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Abstract. The operational effectiveness of airports and airlines greatly relies on punctuality. 
Many conventional machine learning and deep learning algorithms are applied in the analysis 
of air traffic data. However, the hybrid deep learning (HDL) model demonstrates great 
success with superior results in many complex problems, e.g. image classification and 
behaviour detection based on video data. Interestingly, no previous attempts have been 
made to apply the concept of HDL in analysing structured air traffic data before. Hence, 
this research investigates the effectiveness of the HDL in the departure delays severity 
prediction (i.e. on-time, delay and extremely delay) for 10 major airports in the U.S. that 
experience high ground and air congestion. The proposed HDL model is a combination of 
a feed-forward artificial neural network model with three hidden layers and a conventional 
gradient boosted tree model (XGBoost). Utilising the passenger flight on-time performance 
data from the U.S. Department of Transportation, the proposed HDL model achieves a 
sharp rise of 22.95% in accuracy when compared to a pure neural network model. However, 
with current data used in this research, a pure machine learning model achieves the best 
prediction accuracy. 
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1. Introduction 
 
Commercial air travel has been growing at an 

increasing rate in the past decade due to the ever-
increasing influence of globalisation that the world has 
experienced in the 21st century. According to a 2019 
report from International Civil Aviation Organization 
(ICAO), air transport has seen a clear sign of continuous 
growth in the aviation sector. From 2018 to 2019 alone, 
there was a total increase of 155 million commercial 
passengers resulting in average year-on-year growth of 
about 6.07% [1]. This upward trend can be quite 
problematic as traffic growth outpaces capacity expansion, 
which can lead to a noticeable impact on the aviation 
industry. 

In 2007 alone, it was estimated that the direct cost of 
air transportation delays in the U.S. totalled up to nearly 
$33 billion, of which $16.7 billion was passed down to the 
passengers [2]. Therefore, one can presume that in a 
transportation system, the delay is something that 
management has to pay great attention to. Flight delays are 
proven not only to hurt the aviation business in both 
financial and operational aspects but also can induce a 
chain reaction to other industries. To improve the overall 
performance, whilst minimising unnecessary hidden costs, 
a flight delay prediction model is highly desirable for risk 
mitigation and avoidance preparations for commercial 
aviation stakeholders.  

Factors that could lead to flight delays arise from both 
internal and external factors. Internal factors are those that 
are controllable by the airline, such as gate availability. 
Meanwhile, external factors are those dependent on other 
uncontrollable factors such as passenger and luggage 
handling delays and bad weather. Due to a myriad number 
of concerning data, flight delay prediction is recognised as 
one of the most challenging problems in the aviation 
industry. Moreover, unexpected events caused by internal 
and external factors increase the complexity of the 
problem significantly. 

Completing tasks on time is one of the most 
prominent indicators for assessing the effectiveness of 
airports and airlines management. However, in reality, 
theoretical on-time work practices may be difficult to carry 
out due to uncontrollable factors such as bad weather, 
sudden sickness of the pilot and full apron. According to 
the Federal Aviation Administration (FAA) and aviation 
operational standards, flights that have landed more than 
15 minutes past their originally scheduled slot is 
considered to be “delayed”. Many airports also impose 
regulations that require an airline to compensate its 
passengers if the delay experienced exceeds a certain 
threshold. In major airports, congestion is quite common 
and as such, delays are quite common as well. As delays 
usually propagate to consecutive flights, the issue can 
easily compound and therefore, can cause detrimental 
effects. As such, it is likely to be beneficial to all 
stakeholders involved in air travel if the flight delays can 
be predicted as it will enable them to prepare for and make 
the necessary response to reduce further consequences. 

Several known approaches could be used to create a 
predictive flight delay model such as conventional 
statistical analysis, machine learning, and deep learning. 
Artificial intelligence and data analytics have propelled 
researchers to find possible applications for flight delay 
prediction for commercial airlines to use. Therefore, it is 
necessary to understand how different techniques align 
with our objective and application domain.  

Hybrid deep learning (HDL) has been found to have 
superior performance relative to state-of-the-art deep 
neural network models when working with complex data 
by achieving higher accuracy. However, those models 
were fed with complex data, which includes real-time 
video data and images, which are considered unstructured 
data. However, it is worth noting that the viability of using 
a hybrid deep learning model with structured data is worth 
studying as it may prove to perform similarly. Also, to the 
best of our knowledge, no publication has been 
contributed to the research area in which an HDL model 
is applied to predict flight delays before.  

In this paper, the HDL approach is incorporated to 
predict flight delays for U.S. domestic departing flights, 
covering the top 10 busiest airports. It aims to investigate 
if incorporating the learning technique feature of a feed-
forward neural network along with a gradient boosting, 
which is known to require feature selection, can help 
improve the accuracy of the model.  

The following sequence is used to present this paper. 
Section 2 presents past studies in flight delay prediction 
tasks. Section 3 explains how the retrieved data is 
preprocessed. The proposed hybrid deep learning model 
is explained in detail in Section 4, where the network 
architectures are shown. Section 5 presents the 
experimental results using the machine learning model, 
feed-forward artificial neural network model, and our 
proposed hybrid deep learning model. The conclusion and 
future research directions are given in Section 6. 
 

