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Abstract. Even though near infrared (NIR) spectroscopy have been implemented in 
determining the Brix of pineapples, no traceable study compares the effects of different 
acquisition designs. Thus, this study aims to evaluate the prediction performance of both 
pre- and post-dispersive NIR sensing devices in non-destructive Brix prediction using 
artificial neural network (ANN). The pre-dispersive device has five narrowband light 
emitting diodes (LEDs) with different wavelengths and a photodiode detector, whereas the 
post-dispersive device has a bifurcated fiber optic, a broadband LED, and a spectral sensor. 
First, the NIR diffuse reflectance was non-destructively collected using both NIR devices. 
Then, the collected diffuse reflectance was calibrated with the white and dark references, 
and then pre-processed using normalization and standard normal variate methods. After 
that, ANNs were built for both devices using the pre-processed data. Results show both 
devices are suitable for sample screening application with range error ratio (RER) of more 
than seven. Nevertheless, the ANN that trained using the post-dispersive device 
outperformed that trained using the pre-dispersive device with an 8.1% improvement of 
correlation coefficient of prediction (i.e. from 0.6853 to 0.7408), and a 5.7% improvement 
of root mean square error of prediction (i.e. from 1.3918 to 1.313°Brix).  
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1. Introduction 
 
Among various internal qualities of pineapples, the 

soluble solids content (SSC) (also known as Brix value) is 
often used as the main quality indicator of pineapples. 
However, the conventional Brix measurement of 
pineapple is destructively and time-consuming.  Firstly, 
the pineapple was dissected, and the flesh was squeezed to 
produce juices. Then, few drops of juices were dropped 
on a digital refractometer to measure the Brix value. This 
destructive and time-consuming process is impractical to 
ensure each exported pineapple complies the minimum 
Brix requirement i.e. 12 °Brix. Thus, a rapid and non-
destructively alternative method should be implemented 
for pineapple screening based on their Brix value instead 
of skin colour.   

Near infrared (NIR) region is a part of 
electromagnetic radiation with spectral range from 780 to 
2500nm [1]. NIR energy with specific wavelengths will be 
partially absorbed by specific molecular bonds that consist 
of hydrogen e.g. C-H and O-H to become mechanical 
energy of molecular overtone and vibrations [2]. The 
amount of this energy transformation (also known as 
absorption) is affected by the chemical composition and 
the physical properties of an examined sample. Hence, 
near infrared spectroscopy (NIRS), a rapid and non-
invasive sensing technique in qualitative and quantitative 
analysis using NIR region, has been widely implemented 
in predicting the SSC of fruit non-destructively e.g. apple 
[3], pears [4], dovyalis [5], and cherry tomatoes [6]. 
Additionally, NIRS was reported to be able to predict the 
SSC of sugarcane [7] and marian plum fruit [8].  

NIR acquisition aims to acquire the intensity of NIR 
spectrum that can be used to predict components of 
interest of a sample instantly and non-invasively without a 
sample preparation. Fundamentally, a typical NIRS system 
comprises of three important components i.e. light source 
(e.g. a halogen lamp or light emitting diode (LED)), a NIR 
sensing device, and a sample. There are two NIR 
acquisition designs i.e. pre-dispersive and post-dispersive 
that are different in terms of NIR light that is dispersed 
before or after passing through a sample.  

A pre-dispersive NIR acquisition can be implemented 
using few different NIR LEDs [9] to emit NIR light with 
different specific wavelengths toward a sample, and then 
a light sensor to measure the intensity of each wavelength. 
Alternatively, a broadband light source coupled with 
bandpass filters can be used to produce NIR light for pre-
dispersive NIR acquisition [10]. The pre-dispersive NIR 
acquisition designed with low costly NIR LEDs with 
specific different wavelengths and a sensing element is 
promising in reducing the financial barrier of NIR 
acquisition [9]. Recently, a pre-dispersive design showed 
that the collected NIR spectrum was able to achieve 
RMSEP = 1.2104 °Brix and Rp = 0.7301 in predicting the 
Brix of pineapple using Artificial Neural Network (ANN) 
coupled with standard normal variate (SNV) [11]. On the 
other hand, a post-dispersive NIR acquisition can be 
conducted using a broadband light source to emit NIR 

spectrum toward a sample, and then a grating or bandpass 
filters can be used to disperse or filter the light so that the 
intensity of the light with specific wavelengths can be 
measured. 

