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Abstract. We propose a new technique for support vector machines (SVMs) in tree structures for
multiclass classification. For each tree node, we select an appropriate binary classifier using data class
centroids and their in-between distances, categorize the training examples into positive and negative
groups of classes and train a new classifier. The proposed technique is fast-trained and can classify an
output class data with a complexity betweenO(log2N ) andO(N ) whereN is the number of classes. The
10-fold cross-validation experimental results show that the performance of our methods is comparable
to that of traditional techniques and required less decision times. Our proposed technique is suitable
for problems with a large number of classes due to its advantages of requiring less training time and
computational complexity.
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1. Introduction

The support vector machine (SVM) [1, 2] is a statis-
tical learning algorithm that generates a hyperplane to
separate the set of positive and negative data and maxi-
mize the margin between them. We can use the SVM to
solve problems with more than two classes by applying
multiclass learning techniques, for which two main ap-
proaches are used: solving a single optimization prob-
lem [1, 3, 4] and combining a group of several binary
SVMs. However, Hsu and Lin [5] indicated that the lat-
ter approach is more practical for the real problems.

There are several widely used multiclass techniques.
The One-Versus-One technique (OVO) [6] trains N ×
(N − 1)/2 binary classifiers for an N -class problem;
each pairwise classifier is constructed from two out of
N corresponding classes, and it learns to distinguish
the two classes. In the classification phase, the voting
process called Max-Wins [7] is conducted by selecting
a class with the highest voting score. One-Versus-All
(OVA) trains N binary classifiers for an N -class prob-
lem, and each classifier is trained with samples of one
class as positive samples and all samples from the other
classes as negative samples. The output class is deter-
mined by choosing the class with the highest classifica-
tion score. Several modifications/enhancements have
been proposed based on OVA and OVO. Hastie and
Tibshirani [8] used the joint probability for estimating
the pairwise classes and improving the accuracy of the
original OVO. Kumar andGopal [9] proposed amethod
of reducing the training time of OVA. In this research,
our proposed method is also based on the OVO tech-
nique.

Among the traditional multiclass techniques, OVO
generally provides higher accuracy. However, it con-
sumes more processing time because the required com-
putational time is O(N2) where N is the number of
classes. Many researchers have proposed the alternative
techniques based on OVO to reduce the computational
time. Decision Directed Acyclic Graph (DDAG) [10],
Adaptive Directed Acyclic Graph (ADAG) [11] and Op-
timized DDAG [12] use only N − 1 classifiers to per-
form a classification. Although they require less com-
putational time, the classification accuracy is sacrificed
as a trade-off.

The concept of the decision tree structure can be ap-
plied to OVO-based multiclass classification. The ben-
efit of the tree structure is that we can eliminate more
than one nonanswer class at one processing node of the
tree, which will lead to lower than O(N ) classification
time. The Binary Tree of SVM (BTS) [13] constructs
the classification tree using the OVO node selected ran-
domly or by the smallest distance to the centroid of
all training data. The information-based dichotomiza-

tion tree [14] constructs the OVO-based classification
tree using entropy. The adaptive binary tree [15] cal-
culates and selects the classifiers with the lowest aver-
age number of support vectors in the tree construction.
The optimal decision tree-based multiclass SVM [16]
applies statistical measurement indicators in the clas-
sifier selections at each tree node. The information-
based decision tree (IB-DTree) and the information-
based and generalization-error estimation decision tree
(IBGE-DTree) [17] are constructed by selecting binary
classifiers using entropy and generalization error esti-
mation. IB-DTree and IBGE-DTree also proposed a
new classifier training method for use in the classifica-
tion phase called “class-grouping-by-majority”, which
can provide a decision tree with a small tree-depth.