2. Literature Review 
 
Accurately predicting flight delay has been a 

challenging issue for researchers and practitioners for 
decades. However, recent studies have demonstrated the 
applicability of using state-of-the-art computer-based 
approaches such as big data, machine learning, and deep 
learning to achieve better flight delay prediction results 
relative to conventional statistical approaches.  

Sternberg et al. [3] explored multiple data science 
approaches and their corresponding taxonomy which 
includes machine learning, probabilistic models, statistical 
analysis, network representation, and operational research 
to create models to predict flight delays. Mueller and 
Chatterji [4] analysed and explored the characteristics of 
aircraft arrival and departure delay and developed a time-
series model to determine the correlation between features 
and probability of a certain delay time that was determined 
based on a Normal and Poisson distribution probability 
density function.  
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Vandehzad [5] implemented linear and non-linear 
kernels, linear regression algorithm and combined method 
with mathematically weighted values to predict future 
delays with data provided from Aviolinx, a Swedish 
software provider which serves the airline industry. Gui et 
al. [6] explored factors that influenced flight delays by 
collecting data from an automatic dependent surveillance-
broadcast aviation data platform and applied the data to 
LTSM-based and random forest-based prediction models 
to predict flight delays.  

Balcastro et al. [7] attempted to predict arrival delay 
by incorporating weather data along with the use of 
parallel algorithms (MapReduce). Chen and Li [8] 
presented a combined multi-label random forest 
classification and delay propagation model with an 
optimal feature selection process to predict chained delay 
while taking initial departure delay into account.  

Ye et al. [9] applied four supervised learning methods: 
multiple linear regression, support vector machine, 
extremely randomised trees, and Light Gradient Boosting 
Machine (LightGBM) along with meteorological data to 
predict departure delay at Nanjing Lukou International 
Airport. Manna et al. [10] applied a gradient boosted 
decision tree to analyse air traffic data, which resulted in 
better a higher accuracy air traffic delay prediction model. 
Chakrabarty [11] proposed a gradient boosting classifier 
model with grid search hyper-parameter tuning for 
predicting American Airlines arrival delay in the top 5 
busiest airports using a binary classification approach. 

Kuhn and Jamadagni [12] applied a decision tree, 
logistic regression, and single-layer neural network to 
classify whether the arrival flight will be delayed or not by 
using the top 3 features by importance as inputs. Takeichi 
et al. [13] applied queue analysis and Rectified Linear Unit 
(ReLU) function ANN along with congestion parameters 
to predict arrival delays at Tokyo Airport. 

Gopalakrishnan and Balakrishnan [14] introduced a 
two-hour horizon prediction method based on the origin-
destination pair link along with the use of Markov Jump 
Linear System (MJLS) and multiple Artificial Neural 
Network (ANN) architectures. Yu et al. [15] applied the 
combined deep belief network and support vector 
regression (DBN_SVR) model into the top layer to predict 
flight delays at Beijing International Airport with having 
novel factors such as the degree of crowdedness at an 
airport and the current air route situation. 

Kim et al. [16] implemented multiple ways of 
building deep Long Short-Term Memory (LSTM) and 
Recurrent Neural Networks (RNN) architecture to predict 
flight delays with various sequences and thresholds. Ai et 
al. [17] employed convolutional long short-term memory 
(conv-LSTM) network to predict airport delays and 
apprehend the temporal and spatial characteristics in 
China’s civil aviation area.  

Khanmohammadi et al. [18] introduced a new Defect 
of Modules Prediction (DMP) ANN structure to predict 
delays of incoming flights at JFK airport. Lv et al. [19] 
proposed the application of the stacked autoencoders 

(SAE) model to a greedy deep learning model architecture 
to best learn the features for traffic flow prediction.  

The new architecture of the hybrid model – 
combining multiple machine learning architectures – has 
been showing superior performance in multiple 
challenging tasks. Ding et al. [20] developed a hybrid 
model of CNN+LSTM to detect unsafe behaviour from 
video streaming. The results showed that the accuracy 
from employing this model exceeded the current state-of-
the-art descriptor-based method.  

Kim et al. [21] developed a deep neural network 
(DNN) hybrid model where diverse types of data were fed 
into various DNN structures, of which the data from the 
layers of each source were extracted, combined, and fed 
into a fully connected layer DNN to accurately predict 
consumer repurchasing behaviour. Bhattacharya [22] 
applied a hybrid model of DNN and classical machine 
learning to diagnose disease from a chest X-ray image. 
Results show that the model reaches over 93% accuracy. 

With hybrid deep learning architecture’s superior 
performance, all the revised previous studies have 
employed the model with complex data such as image and 
video data. However, there has not been any study on 
applying hybrid deep learning to the structured dataset 
with structured information. Therefore, the objective of 
this paper is to investigate the viability and efficacy of the 
hybrid deep learning model to flight data to predict the 
on-time performance of flights. This research intends to 
provide a new valuable asset for innovating accurate flight 
delay prediction to the aviation industry. 
 

3. Data Analysis  
 
In this study, the airline on-time performance dataset 

was retrieved from the U.S. Department of 
Transportation, Bureau of Transportation Statistics [23]. 
The dataset contains flight data from the beginning of 
2008 to the end of 2019 by all mandatory reporting carriers 
in the USA of all domestic flights. 
 