To model NIR signals for qualitative or quantitative 
prediction applications, various non-linear algorithms (i.e. 
Artificial Neural Network (ANN), local algorithm (LA), 
AdaBoost, extreme learning machine (ELM), and support 
vector machine (SVM)) were studied as that reviewed by 
M. Zareef et. al. [12]. Among these algorithms, ANN is 
considered at the most popular non-linear algorithm in 
NIRS researches. For instance, ANN was used to model 
NIR signals in predicting dry matter content [13], blood 
glucose [14], nitrogen content [15], protein content [16], 
moisture content [17], and zinc oxide content [18].  

Nevertheless, NIRS can be influenced by various 
factors e.g. temperature [19], sample biological variability 
(cultivar, season, origin) [20]–[23], sample position 
detection [24], distance between the sensing instrument 
and samples [25], angle of illumination and detection 
(geometry set up) [26], and surface condition of samples 
(geometrical effect) [27]. Notably, the fundamental of 
both pre- and post-dispersive techniques in eliminating 
the geometrical effect on the surface of pineapple during 
data acquisition may have different effects on the Brix 
prediction performance. A better understanding about the 
effectiveness of both different designs in the Brix 
prediction performance may enhance the usefulness of 
NIR technology. Since there is no traceable study in 
comparing both post- and pre-dispersive designs, this 
study aims to evaluate the prediction performance of the 
pre- and post-dispersive NIR devices in non-destructive 
Brix prediction for pineapples using artificial neural 
network (ANN). 
 

2. Materials and Methods 
 

2.1. Sample Preparation and NIR Data Acquisitions 
 
A total of 72 fresh intact pineapples (MD2 species) 

that harvested from a local pineapple farm in Ladang 
FIMA Ayer Hitam, Johor, Malaysia were used in this study. 
All fresh harvested pineapples were directly transported to 
our laboratory (approximately 25km from the farm) for 
NIR data acquisition and Brix measurement on the same 
day. The maturity index of all harvested pineapples were 
between 0 to 2 that were based on the skin color of 
pineapples and classified by experienced farmers.  

 For each pineapple, two “eyes” (also known as 
fruitlets) around the equator (middle part) of the pineapple 
were selected, in which, both of them were around 180˚ 
apart to each other as illustrated in Fig. 1. Each “eye” 
should have different Brix value as pineapple is a multiple 
fruit (also known as collective fruit). After that, the in-
house developed pre-dispersive NIR device [9] was used 
to acquire NIR signals. Each “eye” was scanned five times 
at different points as illustrated in Fig. 1. The 
measurement probe was directly contacted on the surface 
to minimize the effects of ambient light. In short, a total 
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of ten diffuse reflectance NIR data were non-destructively 
collected from one intact pineapple. Similar scanning 
method was applied to get four NIR data at different 
positions on a Marian plum fruit [8]. The above procedure 
was repeated using a post-dispersive NIR device before 
the pineapple was cut for conventional Brix measurement. 
In total, 720 NIR diffuse reflectance data were collected 
from 72 pineapples with both devices, respectively.  