Many techniques that construct a tree-structure
SVM using OVA classifiers or clustering techniques
have been proposed. The decision-tree-based SVM [18]
groups classes by calculating the Euclidian distance and
Mahalanobis distance as a separability measure. Sup-
port vector machines with binary tree architectures [19]
apply kernel-based self-organizingmaps for the tree con-
struction. The SVMbinary decision tree [20] constructs
a tree by calculating class centroids in the kernel space.
The half-against-half multiclass SVM [21] constructs a
hierarchy structure for the classification by dividing
data classes into two groups equally. The multi-state-
mapping multiclass SVM [22] applies kernel functions
for constructing a tree SVM using the k-means algo-
rithm. Decision tree based OVA [23] applies probabilis-
tic output of the SVM to determine paths for a con-
structed tree. The single-space-mapped binary tree SVM
[24] and the multi-space-mapped binary tree SVM [24]
calculate the Euclidean distance to determine the set of
hyper-parameters in the OVA-based approach. An effi-
cient SVM [25] constructs a skewed binary tree to sepa-
rate one class from other classes by evaluating the SVM
function. OAA-SVM-MS [26] is a fast-training OAA-
SVM using a generalization error calculated from geo-
metrically ergodic Markov samples.

In this paper, we propose a multiclass classification
technique using the tree structure inspired by IB-DTree
and IBGE-DTree [17]. The key benefit of the new tech-
nique is that it consumes less training and classification
complexity than traditional techniques. We evaluate
our technique using twenty datasets from the UCI ma-
chine learning repository [27] and a dataset with a large
number of classes, namely, Wikipedia Medium [28], and
then compare our results with those of traditional tech-
niques. The results show that our technique is very use-
ful for the problems with a large number of classes or
the problems requiring fast-classification speed.

This paper is organized as follows. Section 2 dis-
cusses the OVO-based multiclass SVM techniques using
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tree structures. Section 3 presents our proposed tech-
nique. Section 4 provides the experimental details and
results. Section 5 summarizes our research.

2. The OVO-Based Decision Tree SVM

2.1. Binary Tree of SVM

The Binary Tree of SVM (BTS) [13] was proposed
by Fei and Liu, and two proposed versions are BTS and
c-BTS. At the root node of BTS, an OVO classifier will
be randomly selected and used to separate the consid-
ered classes in the list into either positive or negative
groups. However, examples of a particular class may
not be separated to a single side of the chosen hyper-
plane and will be scattered to both positive and nega-
tive groups. In this case, the examples of that class will
be duplicated to both left and right child nodes of the
root node. At the child nodes, the same process will be
continued until each leaf node in the tree contains only
one class. For c-BTS, instead of randomly selecting the
classifiers, it calculates the centroid of all data and then
selects as the separating classifier, the (i vs j) classifier
to which the centroids of class i and that of class j are
nearest among all data centroids.

Fig. 1. The Illustration of the binary tree of SVM
(BTS). Some data classes may be scattered at some
node and appear in more than one leaf node. [13]

A possible example of BTS and c-BTS is illustrated
in Fig. 1. At the root node, classifier 1 vs 2 is selected
(randomly for BTS and via centroid calculation for c-
BTS). Classes 1 and 4 and classes 2 and 3 are grouped
together as positive and negative groups, respectively.

However, classes 5 and 6 cannot be separated into a sin-
gle side and are allowed to be duplicated to both positive
and negative child nodes. The same process to the root
node recursively continues until finished.

According to [13], the final tree structure of BTS
and c-BTS depends on threshold configurations. A
higher threshold will allow the more duplicating class
leaf nodes, resulting in higher classification accuracy but
consuming more computational time.

2.2. Information-Based Dichotomization

The information-based dichotomization (IBD) [14]
was proposed by Songsiri et al. and is also a multiclass
classification tree. Each node of the tree will be selected
from OVO classifiers using the entropy values, which
are calculated based on the training data. Using entropy
information will enable a class with a high probability
of occurrence to be classified first in each level. By using
this strategy, the expected classification times to derive
an answer to the tree will be O(log2N ) in theory.

However, if a selected OVO classifier is not able to
perfectly separate all training data of one class into a sin-
gle side of the hyperplane, then the expected scenario
may not be obtained. To address this situation, IBD ap-
plies the tree pruning algorithm, which allows for the
elimination of some minor examples whose percentage
of the minority is less than the optimal pruning thresh-
old P . However, finding the parameter P that can pre-
serve all useful information is not an easy task. In addi-
tion to the tree pruning algorithm, IBD also presents an-
other parameter R which is called the optimal range of
generalization performance of classifiers to select OVO
classifiers with low generalization performance. Both
parameters P and R can be acquired using the k-fold
cross validation process.