3.1. Data Preprocessing 

 
Although the dataset contains information from 

2008 to 2019, only air traffic data from the beginning of 
2017 to the end of 2018 are used. The dataset is further 
reduced, due to computational restraints, to only include 
the data from the top 10 airports with regards to air traffic 
volume. The training and test data are split by annum, with 
the training receiving the year 2017 and the testing phase 
receiving the latter. The origin and destination airports 
used in the study are shown in Table 1.  

Instead of using the exact times of delay, the delay is 
grouped into three blocks. The first block is defined as 
flights that took off no longer than 15 minutes past their 
predefined departure times. Flights that fall into this class 
are considered to be “on-time flights”. The second block is 
defined as flights that took off within the following two 
hours past the initial block. These Class 1 flights are 
considered “delayed flights”. Lastly, the third block consists 



DOI:10.4186/ej.2021.25.8.99 

102 ENGINEERING JOURNAL Volume 25 Issue 8, ISSN 0125-8281 (https://engj.org/) 

of all other flights past the second block. These Class 2 
flights are defined as “extremely delayed flights”. The delay 
grouping is also shown in Table 2.  

From the available attributes, 11 significant features 
were selected for the model as these features would be one 
that could be known before the flight. The names and 
corresponding definitions can be seen in Table 3. 
 
3.1.1. Gradient Boosted Trees Scaling 

 
Due to certain features that were non-numerical, one 

hot encoding was performed to the following features to 
be able to apply them to the Gradient Boosted Tree model: 
OP_UNIQUE_CARRIER, ORIGIN and DEST.  

Normalisation was also performed where the 
numerical features are normalised using a min-max scaling 
algorithm. The algorithm is defined in Eq. (1). 

 

𝑋norm =
𝑋 − 𝑋min

𝑋max − 𝑋min
 

(1) 

 

where 𝑋norm  is the normalised values, X is the initial value 

and 𝑋min   and 𝑋max   are the minimum and maximum 
values within the list, respectively. 

While normalisation is not particularly a big issue for 
gradient boosted models, it is necessary for an ANN 
model and as such, to keep consistency for a fairer 
comparison, it has been applied to both.  
 
3.1.2. Artificial Neural Network (ANN)  

 
Generally, the convergence assumption for neural 

network models is 𝜇  = 0 and 𝜎  = 1. To build robust 
neural network models, standardization will be applied to 
the dataset fed to ANN models using the standard scaler 
algorithm, which is defined in Eq. (2).  
 

𝑧 =  
𝑋 −  𝜇

𝜎
  

 

(2) 

where 𝑋 is the initial value, μ is a mean, shown in Eq. (3), 
and σ is a standard deviation, shown in Eq. (4). 
 

𝜇 =  
1

𝑁
 ∑(𝑥𝑖)

𝑁

𝑖=1

 

 

 
(3) 

 

𝜎 =  √
1

𝑁
∑(𝑥𝑖 −  𝜇)2

𝑁

𝑖=1

 

 

 
(4) 

 

 

 
3.2. Dealing with Imbalanced Dataset 

 
Due to the nature of air traffic, most flights are 

typically not delayed. Consequently, this results in a 
skewed dataset that does not equally represent the 
proportions of flights that are on time and flights that are 
delayed while training. Therefore, to prevent a biased 
result towards the majority label, oversampling using the 

Table 1. U.S. airports used in the study. 
 

Airport  Airport Name 

ATL Atlanta 
DEN Denver 
DFW Dallas/Fort Worth 
LAS Las Vegas 
LAX Los Angeles 
MSP Minneapolis 
ORD Chicago 
PHX Phoenix 
SEA Seattle 
SFO San Francisco 

 
 
 

  

 

Table 2. Reference table for departure block.  
 

Departure 
Delay 
Group 

Definition 
Departure Delay 
in Minutes 

0 On-time [-∞,15] 
1 Delay [15,135] 

2 Extreme Delay [135,∞] 
 

 

Table 3. Feature definition.  
 

Feature Definition Type 

YEAR Year Categorical 
MONTH Month Categorical 
DAY_OF_MO
NTH 

Day of month Categorical 

OP_UNIQUE
_CARRIER 

Unique carrier code Categorical 

ORIGIN Origin airport Categorical 
DEST Destination airport Categorical 
CRS_DEP_TI
ME 

Computer Reserved 
System departure time 

Continuous 

DEP_DELAY
_GROUP 

Departure delay, 
categorised in groups 

Categorical 

CRS_ARR_TI
ME 

Computer Reserved 
System arrival time 

Continuous 

CRS_ELAPSE
D_TIMED 

Difference between 
the Computer 
Reserved System 
departure and arrival 
time 

Continuous 

DISTANCE Distance between 
airport in miles 

Continuous 
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Synthetic Minority Oversampling Technique (SMOTE) 
[24] is used to deal with this imbalance. While applying 
SMOTE, the number of nearest neighbours used was 5 
and the corresponding departure delay group distribution 
before and after oversampling can be seen in Fig. 1 and 
Fig. 2 respectively. 

