

Article

Simulation Techniques for Determining Numbers of
Programmers in the Process of Software Testing

Adtha Lawanna

Department of Information Technology, Faculty of Science and Technology, Assumption University,
Bangkok, Thailand
E-mail: adtha@scitech.au.edu

Abstract. One of the main problems in software engineering is to determine the
appropriate numbers of programmer working through the software-development life cycle,
particularly in the process of coding, testing, and maintenance. The high numbers of the
programmer increase the cost of developing software. However, the small teams cause
another problem, especially in the process of testing software. Therefore, this article
presents the simulation technique for the development team in order to determine the
appropriate numbers of programmers, whereas the testing time is specified by the users.
Firstly, the relationship among programmers, codes, and testing time are constructed and
studied. Secondly, it is the application based simulation technique for determining the
suitable numbers of programmers by running 20, 50, 100, and 200 experiments. Lastly, the
proposed model interprets the percent errors for the different programs. The contribution
is to manage and reduce the cost of developing program and increase the accuracy of
testing software by improving the percent errors.

Keywords: Software-development life cycle, software testing, software maintenance,
programmers, code, bugs.

ENGINEERING JOURNAL
Received 1 April 2013
Accepted 8 August 2013
Published 18 April 2014
Online at http://www.engj.org/
DOI:10.4186/ej.2014.18.2.89

DOI:10.4186/ej.2014.18.2.89

90 ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/)

1. Introduction

Software engineering is one of the fields of information technology, which are being focused for both
academics and industries [1]. The explosive influence of information technology and computers on our
normal lives has produced a requirement to plan and improve new software systems as well as to combine
the appropriate technologies into a quickly rising range of applications [2]. The jobs accomplished by
specialists known as software engineers evolve rapidly, imitating new spaces of knowledge or movement of
technology, and the inclinations and practices of workers [3]. Software engineers relate the philosophies and
methods of information science, engineering, and precise analysis to the project, improvement, testing, and
estimation of the software system [4-8]. In addition, it allows computers to achieve their numerous
applications. The following is the examples of employers in the computer software engineers [9]:

Technology Intensive Firms: Apple Computer, AT&T, Cisco Systems, Dell, Fujitsu Siemens Computers,
Google, Hewlett-Packard, IBM, Intel, Iomega, Microsoft, Motorola, Oracle, Panasonic, PeopleSoft (Oracle),
Raytheon Company, Sony Electronics, Sun Microsystems, Texas Instruments, Toshiba, Verizon, and
Yahoo.

U.S. Federal Government and State and Local Affiliates: Federal Bureau of Investigation, Federal
Emergency Management , Agency, NASA, National Institute of Standards and Technology, US Air Force,
US Army, US Central Intelligence Agency , US Department of Energy, US Department of Defense, US
Department of Transportation, US Naval Research Lab, and US Navy.

Other Firms: 3M Worldwide, Adelphia Communications, ADT, Advanced Micro Systems, Alcatel,
Alcoa, Ansys, Applied Digital, Blackberry , BMW International, Boeing, Delphi-Packard Electric, Toyota
Motor Sales, USA, Inc., Federal Express, Ford, Genentech, General Dynamics, General Electric, General
Motors Corporation, Honda, Honeywell, Hughes Network Systems, Johnson & Johnson, Lockheed Martin,
Meade Instruments Corporation, Merrill Lynch & Co., New Piper Aircraft, Nuance Communications, Inc.,
Procter & Gamble Company, Samsung, Siemens Automotive Corporation, Toyota Motor Sales, Inc., UPS,
and Westinghouse.

Other Employers: Colleges and Universities, K-12 Schools, Professional Associations, Temporary Firms,
and Consultants.