 
 

The pre-dispersive device consisted of an OPT101 
monolithic photodiode detector (Texas Instrument) and 
five light emitting diodes with different wavelengths i.e. 
780, 851, 870, 910, and 940nm (Thorlab, Japan). The 
wavelengths range between 700 and 1000nm have higher 
radiation and weaker water absorbance to penetrate 
further in a fruit, and are able to recognize third and fourth 
overtones of O-H and C-H stretching modes [8]. These 
wavelengths are at the vicinity of informative wavelengths 
of the third overtone of OH stretching (780nm) [28]; the 
third combination overtone of sugar OH stretching at 
840nm (851nm) [29]; the strong absorption of water and 
oxygen (870nm) [30] that was used to predict the SSC of 
citrus [31]; the third overtone of CH stretching (910nm) 
[32]; and the strong water absorption band for the second 
and third overtone of the OH stretching (940nm) [33]. 
The OPT 101 has an on-chip amplifier to improve the 
signal-to-noise of the acquired signals by eliminating the 
noise pick up and leakage current error during data 
acquisition. The measured voltage of the photodiode is 
proportional to the detected diffuse reflectance intensity 
from the samples. The photodiode was allocated 
perpendicular to the sensor head where the sensor head 
was utilized to scan the pineapple. Figure 2(a) illustrates 
the framework of the in-house developed pre-dispersive 
NIR devices. The angle between the LEDs and the 
photodiode was set to 45°. Detail explanation of this pre-
dispersive device was reported in [9].  

Figure 2(b) illustrates the design of the in-house 
developed post-dispersive NIR device. It was developed 
using an AS7263 Near Infrared (NIR) Spectral Sensor 
(ams AG, Austria). Similar previous works that used the 
same sensor for different applications were [34], [35]. The 
on-board 5700k extremely bright white LED was used 
with maximum current supply of 100mA that gave the 
maximum light intensity to the sample and the spectral 
sensor can detect the intensity of reflected light at 680, 730, 
760, 810, and 860nm. The voltage of the spectral sensor is 
proportional to the detected light intensity from a sample. 
A bifurcated fiber optic probe was used to guide the NIR 
energy (from the LED) toward the sample, and 
simultaneously to collect the diffuse reflected energy from 
the sample using the y-shaped concept in a single probe. 
The y-shaped concept is defined as the cable of light 
source and the cable of detection are mounted under a 
single sensor head. Thus, there is no angle between the 
light source and detector. Besides, the sensor head was 
directly contacted on the surface of a pineapple. Since 
there was no gap between the sample surface and the 
sensor head, the geometrical effect was minimized.  

  

 
2.2. Conventional Brix Measurement 

 
Immediately after the non-destructively diffuse 

reflectance acquisition of a pineapple with both devices 
was completed, the Brix value of the pineapples was 

 

 

Fig. 1. Five NIR scanning points on a selected “eye” on 
the middle part of a pineapple, where (a) is allocated 180° 
with (b). 
 
 
 

 
 

Fig. 2. The in-house developed pre- and post-dispersive 
design sensing devices: (a) the frame work of the pre-
dispersive devices [9]; (b) The design of the post-
dispersive devices. 
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measured. The flesh along with the peel that was at the 
selected “eye” was excised using a stainless-steel corer 
with a dimension of 50mm depth and 20mm diameter. 
The length of each specimen was limited to 20mm depth 
while the surplus flesh was removed. Then, the specimen 
without its peel was crushed using a stainless-steel crusher 
to extract its juice into a beaker. The beaker was shaken 
gently to ensure the equilibrium of the juice. Lastly, few 
drops of the juice from the beaker were dropped on a 
digital refractometer (PAL-1, Atago, Tokyo, Japan) to 
obtain the Brix value. The entire process was repeated for 
another selected “eye” of the pineapple. 
 
2.3. Data-preprocessing 

 
During the diffuse reflectance collection, both devices 

were undergone white and dark calibration. To minimize 
the impact of surrounding unwanted light, the white and 
dark calibration values were taken under the same 
condition [36]. The values were then used to calculate the 
calibrated diffuse reflectance. The calibrated diffuse 
reflectance (Ic) was the ratio of the difference between the 
raw data (Iled) and the dark reference value (Id), to the 
difference between the white reference (Iw) and Id as that 
shown in Eq. (1) [37]. 
 

Ic =  
Iled−Id

Iw−Id
        (1) 

 
The calibrated diffuse reflectance was then pre-

processed with two different methods i.e. normalization 
and standard normal variate (SNV). Normalization was 
carried out using Eq. (2). The normalized diffuse 
reflectance (IN) is the ratio of the calibrated diffuse 
reflectance of each wavelength (Ic) to the total calibrated 
diffuse reflectance of the all the five wavelengths (Itotal).  