 

 
4. Model 

 
4.1. Gradient Boosted Trees 

 
Gradient boosted tree is an ensemble method that 

performs classification by combining the outputs from 
individual trees. In this research, XGBoost, which is an 
extreme gradient boosting tree model, was used. In 
particular, XGBoost is known to perform quite well in 
most situations due to its regularised model formalization 
which helps prevents overfitting. Since our objective is to 
train a multi-classification model, the objective function 
for the classifier is set to 'multi:softmax'. The evaluation 
metric used for the model is ‘mlogloss’, which is described 
in Eq. (5). 

 
 

log loss =  −
1

𝑁
∑ 𝑦𝑖 log(𝑝𝑖)

𝑁

𝑖=0

+ (1 −  𝑦𝑖) log(1 − 𝑝𝑖) 
 

 
(5) 

where 𝑁 is the number of samples, 𝑦
𝑖
 is the outcome, and 

𝑝
𝑖
 is the probability of the true output. 

The model was constructed using the 
hyperparameter optimization framework (Optuna) [25] 
due to its efficient searching strategy. The study’s goal was 
to maximise the accuracy score, which is defined in Eq. (6).  
 
 

accuracy(𝑦, 𝑦̂) =
1

𝑛sample
∑ 1(𝑦̂𝑖 − 𝑦𝑖)

𝑛sample

𝑖=0

 

 

 
(6) 

 

where 𝑦̂𝑖  is the predicted value, 𝑦𝑖  is the true value, 

𝑛sample   is the number of samples, and 1(𝑥)  is the 

indicator function. 
The sampler used in the study was the Tree-

structured Parzen Estimator Algorithm, with the total 
number of trials set to be 100. The parameter search space 
used can be seen in Table 4 along with the resulting 
hyperparameter importance in Fig. 3, the optimisation 
history plot in Fig. 4 and final parameter values in Table 5. 

 

 

 
 

 
 
 

 
 
 

Fig. 1. Departure delay group distribution for training data 
prior to applying SMOTE. 

Fig. 2. Departure delay group distribution for training dataset 
post -application of SMOTE. 

 

 

Table 4. Parameter search space – Gradient Boosted 
Trees. 
 

Parameter 
Name 

Parameter Key Range Step 

Number of 
estimators 

n_estimator [0, 2500] - 

Maximum 
Tree Depth 

max_depth [1, 15] - 

Minimum 
Child 
Weight 

min_child_weight [1, 10] - 

Learning 
Rate 

eta [1e-08, 1] - 

Minimum 
Split Loss 

gamma [1e-08, 1] - 

Subsample 
Ratio 

subsample [0.5, 0.9] 0.1 

Subsample 
Ratio by 
Tree 

colsample_bytree [0.5, 0.9] 0.1 

 
 

  

 

Table 5. Final hyperparameters used for Gradient 
Boosting Tree Model. 
 

Parameter Key Value 

n_estimator 1975 
max_depth 2 
min_child_weight 1 
eta 3.18e-08 
gamma 6.29e-07 
subsample 0.6 
colsample_bytree 0.5 
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4.2. Artificial Neural Network (ANN) 
 
The ANN model is built with the Keras framework 

[26]. Figure 5 shows the schematic diagram of the neural 
network used in this research. As shown, the constructed 
neural network consists of three hidden layers with 256 
neurons each, which resulted from the hyperparameter 
tuning process. Before the feed-forward dense layers, the 
categorical features OP_UNIQUE_CARRIER, ORIGIN 
and DEST go through an embedding lookup process. The 
categorical variable under each feature is mapped to a 
dense vector representing each distinct category. The 
embedding approach allows the model to learn the 
relationships between each category through the 
dimensions of the resulting embedded vector [27]. 

The model has multiple inputs, as the features used 
consisted of both numeric and categorical data. Each 
categorical variable will be treated as separate input and 
needs to enter the embedding process before being feed 
into the dense layers. There are also three separate vectors 

as a result of each categorical feature. Then, the embedded 
vector for each categorical input is concatenated into a 
vector for the dense layers. For non-categorical data, the 
input can be directly fed into the dense layers. The 
resulting embedded vector is then merged with the 
numerical inputs and fed into the model for training. 

To avoid the risk of overfitting, batch normalisation 
is applied between each layer which also accelerates 
training through standardisation. For the neurons in the 
hidden layers, Rectified Linear Unit (ReLU) was used as 
the activation function. In the output layer, the Softmax 
activation function, which is described in Eq. (7), is used 
to classify the result into multiple classes. A categorical 
cross-entropy loss function is applied, which is described 
in Eq. (8). 

 
 

𝜎(𝑧)𝑖 =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗

 

 

 
(7) 

 

Fig. 3. Hyperparameter importance – Gradient Boosted Trees. 

 

Fig. 4. Optimization history plot – Gradient Boosted Trees. 
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where 𝑧 is the input vector to the softmax function, 𝑧𝑖 is 

the element of the input vector, 𝐾 is the number of classes 

in the multi-class classifier, and  ∑ 𝑒𝑧𝑗𝐾
𝑗  is used for 

normalisation that results in a valid probability distribution. 
 
 

CE = − ∑ 𝑡𝑖log (𝜎(𝑧)𝑖)

𝐶

𝑖

 

 

 
(8) 

 

where 𝑡𝑖  is the ground truth for each class 𝑖  in 𝐶  and 

𝜎(𝑧)𝑖 is the softmax output for each element in the vector. 