Basically, Software-development life cycle (SDLC) is being applied in the software engineering. SDLC
refers to six phases of developing software and the instruction in which those phases are accomplished.
Each phase creates deliverable outcomes that are required by the next phase in the cycle [10-12]. All
requirements are converted into the plan. Program is created relying on the plan which is named
development phase. After programming and development, the testing proves the deliverable of the
implementation phase match all requirements [13-15]. Figure 1 describes the following six phases SDLC:

Phase 1: Getting requirements. This phase, the business requirements are collected. This phase is one
of the main elements of the project management and users. Meetings with managers, users, and stake
holders are held for determining the requirements, e.g., who is going to use the software? How will they use
the software? What information should feed into the system? What information should be outcomes from
the system? Here, the general questions will be answered during this phase. After this, these requirements
will be analyzed for their cogency and the possibility of integrating the requirements in the system. Finally, a
Requirement Specification file is produced, which helps the determination of instruction for the next phase
of the SDLC.

Phase 2: Design. In this phase, the software system is organized from the requirement specifications of
phase 1, which were studied. According to this, system design supports in identifying hardware and
software requirements, including aims in describing the entire system architecture.

Phase 3: Coding. After receiving system design from phase 2, the code is divided into modules or units,

and actual programming is started. Since, in this phase the program is created, therefore, it is the main jobs
for the programmer. This spends the longest phase of the SDLC.

Phase 4: Testing. After that the software is tested due to the requirements from phase 1 to ensure that
the product is actually matching the requests listed and documented. During this phase unit, module,
integration, team, system, and acceptance testing are completed.

Phase 5: Deployment. After completely testing the software is deployed and delivered to the users for
their jobs.

Phase 6: Maintenance. Once when the users start to use the software system, the actual problems may
be occurred and needs to be fixed from time to time.

DOI:10.4186/ej.2014.18.2.89

ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/) 91

Getting
requirement

Design

Coding

Testing

Deployment

Maintenance

Fig. 1. Six phases of SDLC [13].

Research questions, there are many problems can be occurred in each phase, but in this paper, it focuses
two main drawbacks remained in the software maintenance. The first, how many programmers are suitable
in the process of maintenance whereas the overnight is requested? Actually, people involve for all phases of
SDLC. This paper concerns the process of software maintenance. The second, how many bugs will be
occurred? The reasons that fail the software are not only the new bugs or faults, but it includes the
requirement specifications from managers, users, stake holders, and the lines of code. Therefore, the
objective of the article is to determine the appropriate numbers of programmers whereas the changes from
requirement specification, lines of code, and bugs are being occurred. Another is to define the possibility of
bugs, which can be occurred in the process of software maintenance. Finally, the article presents two
contributions. First, simulation technique can be used for predicting the suitable numbers of programmers
for each developed coding. Second, the proposed model can aim to prepare the plan to fixing bugs or faults
overnight with the significant resources, e.g., the appropriate numbers of programmers.

2. Materials and Methods

2.1. Subject Programs

This paper applies seven programs written by C language in the experiment. The seven programs
cooperatively are called the Siemens Programs, which are each described in this section. The Siemens
programs are well-known and often used in the field of software maintenance. They were initially collected
for and applied by Siemens Corporate Research in a study of regression test selection, e.g., data flow,
random, graph-flow, and control-flow techniques [16]. Moreover, a large test pool, which full of possible
test cases, is generated by the programmers of Siemens. First, they produced test cases by black-box
technique, applying the enable methods of partition, plus the Siemens Test Specification Language tool [17-
18]. After producing a set of test cases, the specialists created another set of test cases by hand due to the
white-box technique. Therefore, it guarantees that the coverage of each executable requirement, functions,
boundary, and definition-use in the subject programs, particularly the control flow graph for at minimum
thirty test cases. The specialists cover all introductions of bugs or faults within the programs. According to
this, it provides the significant numbers of test cases as the representative as possible. Most scattered faults
concern single line changes whereas a few can be found in the multiple lines. Particularly, the specialists
combined bugs or faults that probably not monitored by at least three test cases in the test pool [19]. It
proved that no more than 350 test cases found in the test pool. Table 1 collects the information of the
subject programs as well as the numbers of functions (e.g., requirement specifications), lines of code, and
numbers of versions. Moreover, the test pool size is generated for further studied. The subject programs
from Siemens provided the respective test suites, which have several advantages. Especially for the field of
software maintenance, it is the starting point of selecting the appropriate numbers of test cases in each test
pool. Besides this, the test pools were fairly easy to acquire. This is because the Siemens team produced the
programs, including test cases available to fellow experts. Relying on the method of their building the

DOI:10.4186/ej.2014.18.2.89

92 ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/)

programs, the scattered bugs within the programs give model real-world errors. The subjects have also been
applied previously in many studies [20].