                                                                                                             

IN =  
Ic

Itotal
             (2) 

 
SNV is a popular pre-processing method that used to 

reduce the scattering effects and to correct the baseline 
shifts [38]. The SNV was performed using Eq. (3). The 
diffuse reflectance with SNV (ISNV) was calculated by 
subtracting the calibrated diffuse reflectance data (Ic) of 
each wavelength by the average of the five calibrated 

diffuse reflectance (x̄) and then divided by the standard 

deviation (σ) of those five wavelengths. 
 

ISNV =  
Ic−x̄

𝜎
       (3) 

 
Using external validation data from different days are 

important in evaluating the robustness of NIR models. 
Nevertheless, for this work, we focused on the 
comparison between the pre- and post-dispersive NIR 
devices instead of the robustness of the models for future 
prediction. Thus, holdout validation was used, in which, 
the acquired data were holdout using Kennard-Stone (KS) 
algorithm as the testing data set (Table 1), while the 

remainders were used to build the calibration model. The 
dataset was split into training (80%) with 576 data and 
testing (20%) with 144 data using KS algorithm. Similar 
training:testing ratio of 80:20 was used in the previous 
works e.g. 80:20 [39]–[41] and 77:23 [42]. Nevertheless, 
the ratio of training and testing data is not expected to 
affect this comparison study as the same training and 
prediction samples were used.  

KS algorithm gains wide acceptance in splitting the 
original data sets into two different subsets [43],[44]. The 
algorithm is started by selecting two samples in which the 
Euclidean distance between them is the largest. The pair 
of samples was removed from the original dataset and put 
into the training set. Similar procedure is repeated until the 
number of samples required for training set is achieved. 
The Euclidean distance could be calculated using Eq. (4). 

 

EDx(p, q) = √∑ [𝑥𝑝(𝑗) − 𝑥𝑞(𝑗)]2𝑁
𝑗=1 𝑝, 𝑞 ∈ [1, 𝑀]  (4) 

 
where N is the number variables in x, and M is the number 

of samples. 𝑥𝑝(𝑗) and 𝑥𝑞(𝑗) are the 𝑗-th variable for p-th 

and q-th samples, respectively. The unselected samples 
were assigned as testing dataset. The advantage of KS 
algorithm is that the training set completely covers the 
measured region of the original set, and the testing 
samples are located inside the measured region.  
 
2.4. Model Development 
 
Three layers (i.e. one input, one hidden, and one output 
layers) artificial neural network (ANN) with Levenberg-
Marquardt training algorithm was established via software 
MATLAB R2019a. The inputs of ANN were the acquired 
NIR diffuse reflectance signals and the output of ANN 
was the predicted soluble solids content (SSC). The 
architecture of the ANN is illustrated in Fig. 3. 
 

 
 

First, the five inputs (i.e. raw diffuse reflectance) and 
respective target (i.e. measured soluble solids content 
(SSC)) were mapped in the range between -1 and +1. 
Second, the training process was repeated 100 times with 
different random initial weights and biases, and different 
hidden neurons (varied from one to 30) to determine the 
optimal calibrated model. After that, the calibrated model 
was validated with the testing set. This training process 

 
 

Fig. 3. The neural diagram of neural network: the inputs 
were the five NIR diffuse reflectance signals; the hidden 
neurons were varied from 1 to 30; and the output was the 
predicted SSC. 
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was repeated using different inputs of calibrated diffuse 
reflectance, calibrated diffuse reflectance with 
normalization, and calibrated diffuse reflectance with 
SNV. Since two NIR devices were involved, a total of 

eight ANN models were developed for this comparison 
study. 
 