The hyperparameter optimization framework Optuna was 
applied to the neural network model. As aforementioned 
in the Gradient Boosted Trees section, we aim at 
maximising the accuracy score. 

Similar to the prior gradient boosted model, the 
hyperparameter optimization framework, Optuna, was 
used to determine the best performing parameters. The 
total number of trials for the study was set to be 25 due to 
computational limits and the following parameter search 
space used can be seen in Table 6. The resulting 
hyperparameter importance, optimization history plot and 
final parameter values are shown in Fig. 6, Fig. 7, and 
Table 7 respectively. 

 

 

 
 

 
 

 
 

Fig. 5. Schematic diagram of feed forward neural network used in the project. 
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Table 6. Parameter search space – Artificial Neural 
Network. 
 

Parameter 
Name 

Parameter Key Range 

Number 
of 
neurons in 
hidden 
layer 1 

n_units_hidden_1 [64, 128, 256] 

Number 
of 
neurons in 
hidden 
layer 2 

n_units_hidden_2 [64, 128, 256] 

Number 
of 
neurons in 
hidden 
layer 3 

n_units_hidden_3 [64, 128, 256] 

Learning 
Rate 

lr [1e-5, 1e-1] 

Batch size batch_size [256, 512, 
1024, 2048] 

Epochs epochs [50, 100] 
   

 
 

  

Table 7. Final hyperparameters used for Gradient 
Boosting Tree Model. 
 

Parameter Key Value 

n_units_hidden_1 256 
n_units_hidden_2 256 
n_units_hidden_3 256 
lr 1.16e-04 
batch_size 1024 
epochs 95 

 
 

  

 
 

Fig. 6. Hyperparameter importance – Artificial Neural Network. 

 
 

Fig. 7. Optimization History Plot – Artificial Neural Network. 
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4.3. Hybrid Deep Learning (HDL) 
 
HDL is a fusion of conventional machine learning 

and deep learning. This combination leverages the benefits 
of both deep learning and machine learning to supposedly 
produce a model with higher accuracy whilst being less 
computationally expensive than traditional deep learning. 
The HDL architecture consists of a constructed ANN 
model that is succeeded by an ML classification layer as 

seen in Fig. 8. Tensors at the last layer, the layer before 
entering the prediction layer of the ANN model, are 
extracted and used as the inputs to the XGB model.  

Both the training and testing data is required to pass 
through the DL portion of the HDL model as the ANN 

generated tensors are used as 𝑋 (inputs) for the machine 
learning model. 
 

 

 
With regards to the parameters used, the DL portion 

of the model used the same parameters as previously 
discovered through the hyperparameter optimization 
process however, the parameters for the ML portion were 
redone with the given outputs from the DL side. The total 
number of trials have been set to 50. The parameter search 
space can be seen in Table 8 and the resulting 
hyperparameter importance, optimization history plot and 
final parameter values can be seen in Fig. 9, Fig. 10, and 
Table 9, respectively. 

 

 

Fig. 8. Hybrid Deep Learning architecture used in the research. 

 

Table 8. Parameter search space – Hybrid Deep Learning. 
 

Parameter 
Name 

Parameter Key Range Step 

Number of 
estimators 

n_estimator [0, 2500] - 

Maximum 
Tree Depth 

max_depth [1, 15] - 

Minimum 
Child 
Weight 

min_child_weight [1, 10] - 

Learning 
Rate 

eta [1e-08, 1] - 

Minimum 
Split Loss 

gamma [1e-08, 1] - 

Subsample 
Ratio 

subsample [0.5, 0.9] 0.1 

Subsample 
Ratio by 
Tree 

colsample_bytree [0.5, 0.9] 0.1 
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Table 9. Final hyperparameters used for Hybrid Deep 
Learning Model. 
 

Parameter Key Value 

n_estimator 1169 
max_depth 15 
min_child_weight 1 
eta 2.18e-02 
gamma 8.26e-07 
subsample 0.8 
colsample_bytree 0.6 

 
 

  

 

Fig. 9. Hyperparameter importance – Hybrid Deep Learning. 

 

 

Fig. 10. Optimization history plot – Hybrid Deep Learning. 
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5. Results and Discussions 
 
In this paper, the following metrics will be used to 

gauge the performance of the model: validation accuracy, 
precision, recall, F1-score and Mathew’s correlation 
coefficient. 

 Validation accuracy is a metric that shows how the 
ratio of correct predictions is relative to the total 
predictions. 

Precision is the proportion of correct positive 
identifications. 

Recall is the proportion of actual positive that was 
correctly identified. 

F1-Score, which is the harmonic mean of the model’s 
precision and recall. 

Matthew’s correlation coefficient or MCC is the 
quality of the classification and is used to compare the 
results of each classes precision and recall relative to each 
other. 
 
Accuracy is defined in Eq. (9). 
 
 Accuracy

=  
∑ (TP𝑖 +  TN𝑖)𝑐

𝑖=0

∑ (TP𝑖 + TN𝑖 + FP𝑖 +  FN𝑖)𝑐
𝑖=0

 

 

(9) 

 
Precision is defined in Eq. (10). 
 