Table 1. The subject program from Siemen.

Name Function Lines of Code Bugs Test Pool

Print-tokens 18 402 7 4,130

Print-okens2 19 483 10 4,115

Replace 21 516 32 5,542

Schedule 18 299 9 2,650

Schedule2 16 297 10 2,710

Tcas 9 148 41 1,608

Totinfo 7 346 23 1,052

2.2. Methods

The important of the proposed method are explained as follows; regarding to the concept of testing
software, the high number of programmers are expensive and costly. Therefore, this article presents the
methods of finding the suitable number of programmers. However, the performance of them will not be
accountable. So far the bias of thinking will be protected. Simulation technique concerns mathematical
model to avoid the errors of using irrelevant or subjective factors such as quality of programmers, skill, and
knowledge. Simulation technique provides different running experiments, which are 20, 50, 100, and 200
rounds respectively. This can guarantee that the effective results can be usable and suitable. Therefore, the
algorithm of the proposed method is shown as follows:

Step 1: Determine the relationship between numbers of programmers (P), testing time (T), and codes
(C).

Number of programmer is directed to code: CP 
Number of programmer is in-directed to testing time:

1
P

T

 
C

P c
T

 (1)

where c refers to constant value.
In the experiment, random function is used for numbers of programmers, testing time, and codes. The

random numbers are 1-100, 1-24, and 148-156 respectively. To ensure the validity of the results, the
experiment will hold at least 20 times.

Step 2: Define the value of c.
Using the results of “Step 1”, the value of c can be determined as shown in equation.

C

PT
c  (2)

In the experiment, the value c can be generated as finding median, average, and minimum values.
Step 3: Build a model from “Step 2”. Testing the results is required to ensure that step 1 and 2 are

working.
Step 4: Prepare simulation. This step can be used to determine numbers of programmers while 20

experiments are required.
Step 5: Determine the relationship between bugs (B) and Functions (F). Number of bug is directed to

function: FB . Therefore:

 dFB  (3)
where d refers to constant value, which is shown in equation:

F

B
d  (4)

Note: the similar methods of “Step5” follow “Step 1 to 4”.

DOI:10.4186/ej.2014.18.2.89

ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/) 93

2.3. Regression Test Selection (RTS)

A novel RTS technique considers ontology driven systems [21]. This technique shows representations of

the old and new ontologies, compares them to find entities affected by the changes. The algorithms are
applied for number of programmers, testing time, and codes used in the process of testing software. Three
steps of RTS are shown as follows:

Step 1: Compute number of test cases due to the different codes.
Step 2: Specify testing time
Step 3: Identify the number of programmers.

Note that this RTS is a new technique (2012) and it will be used in the part of evaluation as one of the
comparative studies.