2.3. Information-Based Decision Tree

The information-based decision tree (IB-DTree) [17]
selects OVO pairwise classifiers with the lowest entropy
in the same way as IBD [14]. However, instead of us-
ing them for both the training phase and classification
phase, IB-DTree uses them only in the training phase as
initial classifiers h for themethod called ”class-grouping-
by-majority”. This method uses classifier h to sepa-
rate training examples into groups of positive-class and
negative-class. Then, the final classifier h′ will be trained
using the positive-class group and negative-class group.
As a result, a classification tree constructed by IB-DTree
contains no duplicated class leaf-nodes and has a small
depth.

The IB-DTree can output classification results
within a relatively limited decision time. However, it
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consumes considerable computation time in the train-
ing phase. In the initializing step, all OAO pairwise
classifiers are trained for use in the tree. In the construc-
tion step, IB-DTree needs to calculate entropy using all
training data in K candidate classes for each tree node.
Because all binary classifiers (i vs j) inK are considered,
the number of calculations per node is K × (K − 1)/2
times. As a result, IB-DTree might be an inappropriate
option for problems with large a number of classes.

2.4. Information-Based and Generalization-Error
Estimation Decision Tree

The information-based and generalization error de-
cision tree (IBGE-DTree) [17] constructs a classification
tree using entropy and class-grouping-by-majority, such
as IB-DTree. However, instead of selecting only one ini-
tial classifier with the lowest entropy, IBGE-DTree sorts
all considering classifiers by entropy and selects a num-
ber of classifiers with low entropy as initial classifiers
hs. Then, IBGE-DTree applies the class-grouping-by-
majority method to all initial classifiers hs and obtains
the final classifiers h′s. Finally, the classifier with the
lowest estimated generalization error [29, 30] will be se-
lected for use in the classification phase.

Regarding classification performance, IBGE-DTree
provides better classification outputs than IB-DTree
with the same decision time. However, it consumes
more computational time than IB-DTree for the train-
ing process. IBGE-DTree prepares all OAO pairwise
classifiers in the initializing step and calculates entropy
for K candidate classes similar to IB-DTree. How-
ever, as IBGE-DTree processes the class-grouping-by-
majority method many times in one node, it consumes
more computational time than IB-DTree in the training
phase.

3. Proposed Methods

We propose an OVO-based multiclass classifica-
tion technique using a tree-structure named the largest-
centroid-distance-grouping decision tree (LCDG-
DTree). At the beginning of the tree construction, we
calculate each data class centroid ci using Eq. (1).

ci =
1

| Xi |
∑
x∈Xi

x (1)

where Xi is the set of training examples in class i and
| Xi | is the number of examples in class i. Then, all
Euclidean distances between each pair of class centroids
d(ci, cj) are calculated using Eq. (2).

d(ci, cj) =∥ ci − cj ∥ (2)

At each tree node, we select the classifier with the
largest centroid distance between the pairwise classes to
be the initial classifier. For the next step, we use the
initial classifier to separate all considered classes into ei-
ther positive or negative groups. In this step, some con-
sidered classes may scatter on both sides of the initial
classifier and the tree depth is unnecessarily increased.
To avoid this situation, we use the mechanism called
the class-grouping-by-majority [17] in Algorithm 1. The
class-grouping-by-majority method groups all training
data of the considered classes together, either positive
or negative group. Then, the final classifier h′ is trained
using groups of positive and negative classes. Therefore,
training a decision tree using this method will prevent
the generation of a tree with duplicated class leaf nodes
and the tree depth will not be increased unnecessarily.
Thus, the decision times required to determine the an-
swer class is decreased and the cumulative errors of the
classification are also decreased.

Figure 2 illustrates the construction of LCDG-
DTree by applying the same technique as in Fig. 1. At
the root node, classifier 1 vs 2 is selected as the initial
classifier h and it then is used to label all data of class
1 to class 6. All data of classes 2 and 3 are labeled as
positive, while all data of classes 1 and 4 are labeled as
negative. In this case, suppose that the majority of class
5 is on the positive side, while the majority of class 6 is
on the negative side. Thus, (2, 3, 5) vs (1, 4, 6) is trained
as the final classifier h′ for the root node. For the next
step, classes (2, 3, 5) will be processed as the left child
node, and classes (1, 4, 6) will be processed as the right
child node. The recursive process continues until fin-
ished, and there is no leaf node with a duplicated class
in the tree.