 

Precision =  
∑ TP𝑖

𝑐
𝑖=0

∑ (TP𝑖 +  FP𝑖)𝑐
𝑖=0

 

 

 
(10) 

 
Recall is defined in Eq. (11). 
 

Recall =  
∑ TP𝑖

𝑐
𝑖=0

∑ (TP𝑖 +  FN𝑖)𝑐
𝑖=0

 

 

(11) 

 
F1-Score is defined in Eq. (12). 
 
 

F1 =  2 ×
(Precision × Recall)

(Precision + Recall)
 

 

(12) 

   
MCC is defined in Eq. (13). 
 
 MCC =  

∑ (𝑇𝑃𝑖 × 𝑇𝑁𝑖) −  (𝐹𝑃𝑖  × 𝐹𝑁𝑖)𝑐
𝑖=0

√∑ (𝑇𝑃𝑖+𝐹𝑃𝑖)(𝑇𝑃𝑖+𝐹𝑁𝑖)(𝑇𝑁𝑖+𝐹𝑃𝑖)(𝑇𝑁𝑖+𝐹𝑁𝑖)𝑐
𝑖=0

 

 

(9) 

 
The format of the Confusion Matrix, which is used 

to visualise the performance of the prediction model is 
shown in Fig. 11 [28]. 

 
5.1. Gradient Boosted Trees 

 
The results of the gradient boosted tree model 

returned a validation accuracy of 79.64% and its 
corresponding classification report can be seen in Table 
10 along with the model’s confusion matrix in Fig. 12. The 
model’s performance in class 0 is decent across the board, 
where its precision, recall and F1-score are 0.8143, 0.9728, 
and 0.8865, respectively. Therefore, its performance in 
predicting no delay is relatively suitable. However, when 
predicting delays, the model’s accuracy for class 1 falls 
short with a precision of 0.3390 and a substantially low 
recall and F1-Score of 0.0568 and 0.0973, respectively. 
Class 2 also underperforms with a precision score of 
0.0358, a recall score of 0.094 and an F1-score of 0.0149.  

The model also had an MCC score of 0.0723, which 
indicates a low correlation rate between the predicted 
classes and the true classes. This is substantiated by the 
low rate of correct labels in group 1 and group 2. 

 
5.2. Artificial Neural Network (ANN) 

 
The results of the feed-forward artificial neural 

network model returned a validation accuracy of 51.43%, 
which is comparatively lower than the gradient boosted 
tree model. The model however shows a better 
performance in predicting class 1 and class 2. Table 11 
presents the classification report and Fig. 13 displays the 
confusion matrix. The model’s precision, recall, and F1-
score for class 0 are 0.8280, 0.5651 and 0.6718, 
respectively. When predicting classes 1 and 2, which are 
delays and extreme delays respectively, the model resulted 
in more solid prediction performance, when compared to 
the XGB model. Its precision, recall, and F1-score for 
class 1 are 0.1956, 0.3123, and 0.2405 respectively and it 
produced a precision score of 0.0242, a recall score of 
0.2000 and an F1-score of 0.0432 for class 2. 

The neural network model also resulted in an MCC 
score of 0.0420, which is significantly lower than the XGB 
model.  
 

 

Fig. 11. Structure of confusion matrix for multi-class 
classification. 
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5.3. Hybrid Deep Learning (HDL) 
 
The results of the HDL model returned a validation 

accuracy of 74.38%, a 22.95% increase when compared to 
the baseline ANN model. The model’s performance in 
class 0 is solid, with an accuracy, recall and F1-score of 
0.8143, 0.8996, and 0.8548, respectively. Although it does 
not perform as well as using XGBoost by itself, the vast 
proportion of the data is correctly identified as on time. 
Though the accuracy is 5.26% lower than the baseline 
XGBoost model, the results show that this model 
performs slightly better in predicting the delayed instances. 
The corresponding classification report is presented in 
Table 12 together with the model’s confusion matrix in 
Fig. 14. 

The model’s precision for class 1 and class 2 is 0.2141 
and 0.0285 respectively and its recall for class 1 and class 
2 are 0.0912 and 0.0459 correspondingly. The MCC score 
for this model was 0.0345, the lowest amongst the models 
tested. 

This leap in accuracy shows that the combination of 
neural network and gradient boosted trees results in a 
performance improvement, compared to using a neural 
network model by itself. As the feature set used in this 
study is quite small, the effects of using such an 
architecture may prove to be more effective, especially 
when using unsorted data. 

To sum up the overall result, the conventional 
gradient boosted tree model provides the highest accuracy. 
However, the model has trouble in predicting delays and 
extreme delay instances. The ANN model shows lower 
ability in predicting on-time instances yet the potential in 
predicting delays and extreme delays is manifested.  

 

 

 

 

 

 

 

Table 10. Classification Report for Gradient Boosted Tree 
Model. 
 

 Precision Recall F1-Score Support 

Class 0 0.8143 0.9728 0.8865 430538 
Class 1 0.3390 0.0568 0.0973 90587 
Class 2 0.0358 0.094 0.0149 11381 
Accuracy - - 0.7964 532506 
Macro 
Average 

0.3964 0.3463 0.3329 532506 

Weighted 
Average 

0.7168 0.7964 0.7336 532506 

 
 

  

 

Table 11. Classification Report for Artificial Neural 
Network Model. 
 