3. Results and Discussions

3.1. Determining Numbers of Programmers, Testing Time, and Code

This article does not focus unequal performance of programmers, e.g., programming skill, knowledge, and
experience. Specifically, one of the purposes is to find the appropriate numbers of programmers who can
finish testing codes within the limited times. In general, the testing time may cause time delay of the
development team. In some case, the developers spent long time (months) to test the software. According
to the purpose of this research, testing times are varied from 1 to 24 hours (overnight) regarding the
requirement specification by the users. This assumption is considered for planning and preparing the
programmers, which are suitable in the process of testing codes. Codes approximately are 150 lines in order
to avoid the complexity of fixing errors such as bugs. Of course, each program consist difference lines of
code depending on the types of software and the business objectives, which are not discussed in this article.
Running experiments, Table 2 is the example of the results by running experiments 20 rounds to find the
value of numbers of programmer, testing time, and codes. In this section, 20, 50, 100, 200 rounds of
running experiments are used to analyze the results as shown in Table 3. It shows the provenance of the
range of the number of programmers, testing time, and codes. All values will be applied to find median,
average, and minimum as the representative of c for the next step. From the results, it shows that
sometimes the lower numbers of programmers can finish the testing codes within the less time. This may
be because of their abilities and experiences. Therefore, it assumes that the performances of testers are
equal.

3.2. Determining the Value of c.

According to the results in Table 2, they are used to find the c-value. The values of c are computed based on
median, average, and minimum as shown in Table 4. Each time of doing experiments, the c-values will be
recorded differently. Therefore, Fig. 2 is inserted, which shows three observations explained as follows: first
is the value of c based on minimum. The c-value is too low to find the representative. Particularly, it is not
significant to use these results because the skills and experiences of the testers are very high expectation.
That’s why; the numbers of programmers will depend on the code. However, another limitation is the
quality and complexities of codes are assumed equally. Therefore, this technique may not guarantee the
software testing can be done overnight. Second is the value of c based on median. The values of median as
the representatives were plotted. The graph of Fig. 2 guides us to find the representative of c-value. It is not
linear, exponential, or regression. Therefore, to avoid the bias is to select the middle value in order to get
the c-value. Third is the value of c based on average. Fig. 2 shows the c-values from finding the average. As
we can see that those results similar to the results computed by median. However, the problem is to find
the right c. And the last one is analyzing the value between median and average. The value of c
approximately can be computed, which depend on median and average. The values of c were recorded
between lower and upper bound approximately from 3 to 6. Therefore, the middle point is computed to be
the estimated c-value.

DOI:10.4186/ej.2014.18.2.89

94 ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/)

Table 2. Determining numbers of programmers, testing time, and codes at twenty times.

No. Number of Programmers Testing Time (hr) Code

1 62 21 154

2 52 6 148

3 71 22 153

4 58 2 150

5 32 19 148

6 45 15 149

7 69 21 156

8 75 18 153

9 39 9 148

10 44 5 148

11 48 7 152

12 83 22 153

13 16 5 154

14 61 17 149

15 76 11 152

16 41 17 156

17 60 13 154

18 22 1 149

19 65 5 151

20 77 7 149

Table 3. The results of running experiments 20, 50, 100, and 200 rounds.

Rounds Number of Programmers Testing Time (hr) Code

20 22-83 1-22 148-156

50 20-92 1-22 152-159

100 23-93 1-20 149-161

200 22-84 1-24 147-158

Note: the results of running different rounds are closed to each. Therefore, the running 20 rounds are
selected for the next studies.

Fig. 2. The c-value.

3.3. Simulation of Determining the Appropriate Number of Programmer

Finally, doing the simulation can find the approximate numbers of programmers, which testing time and
checking codes. According to this, Table 6 is produced relying on 45 examples. For example, if the time

DOI:10.4186/ej.2014.18.2.89

ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/) 95

requires 24 hours to test 148 lines of codes, then it requires 28 programmers to finish the jobs. Another
example, if users need only one hour to test 156 codes, then it may request very high numbers of
programmers. From doing experiment, the approximate number of programmers is 693.

Table 4. Example of finding the value of c.

Value Numbers of Programmers Testing Time (hr) Code Value of c

Median 47 12 152 3.7105

Average 48 12 152 3.8717

Minimum 13 1 149 0.0872

Fig. 3. Trend of percent errors using the simulation technique.

Fig. 4. Percent errors.

3.4. Determining Percent Errors

Table 7 reports percent errors within the testing program. The third column shows error during 45 rounds
of the experiments. Moreover, column four gives the lesser percent errors, which lower than values from
column three. The reason is that the results of column three are not related to the numbers of
programmers. The results in column four, according to the similar methods start from Step 1 to 5, they can
be applied to find the values of d, which refers to the percent error for each test.