Fig. 2. The Illustration of The Largest-Centroid-
Distance-Grouping Decision Tree (LCDG-DTree).
Note that there is no leaf node with duplicated class.

The pseudocode of LCDG-DTree is described in Al-
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gorithm 2. At the beginning of the LCDG-DTree algo-
rithm, the centroid of each class and the distances be-
tween them are calculated in lines 2-3. Then, tree T
with the Root node and the set of candidate classes C
are initialized in lines 4-5. The recursive process of tree
construction starts in line 6 by calling the procedure in
lines 9-18. First, the initial classifier h with the largest
centroid distance will be selected in line 11. Second, the
final classifier h′ is trained using the group of positive
training data P and negative training data N acquired
by class-grouping-by-majority in line 12. Finally, the re-
cursive process for the left/right child node for the pos-
itive/negative class groups is called in lines 14-17. The
tree construction process is terminated when the stop-
ping conditions hold for all the child nodes in lines 16-
17.

The key benefit of LCDG-DTree relative to IB-
DTree and IBGE-DTree is that it consumes less compu-
tation time in the training phase. There are two main
mechanisms that are different from that in the original
techniques. First, LCDG-DTree does not need to pre-
pare all N × (N − 1)/2 OVO binary classifiers in the
initializing step for an N -class problem. Rather, only
one binary classifier with the largest centroid distance is
created and assigned as the initial classifier h per node.
Hence, the total number of OVO pairwise classifiers
that will be created in a tree is N -1. Second, calcula-
tions are not required for each node of the construction
step, because all centroid distances between each pair of
classes have already been precalculated in the initializing
step. As a result, LCDG-DTree is more appropriate for
problems with a large number of classes than IB-DTree
and IBGE-DTree.

To demonstrate LCDG-DTree, we show trees con-
structed by the proposed technique using training data
from the Mfeat-Factor and cardiotocography datasets.
The Mfeat-Factor is a 10-class dataset with 200 examples
in each class. Cardiotocography is a 10-class dataset in
which the numbers of examples are 384, 579, 53, 81, 72,
332, 252, 107, 69 and 197. The constructed trees are

shown in Fig. 3 and Fig. 4. Note that the tree structures
are constructed by the centroid distances between their
classes, not the number of examples.

Fig. 3. LCDG-DTree constructed using the Mfeat-
Factor dataset. The underlined numbers are classes
that are selected for an initial classifier in each node.

Fig. 4. LCDG-DTree constructed using the car-
diotocography dataset. The underlined numbers are
classes that are selected for an initial classifier in each
node.
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4. Experiments and Results

We ran the experiments to compare our proposed
method, LCDG-DTree, to the traditional strategies, i.e.,
OVO, OVA, DDAG, ADAG, IB-DTree, IBGE-DTree
and LCDG-DTree. The smallest-centroid-distance-
grouping decision tree (SCDG-DTree) is an alternate
version of the centroid-based algorithm that constructs
a tree in a similar way as LCDG-DTree but selects the
pairwise classes with the smallest centroid distance in-
stead of the largest distance.

We ran experiments based on 10-fold cross-
validation on twenty datasets from the UCI repository
[27], as shown in Table 1. We also conducted an experi-
ment using a dataset with a large number of classes, i.e.,
Wikipedia Medium [28], to compare the performance
of OVA, LCDG-DTree and SCDG-DTree. The original
version of Wikipedia medium is a text dataset. We used
only the single-label examples and calculated the term
frequency-inverse document frequency to represent the
text [31]. We evaluated the classification accuracy by
running 10-fold cross validation. We merged training
data and test data into one group for each dataset and
normalized the data to the range [-1, 1]. For twenty
datasets from the UCI repository, we used the software
package SVMlight version 6.02 [32] using the RBF kernel.
The kernel parameter (γ) and regularization parameter
C were selected from {0.001, 0.01, 0.1, 1, 10} and {1, 10,
100, 1000}. For theWikipediaMedium dataset, we use a
linear kernel with regularization parameter C = 1. For
DDAG and ADAG, as the initial order of classes affects
the classification accuracy, we randomly selected 50,000
initial orders and calculated the average classification