 

 
 

 
 
2.5. Performance evaluation  
 

In this study, the root mean squared error of 
calibration/prediction (RMSEC/RMSEP), correlation 
coefficient of calibration/prediction (Rc/Rp), bias, 
Standard Error of Prediction (SEP), Ratio of standard 
error of Performance to standard Deviation (RPD), and 
Range Error Ratio (RER) were calculated to evaluate the 
performance of the developed models.  

The best calibration model should achieve the lowest 
RMSEP and the highest Rp [45]. The bias is defined as the 
averaged difference between the predicted and the real 
values of a calibration model. RPD is the ratio of the 
square root of the difference between the squared RMSEP 
and the squared bias to the standard deviation of the 
testing data. The prediction accuracy of a model is 
proportionally inclined with the RPD value [46]. Next, 
RER was the ratio of the range of prediction to the SEP. 
The RER value reflects the quality of a calibration model. 
For an RER > 4, the calibration model is acceptable for 
sample screening; for an RER > 10, the calibration model 
is acceptable for quality control; and for an RER > 15, the 
calibration model is good for quantification [47].   
 

3. Results and Discussion 
 

3.1. Descriptive Statistics of the SSC  
 
Table 1 summarizes the descriptive statistics of 720 

measured SSC from the selected “eyes” along the middle 
part of pineapples using the digital refractometer. The 
minimum and maximum of the measured SSC values were 
7.6 and 18.0 °Brix, respectively. The measured SSC values 
were normally distributed with a mean value of 13.0 °Brix 
and a standard deviation of 1.96 °Brix. Since KS algorithm 
was used for the holdout validation, the standard deviation 
of the testing data was lower than that of the training data; 
while the mean values of both training and testing data 
sets were similar, i.e. 13.1 and 13.0, respectively.   
 
3.2. Prediction Performance of ANN  
 

Figures 4 (a) and 4 (b) illustrate the NIR raw spectra 
that acquired using the pre-dispersive and the post-
dispersive NIR devices, respectively. Obvious baseline 
shifts that were observed should be due to the uneven 
surface of the pineapples. As NIR spectrum is highly 
overlapped and correlated, suitable pre-processing and 
machine learning are needed to remove unwanted signals 
and to establish a useful predictive model.  
 

Table 1. Descriptive statistics of the measured SSC of pineapples using a digital refractometer. 
 

Dataset Number of 
samples 

Min (°Brix) Max (°Brix) Mean (°Brix) Standard 
Deviation (°Brix) 

Training 576 7.6 18 13.0 1.97 

Testing 144 9.4 18 13.1 1.91 

Total 720 7.6 18.0 13.0 1.96 
 

Table 2. The training and prediction performance of the ANN using the pre- and post-dispersive NIR devices. 
 

Device 
Pre-

processing 
HN 

Training  Prediction 

Bias 
RMSEC 
(°Brix) 

RC  
RMSEP
(°Brix) 

Rp SEP RPD RER 

Pre-
dispersive 

Raw 30 0.0000 1.4566 0.6745  1.6185 0.5251 1.6185 1.2172 6.4257 
CDR 28 -0.0067 1.1305 0.8195  1.3918 0.6853 1.3918 1.4154 7.4724 

CDR+N 23 -0.0029 1.3500 0.7290  1.5910 0.5648 1.5910 1.2382 6.5368 
CDR+SNV 27 -0.0094 1.4410 0.6828  1.7390 0.4398 1.7390 1.1329 5.9805 

Post-
dispersive 

Raw 30 0.0027 1.1611 0.8084  1.5688 0.6294 1.5688 1.2557 6.6293 
CDR 4 0.000 1.3660 0.7216  1.3940 0.6882 1.3940 1.4132 7.4605 