Furthermore, Fig. 3 is the graph of using percent errors by simulation technique versus numbers of
testing programs. The results show that the percent errors are moving up and down between 5 and 20.
This means the estimated numbers of programmers can reduce the percent errors (see the results between
column 3 and 4)

4. Evaluation

In this section, 20 experiments are selected and provided in order to compare the results of finding the
numbers of programmers by using the simulation, regression, and random techniques. Obviously, in

DOI:10.4186/ej.2014.18.2.89

96 ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/)

experiment number 1, the testing time is requested for 12 hours. The result of random technique requires
only one programmer to test the software. This is not practical while simulation and regression need 56 and
63 programmers, which are suitable to possibly to reach the goal. Besides this, in experiment number 10
and 11 request six hours to finish the jobs, the results from using the random technique suggests 123 or
70 programmers. According to this, the random technique has no plan to manage the jobs consistently
while the results of applying simulation and regression techniques give the similar suggestion. As we can see
the results in Table 8, all number of programmers from simulation is less than regression. This interprets
that the cost of testing software by using simulation is also less than the regression technique. Fig. 4
compares percent errors of the various techniques. It shows that the random technique cannot guarantee
the errors during testing software. Even so, the simulation technique gives the lower errors than the
traditional techniques. This supports the idea of finding the appropriate numbers of programmers by using
the simulation technique, which can suggest the lower numbers of them while the percent errors are
preserved.

Table 5. Results of twenty runs to find all c-value.

No. Median Average Minimum

1 3.9208 4.0545 0.0811

2 3.9505 4.1784 0.1149

3 5.2566 4.6332 0.0878

4 4.2336 4.2794 0.0676

5 4.067 4.7521 0.2703

6 4.8079 4.4423 0.0878

7 5.8824 5.4124 0.443

8 4.7748 4.4223 0.1216

9 6.4262 5.7285 0.1622

10 5.2756 5.3049 0.1014

11 3.6056 3.9462 0.2027

12 5.0993 5.7118 0.2635

13 2.1854 2.9132 0.0676

14 3.8557 4.1258 0.2568

15 6.0526 4.074 0.0878

16 3.0395 3.8053 0.0811

17 3.7511 4.3613 0.1216

18 4.2475 4.0523 0.2027

19 2.8831 3.3401 0.0811

20 3.2515 4.0754 0.1351

The details of simulation somehow reduce the validity to the results are explained as follows; It results

the appropriate numbers of programmers in terms of quantitative criteria. However, the part of qualitative
is one of the limitations of this paper such as skills and knowledge can affect the ability of testing the
programs. Besides, the complexity of different programs causes testing time. Therefore, this technique can
result only the suitable situations, whereas this constraint is assumed to be ineffective to the whole process
of simulation. Moreover, finding P by simulation technique regarding testing time and line of codes may
not be practical. Increasing the validity of simulation, the relevant factors should be considered, e.g.,
function and non-function requirements, software architecture, and the environmental changes.

DOI:10.4186/ej.2014.18.2.89

ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/) 97

Table 6. Determining the appropriate numbers of programmers.

No. Testing time (hr) Code Numbers of programmers

1 24 148 28

2 7 151 97

3 21 149 32

4 22 150 31

5 4 156 176

6 7 150 96

7 5 150 135

8 2 155 349

9 20 150 34

10 8 151 85

11 16 156 44

12 13 154 53

13 21 156 33

14 24 155 29

15 1 154 693

16 11 150 61

17 16 154 43

18 11 149 61

19 16 154 43

20 15 151 45

21 19 156 37

22 15 152 46

23 9 156 78

24 5 152 137

25 15 155 47

26 24 151 28

27 23 149 29

28 19 156 37

29 23 150 29

30 10 154 69

31 22 148 30

32 8 148 83

33 16 154 43

34 12 149 56

35 12 154 58

36 8 156 88

37 14 150 48

38 24 151 28

39 9 154 77

40 21 152 33

41 21 153 33

42 4 152 171

43 18 155 39

44 13 152 53

45 16 155 44

DOI:10.4186/ej.2014.18.2.89

98 ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/)

Table 7. Determining percent errors.