 Precision Recall F1-Score Support 

Class 0 0.8280 0.5651 0.6718 430538 
Class 1 0.1956 0.3123 0.2405 90587 
Class 2 0.0242 0.2000 0.0432 11381 
Accuracy - - 0.5143 532506 
Macro 
Average 

0.3493 0.3591 0.3185 532506 

Weighted 
Average 

0.7033 0.5143 0.5850 532506 

 
 

  

Table 12. Classification Report for Hybrid Deep Learning 
Model. 
 

 Precision Recall F1-Score Support 

Class 0 0.8143 0.8996 0.8548 430538 
Class 1 0.2141 0.0912 0.1280 90587 
Class 2 0.0285 0.0459 0.0352 11381 
Accuracy - - 0.7438 532506 
Macro 
Average 

0.3523 0.3456 0.3393 532506 

Weighted 
Average 

0.6954 0.7438 0.7136 532506 

 
 
 

  

 
 

Fig. 12. Confusion Matrix for Gradient Boosted Tree 
Model. 
 

 
Fig. 13. Confusion Matrix for Artificial Neural Network 
Model. 

 
Fig. 14. Confusion Matrix for Hybrid Deep Learning 
Model. 



DOI:10.4186/ej.2021.25.8.99 

ENGINEERING JOURNAL Volume 25 Issue 8, ISSN 0125-8281 (https://engj.org/) 111 

6. Conclusion and Future Work 
 
In this study, we have employed conventional 

machine learning, classical feed-forward deep learning, 
and a novel hybrid deep learning approach to predict 
departure on-time performance of U.S. domestic flights in 
the top 10 busiest airports. The goal of this study is to 
assess the viability and efficacy of the HDL model in 
comparison to a feed-forward ANN and gradient boosted 
tree machine learning (XGBoost). Though the HDL 
model did not result in the highest accuracy amongst the 
available model, the change in accuracy of the HDL model 
when compared to the ANN model shows the potential 
of using HDL model in predicting delayed instances.  

Plausible reasons on why the HDL model did not 
outperform the XGBoost model may be due to data 
limitation. The data incompletion of this problem may not 
have allowed the HDL model to leverage any of the 
feature selecting capacity that it would have usually 
provided with the use of auto-encoders. Another factor 
could have also been due to the fact that boosting based 
models inherently perform well in cases with limited 
training data, particularly due to its intrinsic property of 
margin maximization during training. 

However, it theorized that once more data such as 
weather data is included, which may or may not be 
structured, the model will likely outperform the XGBoost 
model. Therefore, more testing is required to be certain.  

In future research, more cross-validation methods 
and larger sample size should be used to develop the 
model. Other methods of dealing with an imbalanced 
dataset should also be applied such as Edited Nearest 
Neighbor (ENN) in order to reduce noise from the 
majority sample class [29] post oversampling [30].  

Other factors that can also be improved, with regards 
to the neural network portion, include modifying the 
architecture to achieve higher performance and better 
tuning of the model.  

The dataset used in this study is also rather limited. 
Many other features can be implemented that may prove 
to be beneficial. For example, relevant data such as 
weather data, aircraft model, aircraft age, factors limiting 
the airport infrastructure such as runways available relative 
to average flights, may prove to help solve the issue 
relating to the low performance in predicting the delays. 

 
References 
 
[1] International Civil Aviation Organization. 

“International Civil Aviation Organization.” 
https://www.icao.int/  

[2] M. Ball, C. Barnhart, M. Dresner, M. Hansen, K. 
Neels, A. Odoni, E. Peterson, L. Sherry, A. Trani, B. 
Zou, R. Britto, D. Fearing, P. Swaroop, N. Uman, V. 
Vaze, and A. Voltes, “Total delay impact study: A 
comprehensive assessment of the costs and impacts 
of flight delay in the United States,” NEXTOR, final 
report, 2010. 

[3] A. Sternberg, J. Soares, D. Carvalho, and E. 
Ogasawara, “A review on flight delay prediction,” 
2017, arXiv:1703.06118. 

[4] E. R. Mueller and G. B. Chatterji, “Analysis of 
aircraft arrival and departure delay characteristics,” in 
AIAA’s Aircraft Technology, Integration, and Operations 
(ATIO) 2002 Technical Forum, California, 2002. 

[5] M. Vandehzad, “Efficient flight schedules with 
utilizing Machine Learning prediction algorithms,” 
master’s thesis, Department of Computer Science 
and Media Technology, Faculty of Technology and 
Society, Malmö University, 2020. 

[6] G. Gui, F. Liu, J. Sun, J. Yang, Z. Zhou, and D. Zhao, 
“Flight delay prediction based on aviation big data 
and machine learning,” IEEE Transactions on 
Vehicular Technology, vol. 69, pp. 140-150, 2019. 

[7] L. Belcastro, F. Marozzo, D. Talia, and P. Trunfio, 
“Using scalable data mining for predicting flight 
delays,” ACM Transactions on Intelligent Systems and 
Technology (TIST), vol. 8, pp. 1-20, 2016. 

[8] J. Chen and M. Li, “Chained predictions of flight 
delay using machine learning,” in AIAA Scitech 2019 
forum, American Institute of Aeronautics and Astronautics, 
2019, p. 1661. 