CDR+N 4 0.000 1.4020 0.7033  1.4310 0.6739 1.4310 1.3767 7.2676 

CDR+SNV 13 0.0042 1.2070 0.7911  1.3130 0.7408 1.3130 1.5004 7.9208 
Raw: Raw diffuse reflectance without pre-processing; CDR: Calibrated diffuse reflectance; CDR+N: Calibrated diffuse reflectance with Normalization; 
CDR+SNV: Calibrated diffuse reflectance with standard normal variate; HN: Hidden neuron. 
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Table 2 tabulates the training and testing performance 
of all calibration models with the diffuse reflectance 
collected by the two NIR devices i.e. pre- and post-
dispersive in terms of RMSEC, RMSEP, Rc, Rp, SEP, 
RER, and RPD. The eight calibrated models (where each 

device consists of four calibration models) were built using 
the four different datasets i.e. raw diffuse reflectance 
(ANNraw), calibrated diffuse reflectance (ANNCDR), 
calibrated diffuse reflectance with normalization 

 

 

Fig. 4. The raw spectrum of devices: (a) pre-dispersive device, and (b) post-dispersive device.  

 
 

 

Fig. 5. The correlation plots of the optimal ANN model: (a) the ANNCDR of the pre-dispersive device for training, (b) 
the ANNCDR of the pre-dispersive device for testing, (c) the ANNCDR+SNV of the post-dispersive device for training, and 
(d) the ANNCDR+SNV of the post-dispersive device for testing. 
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(ANNCDR+N), and calibrated diffuse reflectance with SNV 
(ANNCDR+SNV), respectively. 

The ANN that used raw spectral data (ANNraw) for 
the pre-dispersive device revealed the lowest Rc of 0.6745 
and the highest RMSEC of 1.4566 among the four 
calibrated models. Relative to the post-dispersive device, 
the RC of ANNraw gave the optimal performance among 
the other models with Rc of 0.8084 and the lowest 
RMSEP of 1.1611 °Brix. However, both models did not 
achieve the best prediction performance. Nevertheless, 
ANN with 30 hidden neurons implies that the complexity 
of spectra was high. The use of pre-processing not only 
reduced the number of hidden neuron that was needed to 
achieve the optimal performance, but also potentially gave 
better prediction performance by removing unwanted 
signals that can avoid overfitting issues.  

For the pre-dispersive device, ANNCDR, ANNCDR+N, 
and ANNCDR+SNV achieved RMSEC and Rc of 
1.1305 °Brix and 0.8195; 1.35 °Brix and 0.7290; and 
1.441 °Brix and 0.6828, respectively. For the prediction 
accuracy evaluation, ANNCDR, ANNCDR+N, and 
ANNCDR+SNV achieved RMSEP and Rp of 1.3918 °Brix 
and 0.6853; 1.591 °Brix and 0.5648; and 1.739 °Brix and 
0.4398, respectively. Notably, ANNCDR was the best 
model with the lowest RMSE and the highest R value in 
both training and testing evaluation. This shows that 
unstable pre-processing method might remove the 
interested information and consequently degraded the 
prediction performance. This is aligned with the previous 
work in particleboard types classification, in which, the 
spectra without pre-processing and the normalized spectra 
gave the same values with 99.1% whereas the spectra that 
pre-processed by SNV was 0.9% lower than both of them 
[48].  

On the other hand, the prediction performance of 
ANNCDR+N was better than ANNCDR+SNV in pre-dispersive 
deign. The result is in-line with the previous SSC 
prediction of sugar beet juices study, in which, the SNV 
gave the Rp

2 of 0.983; while the normalization gave the Rp
2 

with 0.984 [49]. Besides, the result from rapid prediction 
and visualization of moisture content in single cucumber 
also showed that the prediction performance of 
normalization (Rp = 0.918) was better than the 
performance of SNV (Rp = 0.911). 

In previous study about the SSC prediction of 
pineapple, the RMSEP achieved with range between 0.82 
to 1.01 °Brix and the Rp ranged 0.68 to 0.74 [50]. 
Conversely, the RMSEP values in this study was relatively 
higher with range 1.39 to 1.74 °Brix. Besides, the Rp of the 
pre-dispersive models ranged from 0.4398 to 0.6853 was 
much lower than the previous study. This degraded 
RMSEP and Rp might be caused by the lack of wavelength 
range covered, and subsequently the small portion of 
meaningful information was absent. Related study about 
the selection of specific wavelengths and the loss of 
information in NIR data had been reviewed using a 
simplified LED design with four NIR wavelengths in 
rapid ripeness evaluation of white grape [29]. 