accuracy.
The results are shown in Tables 2-7. Table 2 shows

the average classification accuracy results of 20 datasets
from the UCI repository, while Table 3 shows the aver-
age classification accuracy results ofWikipediaMedium.
Table 4 shows the win-lose-draw between the techniques
under comparison. Table 5 shows the Friedman aligned
ranks test [7] and the Hommel procedure [33], which
were used to assess the accuracy of our method with
the other tree-structure methods. Table 6 shows the
Friedman aligned ranks test and the Hommel proce-
dure, which were used to assess the error rate of our
method with the other nontree-structure methods. Ta-
ble 7 shows the average decision times that are used to
determine the output class of testing examples.

In Table 2, a bold number indicates the highest accu-
racy in each dataset. The number in parentheses shows
the ranking of each technique. The highest accuracy
is obtained by OVO, followed by OVA, ADAG and
DDAG. Among the tree structure techniques, IBGE-
DTree provides the highest accuracy, while LCDG-
DTree and IB-DTree are runners-up in performance. In
Table 3, the results for the Wikipedia Medium dataset
show that OVA yields higher classification accuracy
than the LCDG-DTree and SCDG-DTree methods.

Table 4 shows the pairwise win-lose-draw between
the techniques under comparison. The statistical tests
indicate that OVO significantly outperforms all other
techniques. Among the tree structure techniques,
IBGE-DTree provides the highest accuracy results while
SCDG-DTree underperforms relative to the other tech-
niques.

Table 5 shows the rankings and adjusted p-values
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Table 1. Experimental datasets: Twenty datasets from the UCI repository and Wikipedia Medium (*).

Dataset Name #Classes #Attributes #Examples
Page Block 5 10 5473
Segment 7 18 2310
Shuttle 7 9 58000
Arrhyth 9 255 438
Cardiotocography 10 21 2126
Mfeat-Factor 10 216 2000
Mfeat-Fourier 10 76 2000
Mfeat-Karhunen 10 64 2000
Optdigit 10 62 5620
Pendigit 10 16 10992
Primary Tumor 13 15 315
Libras Movement 15 90 360
Abalone 16 8 4098
Krkopt 18 6 28056
Spectrometer 21 101 475
Isolet 26 34 7797
Letter 26 16 20052
Plant Margin 100 64 1600
Plant Shape 100 64 1600
Plant Texture 100 64 1599
Wikipedia Medium* 1027 160748 111028

of error rate from Table 2 using the Friedman aligned
ranks test and the Hommel procedure between LCDG-
DTree as the control algorithm and the traditional tree-
structure methods (IB-DTree and IBGE-DTree) as the
traditional algorithms. The empirical results show that
the ranking performance of IB-DTree and IBGE-DTree
is better than that of LCDG-DTree. However, the ad-
justed p-values indicate that LCDG-DTree is not signifi-
cantly different from IB-DTree and IBGE-DTree with a
significance level less than 0.025.

Table 6 shows rankings and adjusted p-values of
the classification error rates using the Friedman aligned
ranks test and the Hommel procedure between LCDG-
DTree as the control algorithms and the nontree-based
methods (OVO, OVA, DDAG and ADAG) as the tradi-
tional algorithms. The empirical results show that per-
formance of LCDG-DTree is inferior to that of OVO,
OVA, DDAG and DDAG. However, the adjusted p-
values indicate that LCDG-DTree is not significantly
different from OVA, DDAG and ADAG with signifi-
cance levels less than 0.025.

Table 7 shows the average number of decisions re-
quired to determine the output class of a test example.
The lower the average number of decisions, the faster
the classification speed. The results show that IB-DTree
and LCDG-DTree share the best performance in speed
among the UCI datasets, while OVO is the slowest.