[9] B. Ye, B. Liu, Y. Tian, and L. Wan, “A methodology 
for predicting aggregate flight departure delays in 
airports based on supervised learning,” Sustainability, 
vol. 12, p. 2749, 2020. 

[10] S. Manna, S. Biswas, R. Kundu, S. Rakshit, P. Gupta, 
and S. Barman, “A statistical approach to predict 
flight delay using gradient boosted decision tree,” in 
International Conference on Computational Intelligence in 
Data Science (ICCIDS), West Bengal, 2017. 

[11] N. Chakrabarty, “A data mining approach to flight 
arrival delay prediction for American Airlines,” in 
2019 9th Annual Information Technology, 
Electromechanical Engineering and Microelectronics 
Conference (IEMECON), IEEE, pp. 102-107. 

[12] N. Kuhn and N. Jamadagni, “Application of 
machine learning algorithms to predict flight arrival 
delays,” CS229, Autumn 2017, 2017. 

[13] N. Takeichi, R. Kaida, A. Shimomura, and T. 
Yamauchi, “Prediction of delay due to air traffic 
control by machine learning,” in AIAA Modeling and 
Simulation Technologies Conference, Texas, 2017. 

[14] K. Gopalakrishnan and H. Balakrishnan, “A 
comparative analysis of models for predicting delays 
in air traffic networks,” in Twelfth USA/Europe Air 
Traffic Management Research and Development Seminar 
(ATM2017), MA, 2017. 

[15] B. Yu, Z. Guo, S. Asian, H. Wang, and G. Chen, 
“Flight delay prediction for commercial air transport: 
A deep learning approach,” Transportation Research 
Part E: Logistics and Transportation Review, vol. 125, pp. 
203-221, 2019. 

[16] Y. J. Kim, S. Choi, S. Briceno, and D. Mavris, “A 
deep learning approach to flight delay prediction,” in 
2016 IEEE/AIAA 35th Digital Avionics Systems 
Conference (DASC), 2016. 



DOI:10.4186/ej.2021.25.8.99 

112 ENGINEERING JOURNAL Volume 25 Issue 8, ISSN 0125-8281 (https://engj.org/) 

[17] Y. Ai, W. Pan, C. Yang, D. Wu, and J. Tang, “A deep 
learning approach to predict the spatial and temporal 
distribution of flight delay in network,” Journal of 
Intelligent & Fuzzy Systems, vol. 37, pp. 6029-6037, 
2019. 

[18] S. Khanmohammadi, S. Tutun, and Y. Kucuk, “A 
new multilevel input layer artificial neural network 
for predicting flight delays at JFK Airport,” Procedia 
Computer Science, vol. 95, pp. 237-244, 2016. 

[19] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, 
“Traffic flow prediction with big data: A deep 
learning approach,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 16, pp. 865-873, 2014. 

[20] L. Ding, W. Fang, H. Luo, P. E. Love, B. Zhong, and 
X. Ouyang, “A deep hybrid learning model to detect 
unsafe behavior: Integrating convolution neural 
networks and long short-term memory,” Automation 
in Construction, vol. 86, pp. 118-124, 2018. 

[21] J. Kim, H. Ji, S. Oh, S. Hwang, E. Park, and A.P. del 
Pobil, “A deep hybrid learning model for customer 
repurchase behavior,” Journal of Retailing and Consumer 
Services, vol. 59, p. 102381, 2021. 

[22] A. Bhattacharya. “Radiographic Image Analysis.” 
https://aditya-
bhattacharya.net/2020/07/27/radiographic-image-
analysis/2/ 

[23] United States Department of Transportation. 
“Bureau of Transportation Statistics.” 
https://www.transtats.bts.gov/ 

[24] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. 
Kegelmeyer, “SMOTE: Synthetic minority over-
sampling technique,” Journal of Artificial Intelligence 
Research, vol. 16, pp. 321-357, 2002. 

[25] T. Akiba, S. Sano, T. Yanase, and M. Koyama, 
“Optuna: A next-generation hyperparameter 
optimization framework,” in Proceedings of the 25th 
ACM SIGKDD International Conference on Knowledge 
Discovery & Data Mining, 2019. 

[26] F. Chollet. “Keras.” GitHub.com. 
https://github.com/fchollet/keras 

[27] C. Guo and F. Berkhahn, “Entity embeddings of 
categorical variables,” 2016, arXiv:1604.06737. 

[28] F. Krüger, “Activity, context, and plan recognition 
with computational causal behaviour models,” 
University of Rostock, Rostock, 2018. 

[29] Z. Xu, D. Shen, T. Nie, and Y. Kou, “A hybrid 
sampling algorithm combining M-SMOTE and 
ENN based on Random forest for medical 
imbalanced data,” Journal of Biomedical Informatics, vol. 
107, p. 103465, 2020. 

[30] B. Krawczyk, “Learning from imbalanced data: open 
challenges and future directions,” Progress in Artificial 
Intelligence, vol. 5, pp. 221-232, 2016. 

 
 
 

 
 
 
Warittorn Cheevachaipimol, photograph and biography not available at the time of publication. 
 
Bhudharhita Teinwan, photograph and biography not available at the time of publication. 
 
Parames Chutima, photograph and biography not available at the time of publication. 