Table 2 shows that the RPD value of the four pre-
dispersive ANN models ranged from 1.13 to 1.41 where 
the highest RPD value i.e. 1.41 was achieved by the 
ANNCDR. On the other hand, the range of RPD value for 
the four post-dispersive ANN models varied from 1.25 to 
1.50, and the ANNCDR+SNV model gave the highest values 
with 1.50. Even though the RPD values for both designs 
were relatively low, the post-dispersive design shows a 
better prediction accuracy with higher RPD value. 
Nevertheless, the RER values of both pre- and post-
dispersive model suggest that both NIR devices were 
acceptable for sample screening where the range of value 
achieved 5.98 to 7.47 and 6.63 to 7.92, respectively. Magale 
Karine Diel RAMBO et al. reported near infrared 
spectroscopy (NIRS) that was able to achieve RER > 5 
could be useful to screen the quality of solid intact sample 
of coconut and coffee husks [51].  

Interestingly, ANNCDR achieved similar RPD and 
RER for both pre- and post-dispersive NIR device. The 
involvement of SNV degraded the accuracy of pre-
dispersive NIR device; but that improved the accuracy of 
post-dispersive NIR device. Consequently. the best 
models with the highest RER values (i.e. 7.47 and 7.92) 
were ANNCDR and ANNCDR+SNV in pre- and post-
dispersive NIR devices, respectively. This suggests that 
different acquisition setups require different pre-
processing methods to reveal its potential.  

 
3.3. Post-dispersive design 
 

For the post-dispersive device, the RMSEC and Rc of 
three different models i.e. ANNCDR, ANNCDR+N, and 
ANNCDR+SNV were 1.366 °Brix, 0.7216; 1.42 °Brix, 0.7033; 
and 1.207 °Brix, 0.7911, respectively; while the RMSEP 
and Rp were 1.394 °Brix; 0.6882, 1.431 °Brix; 0.6739, and 
1.313 °Brix; 0.7408 respectively. Among these models, the 
ANNCDR+SNV had revealed the optimal training and 
prediction performance with lowest RMSE and highest R 
values.    

ANNCDR+SNV outperformed the ANNCDR and 
ANNCDR+N was in-lined with the previous study in 
investigating the parameters that affected the acquired 
diffuse reflectance in non-destructively SSC prediction of 
pineapple [11].  Besides, the study in rapid estimation of 
leaf nitrogen content in apple-trees also showed that the 
ANNCDR+SNV gave the best prediction performance 
compared with others pre-processing method including 
normalization [52]. The degraded prediction performance 
of ANNCDR+N might be due to the similar reason in the 
pre-dispersive models where the pre-processing method 
removed the meaningful information from the spectrum 
data.  

 
3.4. Comparison between Pre- and Post-dispersive 

 
The pre-dispersive models achieved RMSEP ranged 

between 1.392 to 1.739 °Brix, whereas, the RMSEP of the 
post-dispersive models were relatively lower with a range 
from 1.313 to 1.43 °Brix. The lower range of RMSEP 
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might be caused by the stability of a bifurcated fiber optic 
design in minimizing the geometrical effects on the 
uneven surface of the pineapple. Consequently, the Rp 
values of the post-dispersive models that ranged from 
0.6882 to 0.7408 was higher than that of the pre-dispersive 
models (that ranged from 0.4398 to 0.6853). This is worth 
to highlight that the post-dispersive model achieved 
similar Rp that reported from the previous study in SSC 
prediction of pineapple, in which, the range of  Rp is 0.68 
to 0.74) [50].  

