 5. Setpoint change and disturbance for GA and PSO (a) Left tank (setpoint); (b) Right tank (setpoint); (c) Left tank 
(disturbance); d) Right tank (disturbance).  
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It is found that the IAE value of the GA-Optim. is 

slightly higher than ZN- 𝐹𝑇  = 0.8, but both tuning 
methods have a very close settling time. The overall 
result shows that GA-Optim. are the best controller 
tunings for the left tank’s servo and regulatory control 
objectives.  

Figure 7(a) implied the output response to the right 
tank in reflecting the disturbance rejection performance 
due to the load changes from the left tank. GA-Optim. 
tunings seem to perform no better than IMC-Moderate 
because some overshoots are produced to maintain the 
PV at the setpoint value. On the other hand, Fig. 7(b) 

compares the output response of the servo control by 
applying various PI controller tunings to the right tank. 
However, IMC-Moderate tuning reacts slowly in the 
servo control operation, which gives a longer settling 
time. The overall comparison depicts that GA-Optim. 
tuning for the right tank produces the best performance 
in considering together both servo and regulatory 
controls.  

The respective settling time and IAE values are 
depicted in Table 4. For the column Setpoint Changes of 
Right Tank, the produced overshoots and steady-state 
error (SSE) are also tabulated for more apparent 
observation. It is found that the reaction of IMC-
Moderate to the interaction from the left tank is very 
weak, where the indicator shows no oscillation but 
prolong settling time. Overall, the IAE value and settling 
time of the GA_Optim. are closer to the ZN-𝐹𝑇  = 1 

tunings. Still, GA_Optim. demonstrates better results, 
credited to the least settling time and IAE value. 
Moreover, it is found that GA_Optim. has produced a 
curve response with more degree of improvements as 
compared to all other manually calculated controller 
tunings. Therefore, the overall comparison shows that 
GA_Optim. tunings have better controllability to the 
right tank of the multi-tank function. 

 

 
  

 

Figures 8(a) and 8(b) imply the responses of the 
external disturbance to water level measurement of left 
and right tanks. All the controller tunings reacted 
speedily to the imposed disturbances except for the 
IMC-Moderate tuning, in which the disturbance rejection 
capability is weak in Fig. 8(a), but the response is worse 
in Fig. 8(b). Output response curve drives slowly for 
both servo and regulatory controls. Among all controller 
tunings, GA-Optim. produced the least oscillatory and 
shortened settling time than other tuning methods. ZN-
𝐹𝑇  = 0.8 tunings reacted the most aggressively but did 
not seem to significantly contribute to the resultant 
response when it was compared with GA-Optim tunings.  

 

Table 4. Performance analysis for the right tank. 
 

Tuning 
Method 

Disturbance 
from the Left 

Tank 

Setpoint Changes of the 
Right Tank 

IAE 
Settling 
Time(s) 

IAE 
Settling 
Time(s) 

Over 
shoot 
(%) 

 
SSE 

IMC-Moderate 4.252 0 84.53 326 0 0.016 

ZN-𝐹𝑇 = 0.8 6.824 144 16.96 176 34.36 0.002 

ZN-𝐹𝑇 = 1 7.827 75 16.63 128 11.31 0.002 

ZN-𝐹𝑇 = 1.2 13.23 54 28.11 160 0 0.001 

GA-Optim. 6.743 72 15.76 121 20.88 0.002 

 

                    

(a)                                                                              (b)                                   
Fig. 7. Right Tank – Reaction to the disturbance and setpoint change (a) Disturbance from the left tank; (b)Setpoint 
changes 2m - 3m. 

 
Table 4. Performance analysis for the right tank. 
 

Tuning 
Method 

Disturbance 
from the Left 

Tank 

Setpoint Changes of the 
Right Tank 

IAE 
Settling 
Time (s) 

IAE 
Settling 
Time (s) 

Over 
shoot 
(%) 

 
SSE 

IMC-Moderate 4.252 0 84.53 326 0 0.016 

ZN-𝐹𝑇 = 0.8 6.824 144 16.96 176 34.36 0.002 

ZN-𝐹𝑇 = 1 7.827 75 16.63 128 11.31 0.002 

ZN-𝐹𝑇 = 1.2 13.23 54 28.11 160 0 0.001 

GA-Optim. 6.743 72 15.76 121 20.88 0.002 

 

Table 3. Performance analysis for the left tank. 
 

Tuning 
Method   

Setpoint Changes of Left 
Tank 

Disturbance 
from the Right 

Tank 

IAE 
Settling 

Time(s) 

Over 
shoot 
(%) 

 
SSE IAE 

Settling 

Time(s) 

IMC-Moderate 87.74 293 0 0.000 30.81 454 

ZN-𝐹𝑇 =0.8 16.32 113 20.05 0.001 5.184 131 

ZN-𝐹𝑇 =1 19.85 144 3.79 0.000 6.96 143 

ZN-𝐹𝑇 =1.2 33.49 196 0 0.001 11.77 231 

GA-Optim. 16.21 121 3.29 -0.001 5.689 130 
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The respective settling time and IAE values are 

depicted in Table 5. On average, GA-Optim. has a closer 
settling time but a lower IAE value than ZN-𝐹𝑇  = 0.8 
tunings. ZN-𝐹𝑇  = 1.2 tunings produced the least IAE 
value; however, settling time was dragged very much 
compared with GA-Optim. tuning. Therefore, the 

analysis result reflected that PI controller tunings of GA-
Optim. have better controllability to the closed-loop 
control for both left and right tanks. 
 