The experimental results show that LCDG-DTree
is one of the most efficient techniques among the com-

parison tree-structure techniques and yields classifica-
tion accuracy comparable to OVA, DDAG, ADAG, IB-
DTree and IBGE-DTree. OVO provides the highest ac-
curacy among the comparison techniques but requires
a very high running time for classification. OVO is
inappropriate for application to the problems with a
large number of classes. For example, for Wikipedia
Medium, OVO needs 526,851 decision times; hence, it
is impractical and is not tested in the experiment. On
the other hand, LCDG-DTree needs only 92.3 decision
times. Note that IB-DTree and IBGE-DTree are also
impractical for Wikipedia Medium; moreover, because
they need 526,851 OVO classifiers in the training pro-
cess, they cannot be tested in the experiment.

5. Conclusions

We proposed the LCDG-DTree technique for cal-
culating the data class centroids and selecting the clas-
sifier with the largest distance in the tree construction.
Our technique has the advantage of training faster than
the traditional tree-structure techniques IB-DTree and
IBGE-DTree and presents a comparable classification
performance. The classification complexity of LCDG-
DTree is close to O(log2N ).

To examine our technique, we ran the experi-
ments on twenty datasets from the UCI repository and
a dataset with a large number of classes, Wikipedia
Medium. In summary, LCDG-DTree is the most ef-
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Table 2. Average classification accuracy results and their standard deviations by twenty datasets from the UCI
repository. Numbers in bold indicate the highest accuracy in each dataset, and numbers in the parentheses show
the accuracy ranking.