No. Bugs Code
%errors by
traditional

%errors by
simulation

1 17 155 10.97 9.43

2 8 154 5.19 4.47

3 13 152 8.55 7.36

4 28 151 18.54 15.95

5 25 150 16.67 14.33

6 13 148 8.78 7.55

7 8 149 5.37 4.62

8 28 152 18.42 15.84

9 30 156 19.23 16.54

10 19 151 12.58 10.82

11 19 148 12.84 11.04

12 11 153 7.19 6.18

13 33 152 21.71 18.67

14 34 153 22.22 19.11

15 10 153 6.54 5.62

16 13 153 8.50 7.31

17 40 156 25.64 22.05

18 34 151 22.52 19.36

19 19 150 12.67 10.89

20 27 150 18.00 15.48

21 7 152 4.61 3.96

22 11 156 7.05 6.06

23 32 154 20.78 17.87

24 13 150 8.67 7.45

25 12 154 7.79 6.70

26 8 151 5.30 4.56

27 30 151 19.87 17.09

28 40 148 27.03 23.24

29 24 155 15.48 13.32

30 30 149 20.13 17.32

31 36 154 23.38 20.10

32 21 156 13.46 11.58

33 32 148 21.62 18.59

34 32 148 21.62 18.59

35 17 148 11.49 9.88

36 34 149 22.82 19.62

37 39 155 25.16 21.64

38 23 149 15.44 13.28

39 41 149 27.52 23.66

40 35 150 23.33 20.07

41 23 151 15.23 13.10

42 27 153 17.65 15.18

43 28 149 18.79 16.16

44 10 150 6.67 5.73

45 27 149 18.12 15.58

DOI:10.4186/ej.2014.18.2.89

ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/) 99

Table 8. Determining numbers of programmers due to Simulation, Regression, and Random techniques.

No. Testing Time (hr) Code Simulation Regression Random

1 12 150 56 63 1

2 5 155 140 155 93

3 14 149 48 53 11

4 6 149 112 124 99

5 20 152 34 38 15

6 5 152 137 152 122

7 15 150 45 50 10

8 11 152 62 69 69

9 24 150 28 31 38

10 6 148 111 123 123

11 6 153 115 128 70

12 18 149 37 41 41

13 1 154 693 770 924

14 13 152 53 58 35

15 13 152 53 58 58

16 8 155 87 97 39

17 12 150 56 63 63

18 15 149 45 50 60

19 14 156 50 56 11

20 23 152 30 33 13

5. Conclusion

As we know that the SDLC is the well-known methodology for computer software engineering, particularly
in developing, testing, and maintaining the program. Many researches propose techniques and methods for
testing and maintaining software such as regression test selection. Nevertheless, this paper presents the
simulation technique to determine the appropriate numbers of programmers in the process of software
testing, whereas testing time is specified by the users. The proposed model gives minimum numbers of
programmers compared with the traditional techniques. Moreover, it includes the most important factors,
which are requirement specification (functions), lines of code, and faults. Another is to find the percent
errors or bugs that may fail the entire software system. This article aims some of the researchers who want
to answer the questions: “How many of programmers are required to test the software overnight?” and are
the results after testing significant?

References

[1] N. M. A. Munassar and A. Govardhan, “A comparison between five models of software engineering,”

IJCSI, vol. 7, no. 5, pp. 94-101, Sept. 2010.
[2] A. Kaur and K. S. Mann, “Component based software engineering,” IJCA, vol. 2, no. 1, pp. 105-108,

May 2010.
[3] M. M. Lehman, “Software engineering, the software process and their support,” SEJ, vol. 6, no. 5, pp.