Next, the ANN of the post-dispersive device required 
fewer hidden neurons to achieve its optimal performance 
compare to that of the pre-dispersive device. This suggests 
that the spectra that collected on post-dispersive were 
more consistent than the spectra that collected on pre-
dispersive device. This might be due to the uneven surface 
of a pineapple that affects the travel path of the light. This 
unwanted effect was minimized using the bifurcated fiber 
optic design that eliminated the geometrical effects on the 
uneven surface of pineapples. Consequently, the 
correlation coefficient of the optimal post-dispersive 
model outperformed the optimal pre-dispersive model 
with an improvement of an approximate 8.1% (i.e. Rp 
from 0.6853 to 0.7408, in which, ((0.7408 - 
0.6853)/0.6853)*100% = 8.1%), and the RMSEP was 
reduced by 5.7% (i.e. from 1.3918 to 1.3130°Brix, in which, 
((1.3918 - 1.3130)/1.3918)*100% = 5.7%). 
 
3.5. Comparison between the optimal models 

 
Figure 5 illustrates the correlation plot of the optimal 

models that built using the pre- and post-dispersive 
devices, in which, Fig. 5(a) and Fig. 5(b) are the training 
and testing of ANNCDR for the pre-dispersive device; Fig. 
5(c) and Fig. 5(d) are the training and testing of 
ANNCDR+SNV for the post-dispersive device. 

Figures 5(a) and 5(c) illustrate that the training 
performance of the optimal model of both devices is 
satisfactory whereas the performance of the post-
dispersive device could be better if the training data 
around the minimum and maximum values gave a lower 
calibrated error. For instance, the training data at the 8 and 
18 °Brix were not well calibrated that consequently 
degraded the training performance. Conversely to the 
training performance, the prediction performance of the 
pre-dispersive optimal model was worse than the post-
dispersive optimal model. This indicates that the pre-
dispersive model was too optimistic with higher training 
performance; while the post-dispersive model was more 
robust to have a lower RMSEP when it was tested using 
the testing data. This implies that the pre-dispersive model 
that required more hidden neurons to achieve its optimal 
performance reduced the robustness of the model. 

 

4. Conclusion  
 
In this study, the pre- and post-dispersive NIR devices 

were utilized in diffuse reflectance collection. The effects 
of these designs on the prediction accuracy were evaluated 

using artificial neural network (ANN). Eight calibrated 
models were built and compared using four different 
spectral data i.e. raw diffuse reflectance (ANNraw), 
calibrated diffuse reflectance (ANNCDR), calibrated diffuse 
reflectance with normalization (ANNCDR+N), and 
calibrated diffuse reflectance with SNV (ANNCDR+SNV), 
respectively, for both devices.  

The optimal model of the pre-dispersive device 
achieved RMSEP of 1.3918 °Brix and Rp of 0.6853; while 
that of the post-dispersive device obtained a lower 
RMSEP of 1.313°Brix and a higher Rp of 0.7408. 
Furthermore, the number of hidden neurons that was used 
for the ANN of the post-dispersive was fewer than that 
was used for the ANN of the pre-dispersive device.  This 
suggests that the prediction performance of the pre-
dispersive device might be affected by the geometrical 
effects on the uneven surface of pineapples.  

On the other hand, the mentioned effect was 
minimized when the post-dispersive device coupled with 
a bifurcated fiber optic probe was used. Notably, with the 
post-dispersive design, the correlation coefficient of the 
optimal ANN was increased with approximately 8.1% i.e. 
Rp from 0.6853 to 0.7408, and the RMSEP of that was 
reduced by 5.7% from 1.3918 to 1.313°Brix. The optimal 
post-dispersive model achieved RER of 7.92 and RPD of 
1.50 that indicates that the model has acceptable 
prediction accuracy for sample screening.  

Next, the findings show that SNV degraded the 
prediction accuracy of the pre-dispersive NIR device but 
it improved the prediction accuracy of the post-dispersive 
NIR devices. Thus, a better Brix prediction performance 
can be achieved with a proper NIR measurement setup 
with a suitable pre-processing method. A better 
understanding about the geometrical effects on different 
fruits is important to produce a better sensing device 
design, subsequently, to increase the prediction accuracy. 
Future works may study the effects of different calibration 
algorithms and pre-processing methods to address the 
potential unwanted geometrical effects on different fruits 
that have different types of surface characteristics. 
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