Datasets OVA OVO DDAG ADAG
Page Block 96.857 ± 0.478 (1) 96.735 ± 0.760 (3) 96.729 ± 0.764 (4) 96.740 ± 0.757 (2)
Segment 97.359 ± 1.180 (6) 97.431 ± 0.860 (4) 97.442 ± 0.848 (2) 97.436 ± 0.854 (3)
Shuttle 99.914 ± 0.053 (5) 99.920 ± 0.054 (1) 99.920 ± 0.054 (1) 99.920 ± 0.054 (1)
Arrhyth 72.603 ± 7.041 (2) 73.146 ± 6.222 (1) 67.375 ± 7.225 (8) 67.484 ± 7.318 (7)
Cardiotocography 83.208 ± 1.661 (5) 84.431 ± 1.539 (1) 84.241 ± 1.609 (3) 84.351 ± 1.607 (2)
Mfeat-Factor 98.200 ± 1.033 (2) 98.033 ± 0.908 (4) 98.011 ± 0.941 (6) 98.019 ± 0.919 (5)
Mfeat-fourier 84.850 ± 1.528 (6) 85.717 ± 1.603 (1) 85.702 ± 1.589 (3) 85.708 ± 1.585 (2)
Mfeat-Karhunen 98.000 ± 0.943 (1) 97.913 ± 0.750 (3) 97.894 ± 0.726 (5) 97.900 ± 0.722 (4)
Optdigit 99.324 ± 0.373 (2) 99.964 ± 0.113 (1) 99.288 ± 0.346 (3) 99.288 ± 0.346 (3)
Pendigit 99.554 ± 0.225 (4) 99.591 ± 0.203 (1) 99.569 ± 0.213 (3) 99.574 ± 0.211 (2)
Primary Tumor 46.667 ± 7.011 (3) 50.212 ± 7.376 (1) 39.278 ± 6.419 (8) 39.486 ± 6.483 (7)
Libras Movement 90.000 ± 2.986 (1) 89.074 ± 3.800 (2) 89.034 ± 3.729 (3) 89.017 ± 3.687 (4)
Abalone 16.959 ± 2.388 (8) 28.321 ± 1.516 (1) 24.093 ± 3.044 (7) 24.258 ± 3.154 (6)
Krkopt 85.750 ± 0.769 (1) 82.444 ± 0.628 (2) 81.952 ± 0.643 (4) 82.235 ± 0.634 (3)
Spectrometer 51.579 ± 6.256 (8) 68.421 ± 5.007 (1) 68.052 ± 4.706 (4) 68.392 ± 4.796 (2)
Isolet 94.947 ± 0.479 (1) 94.898 ± 0.648 (2) 94.872 ± 0.631 (4) 94.885 ± 0.643 (3)
Letter 97.467 ± 0.305 (4) 97.813 ± 0.382 (1) 97.746 ± 0.357 (3) 97.787 ± 0.360 (2)
Plant Margin 82.875 ± 2.655 (4) 84.401 ± 2.426 (1) 84.238 ± 2.516 (3) 84.341 ± 2.607 (2)
Plant Shape 70.938 ± 2.783 (3) 71.182 ± 3.295 (1) 70.922 ± 3.393 (4) 71.090 ± 3.313 (2)
Plant Texture 87.179 ± 2.808 (1) 86.387 ± 2.374 (2) 86.173 ± 2.519 (4) 86.259 ± 2.510 (3)
Avg. Rank 3.40 1.70 4.10 3.25
Datasets IB-DTree IBGE-DTree SCDG-DTree LCDG-DTree
Page Block 96.565 ± 0.779 (8) 96.620 ± 0.852 (6) 96.620 ± 0.742 (6) 96.656 ± 0.780 (5)
Segment 97.316 ± 0.838 (7) 97.403 ± 1.100 (5) 97.143 ± 0.821 (8) 97.662 ± 0.796 (1)
Shuttle 99.916 ± 0.050 (8) 99.910 ± 0.053 (6) 99.910 ± 0.053 (6) 99.884 ± 0.060 (8)
Arrhyth 71.005 ± 5.836 (6) 72.146 ± 4.043 (4) 72.374 ± 4.883 (3) 72.146 ± 5.858 (4)
Cardiotocography 83.819 ± 1.710 (4) 83.161 ± 2.490 (6) 82.973 ± 3.019 (8) 83.161 ± 1.974 (6)
Mfeat-Factor 98.000 ± 0.768 (7) 98.200 ± 0.816 (2) 98.000 ± 1.000 (7) 98.250 ± 0.791 (1)
Mfeat-fourier 85.200 ± 1.605 (4) 85.150 ± 1.717 (5) 84.550 ± 1.165 (7) 84.200 ± 1.874 (8)
Mfeat-Karhunen 97.450 ± 0.879 (6) 97.950 ± 1.141 (2) 97.450 ± 0.985 (6) 97.400 ± 0.775 (8)
Optdigit 99.164 ± 0.288 (5) 99.093 ± 0.395 (7) 99.021 ± 0.484 (8) 99.146 ± 0.418 (6)
Pendigit 99.445 ± 0.198 (7) 99.454 ± 0.318 (5) 99.381 ± 0.226 (8) 99.454 ± 0.172 (5)
Primary Tumor 47.937 ± 4.567 (2) 44.762 ± 5.478 (4) 43.810 ± 8.373 (6) 44.762 ± 8.531 (4)
Libras Movement 88.056 ± 3.479 (6) 88.056 ± 3.057 (6) 86.667 ± 4.864 (8) 88.889 ± 2.928 (5)
Abalone 25.281 ± 0.904 (5) 26.745 ± 0.809 (3) 26.403 ± 0.823 (4) 28.306 ± 1.661 (2)
Krkopt 79.006 ± 0.792 (8) 80.610 ± 1.039 (5) 80.596 ± 0.840 (6) 79.502 ± 1.045 (7)
Spectrometer 68.211 ± 3.397 (3) 67.789 ± 6.296 (5) 65.474 ± 4.790 (6) 64.211 ± 5.244 (7)
Isolet 93.639 ± 0.261 (6) 94.011 ± 0.640 (5) 93.151 ± 0.832 (8) 93.587 ± 0.878 (7)
Letter 96.135 ± 0.312 (8) 96.409 ± 0.344 (5) 96.140 ± 0.282 (7) 96.225 ± 0.515 (6)
Plant Margin 80.563 ± 3.638 (5) 79.313 ± 2.863 (6) 75.563 ± 3.947 (8) 78.188 ± 1.754 (7)
Plant Shape 67.000 ± 2.853 (5) 66.750 ± 2.408 (6) 64.063 ± 2.504 (8) 64.438 ± 2.771 (7)
Plant Texture 80.425 ± 3.602 (6) 80.863 ± 2.828 (5) 78.111 ± 3.588 (7) 77.423 ± 4.438 (8)
Avg. Rank 5.60 4.90 6.75 5.60

Table 3. Average classification accuracy results and their standard deviation by the Wikipedia Medium. Num-
bers in bold indicates the highest accuracy in each dataset.