243-258, Sept. 1991.
[4] S. T. Krishna, S. Sreekanth, B. Bhaskar, and N. P. Kuma, “Explore ten different types of software

engineering principles,” IJNSA, vol. 4, no. 5, pp. 191-201, Sept. 2012.
[5] T. M. Krishna, and D. Vasumathi, “A study of mining software engineering data and software testing,”

CIS, vol. 2, no. 11, pp. 598-603, Oct. 2012.
[6] L. Osterweil, “Strategic directions in software quality,” ACM Computing Surveys, vol. 28, no. 4, pp. 738-

750, Dec. 1996.
[7] M. E. Fagan, “Design and code inspection to reduce errors in program development,” IBM Systems

Journal, vol. 15, no. 3, pp. 182-211, Mar. 1976.

DOI:10.4186/ej.2014.18.2.89

100 ENGINEERING JOURNAL Volume 18 Issue 2, ISSN 0125-8281 (http://www.engj.org/)

[8] J. Carver, N. Nagappan, and A. Page, “The impact of educational background on the effectiveness of
requirements inspections: An empirical study,” TSE, vol. 34, no.6, pp. 800-812, Nov. 2008.

[9] M. Patel. (2012). Kontera, E-Education System. Computer Overview. [Online]. Available: http://e-
educationsystem.blogspot.com/2012/03/blog-post_6263.html

[10] S. Balaji, “Waterfall vs v-model vs Agile: A Comparative Study on SDLC,” JITBM & ARF, vol. 2, no.
1, pp. 26-30, Jun. 2012.

[11] Y. B. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan, “Software Development Life Cycle AGILE vs
Traditional Approaches,”International Conference on Information and Network Technology, 2012, pp. 162-167.

[12] IBM. (2003). Rational Unified Process: Best practices for software development teams. [Online]. Available:
http://www.ibm.com/developerworks/rational/library/253.html

[13] M. Sharma, “A Survey of project scenario impact in SDLC models selection process,” IJSER, vol. 2,
no. 7, pp. 1-4, Jul. 2011.

[14] B. W. Boehm, “A spiral model for software development and enhancement,” IEEE, IEEE Computer
Society, vol. 21, no. 5, pp. 61-72, May 1988.

[15] W. W. Royce, “Managing the development of large software systems: Concepts and techniques,” in
Proceedings of the 9th international conference on Software Engineering, 1987, pp. 328-338.

[16] G. Rothermel and M. J. Harrold, “A safe, efficient algorithm for regression test selection,” in
Proceedings of the Conference on Software Maintenance, 1993, pp. 358-367.

[17] G. Rothermel and M. J. Harrold, “Analyzing regression test selection techniques,” IEEE Transactions
on Software Engineering, vol. 22, no. 8, pp. 529-551, Aug. 1996.

[18] G. Rothermel and M. J. Harrold, “Experience with regression test selection,” in International Workshop
for Empirical Studies of Software Maintenance, 1996, pp. 178-188.

[19] G. Rothermel and M. J. Harrold., “A safe, efficient regression test selection technique,” ACM
Transactions on Software Engineering and Methodology, vol. 6, no. 2, pp. 173-210, Apr. 1997.

[20] G. Rothermel and M. J. Harrold, “Empirical studies of a safe regression test selection technique,”
IEEE Transactions on Software Engineering, vol. 24, no.6, pp. 401-419, Jun. 1998.

[21] M. Kim, J. Cobb, M. J. Harrold, T. Kurc, A. Orso, J. Saltz, A. Post, K. Malhotra, and S.B. Navathe,
“Efficient regression testing of ontology-driven systems,” in Proceeding of the 2012 International Symposium
on Software Testing and Analysis, 2012, pp. 320-330.

http://e-educationsystem.blogspot.com/2012/03/blog-post_6263.html
http://e-educationsystem.blogspot.com/2012/03/blog-post_6263.html
http://www.ibm.com/developerworks/rational/library/253.html