Overall, the integral error values are cumulatively 
compared as in Table 6. The IMC-Moderate tuning 

possesses the largest IAE values, followed by the ZN-𝐹𝑇  

= 1.2, ZN-𝐹𝑇  = 1.0 and ZN-𝐹𝑇  = 0.8 tunings. The GA-
Optim. tunings produced the response with the least 
integral error values and approximately 78% improved 
performance compared to IMC-Moderate tunings. In 
addition, GA-Optim. also showed the consistency 
improvement on the IAE value to various ZN tuning 
schemes. Even the IAE value of GA-Optim. is close to 

ZN-𝐹𝑇  = 0.8, the PI controller tunings of GA-Optim. is 
still the best tuning because of fewer oscillation 
responses as depicted in Fig. 8(a) and Fig. 8(b). 
 

 

 
Table 6. IAE values for various control tuning methods. 
 

PI Tuning Method 
IAE 
(Setpoint) 

IAE (Dist. 
to Left) 

IAE (Dist. 
to Right) 

External 
Disturbances 

Total IAE 

IMC-
Moderate 
 

Left Tank 87.74 - 30.81 0.1532 214.07 
Right Tank 84.53 4.252 - 6.587 

ZN-𝐹𝑇=0.8 
 
 

Left Tank 16.23 - 5.184 1.348 47.28 
Right Tank 16.96 6.824 - 0.7329 

ZN- 𝐹𝑇=1 
 
 

Left Tank 19.85 - 6.96 0.7028 52.36 
Right Tank 16.63 7.827 - 0.3898 

ZN-𝐹𝑇=1.2 
 

Left Tank 33.49 - 11.77 0.4113 87.28 
Right Tank 
 

28.11 13.23 - 0.2689 

GA-Optim. Left Tank 16.21 - 5.689 0.7857 45.57 
Right Tank 15.76 6.743 - 0.3846 

Improvement by using GA-Optim. compared to                    
IMC-Moderate (%) 

  78.74 

 
 
 

 

Table 5. Disturbance rejection performance for both 
tanks. 

Tuning 
Method 

Left Tank Right Tank 

IAE 
Settling 
Time 

(s) 

IAE 
Settling 
Time 

(s) 

IMC-
Moderate 

0.1532 225 6.587 >300 

ZN-𝐹𝑇 = 0.8 1.348 77 0.7329 72 

ZN-𝐹𝑇 = 1 0.7028 84 0.3898 79 

ZN-𝐹𝑇 = 1.2 0.4113 134 0.2689 107 

GA-Optim. 0.7857 83 0.3846 54 

 

 

                               

                                              (a)                                                                                       (b) 
Fig. 8. Both left and right tanks - Reaction to the external disturbance (a) Disturbance to the left tank; (b) Disturbance 
to the right tank.  
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GA Optimization analysis is better than 
manually calculated controller tunings in obtaining 
the PI controller tunings. Credit to the applied 
stochastic optimization technique that chooses the 
best tuning values in every iteration process and 
further produces better tuning values as the 
optimization is proceeding. The analysis mechanism 
selects the best solutions of previous generations to 
seek further improvements in future iteration until 
the analysis is terminated. Therefore, it gives a better 
opportunity to obtain the PI controller tunings using 
the optimization technique than the manually 
calculated controller tunings, where the result only 
relies on the mathematical formulas. 

  
5. Conclusion 

 
Manually calculated control tunings for the 

multivariable loop are challenging and even not 
guaranteed satisfactory performance because of the 
existing interaction among loops and external 
disturbances. This research presents a systematic analysis 
using computational optimization techniques to support 
regular tuning practices by applying the trade-off 
controller tuning fixed to transient and steady-state 
responses of TITO control loop with the identified 
FOPDT model. Initially, the RGA analysis was 
conducted to clarify the need for decoupler or 
feedforward compensation to the controlled loop. 
Stability analysis determines the bound settings of the 

GA optimization analysis, which includes 𝐾𝑐 < 30.46 and 

𝜏𝐼  > 9.82. Analysis on the GA’s setting criteria to the 

tested models has shown that the 𝑀𝑎𝑥𝐼𝑡 =80, 𝑃=40 and 

𝑚𝑢  = 0.1 gives the most effective analysis in term of 
achieved results and period. While comparing the GA’s 
response performance with other tuning methods, PI 
controller settings of GA produced the better output 
responses, IAE values and settling time. The 
performance analysis was conducted to the multi-tank 
function of LOOP-PRO software. The optimized PI 

control settings for the left tank are 𝐾𝐶(𝐿𝑒𝑓𝑡)  = 

20.471 %/m and 𝜏𝐼(𝐿𝑒𝑓𝑡) = 15.54 s. At once, the 

optimized PI control settings for the right tank are 

𝐾𝐶(𝑅𝑖𝑔ℎ𝑡)= 22.026 %/m and 𝜏𝐼(𝑅𝑖𝑔ℎ𝑡)= 16.553 s. It is 

found that GA optimization analysis yielded the best PI 
controller tunings for both servo and regulatory controls. 
In the best scenario, the improved control performance 
by applying GA analysis obtains 78.74 % as compared to 
IMC-Moderate tuning for the same multivariable model.  
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