Datasets OVA SCDG-DTree LCDG-DTree
Wikipedia Medium 65.289 ± 0.381 54.109 ± 0.356 57.500 ± 0.581

Table 4. Win-lose-draw comparisons between the row techniques (on the side) to the column techniques (on the
top)

.

OVO DDAG ADAG IB-DTree IBGE-DTree SCDG-DTree LCDG-DTree
OVA 7-13-0 11-9-0 10-10-0 14-6-0 15-4-1 18-2-0 16-4-0
OVO - 11-8-1 17-3-0 20-0-0 18-2-0 20-0-0 18-2-0
DDAG - - 2-16-2 16-4-0 15-5-0 17-3-0 15-5-0
ADAG - - - 17-3-0 15-5-0 17-3-0 15-5-0
IB-DTree - - - - 8-11-1 13-5-2 11-9-0
IBGE-DTree - - - - - 18-1-1 12-6-4
SCDG-DTree - - - - - - 7-13-0
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Table 5. Rankings and adjusted p-values of error rates using the Friedman aligned ranks test and the Hommel
procedure between LCDG-DTree as the control algorithm and the tree-structure methods (IB-DTree and IBGE-
DTree) as the traditional algorithm. Numbers in bold mean that the result is a significant difference.

Ranking Adjusted p-values
Traditional methods IB-DTree 32.375 0.2001653

IBGE-DTree 33.825 0.1226769
Control Method LCDG-DTree 25.300 -

Table 6. Rankings and adjusted p-values of error rates using the Friedman aligned ranks test and the Hommel
procedure between LCDG-DTree as the control algorithm and nontree-structure methods (OVO, OVA, DDAG
and ADAG) as the traditional algorithm. Numbers in bold mean that the result is a significant difference.

Ranking Adjusted p-values
Traditional methods OVO 67.550 1.9735E-4

OVA 52.900 0.0335435
DDAG 48.400 0.1020463
ADAG 50.250 0.0662594

Control Method LCDG-DTree 33.400 -

Table 7. Average number of decision times. Numbers in bold indicates the lowest decision times in each dataset.

Datasets OVA OVO DDAG ADAG IB-DTree IBGE-DTree SCDG-DTree LCDG-DTree
Page Block 5 10 4 4 3.790 3.831 3.832 2.963
Segment 7 21 6 6 2.858 3.009 3.564 3.748
Shuttle 7 21 6 6 4.998 5.019 4.667 2.430
Arrhyth 9 36 8 8 5.258 5.418 5.475 6.219
Cardiotocography 10 45 9 9 3.487 3.807 3.813 4.531
Mfeat-factor 10 45 9 9 3.473 3.754 3.818 3.492
Mfeat-fourier 10 45 9 9 3.522 3.786 3.545 3.704
Mfeat-karhunen 10 45 9 9 3.435 3.859 4.035 3.455
Optdigit 10 45 9 9 3.399 4.566 4.045 3.814
Pendigit 10 45 9 9 3.487 3.491 3.785 3.413
Primary Tumor 13 78 12 12 5.391 7.610 7.181 4.844
Libras Movement 15 105 14 14 4.325 4.411 5.197 4.267
Abalone 16 120 15 15 8.768 7.626 9.561 5.368
Krkopt 18 153 17 17 3.957 5.083 4.449 5.349
Spectrometer 21 210 20 20 4.411 4.613 5.000 5.162
Isolet 26 325 25 25 5.064 5.323 5.668 5.022
Letter 26 325 25 25 4.922 5.910 5.100 5.198
Plant Margin 100 4950 99 99 6.973 7.576 7.922 7.464
Plant Shape 100 4950 99 99 6.965 7.446 8.496 7.505
Plant Texture 100 4950 99 99 7.022 8.329 8.038 7.567
Wikipedia Medium 1027 - - - - - 71.772 92.345
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ficient technique that provides a solution quickly and
with comparable accuracy to OVA, DDAG, ADAG IB-
DTree and IBGE-DTree.
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