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Abstract. In this paper, interpolation-based off-line robust MPC for uncertain polytopic 
discrete-time systems is presented. Instead of solving an on-line optimization problem at 
each sampling time to find a state feedback gain, a sequence of state feedback gains is pre-
computed off-line in order to reduce the on-line computational time. At each sampling 
time, the real-time state feedback gain is calculated by linear interpolation between the pre-
computed state feedback gains. Three interpolation techniques are proposed. In the first 
technique, the smallest ellipsoids containing the measured state are approximated and the 
corresponding real-time state feedback gain is calculated. In the second technique, the pre-
computed state feedback gains are interpolated in order to get the largest possible real-time 
state feedback gain while robust stability is still guaranteed. In the last technique, the real-
time state feedback gain is calculated by minimizing the violation of the constraints of the 
adjacent inner ellipsoids so the real-time state feedback gain calculated has to regulate the 
state from the current ellipsoids to the adjacent inner ellipsoids as fast as possible. As 
compared to on-line robust MPC, the proposed techniques can significantly reduce on-line 
computational time while the same level of control performance is still ensured.   
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1. Introduction 
 
Model predictive control (MPC) has originated in the industry as an on-line computer control algorithm to 
solve multivariable control problems. At each sampling instant, MPC uses an explicit process model to 
solve the optimization problem and only the first computed input is implemented to the process. Although 
MPC has been successfully implemented to many industrial processes, it is well-known that stability of 
MPC cannot be guaranteed in the presence of model uncertainty [1]. For this reason, synthesis approaches 
for robust MPC have been widely investigated [2-6]. 

On-line robust MPC has been proposed by many researchers. Kothare et al. [2] proposed the algorithm 
that constructs an invariant ellipsoid containing the measured state at each sampling instant. Any states in 
this invariant ellipsoid can be driven to the origin by using the stabilizing state feedback gain. Thus, robust 
stability is guaranteed. The stabilizing state feedback gain is derived by using a single Lyapunov function so 
a certain degree of conservativeness is obtained. The conservativeness can be reduced by on-line robust 
MPC formulation using parameter-dependent Lyapunov function as proposed in [3-6]. However, the 
number of decision variables and constraints also increases. Thus, the algorithms are not suitable for 
relatively fast dynamic processes.  Another approach to reduce the conservativeness is to increase the 
degrees of freedom in solving the optimization problem by adding a sequence of free control inputs to the 
state feedback control law [7-11]. By doing so, larger on-line computational time is required to calculate a 
sequence of free control inputs so the algorithms can only be implemented to slow dynamic processes. 

In order to reduce on-line computational time, various researchers have studied off-line robust MPC 
[12-20]. Wan and Kothare [12] proposed an off-line robust MPC formulation using linear matrix 
inequalities (LMIs). The on-line computational time is reduced by pre-computing off-line a sequence of 
state feedback gains corresponding to a sequence of ellipsoidal invariant sets. At each sampling instant, the 
state is measured and the real-time state feedback gain is calculated by linear interpolation between the pre-
computed state feedback gains. Although the on-line computational time is significantly reduced, a certain 
degree of conservativeness is obtained because the algorithm is derived by minimizing the worst-case 
performance cost. This strategy can be further improved by using the nominal performance cost as 
proposed by Ding et al. [13]. However, the approach in [13] is restricted to the case of a single Lyapunov 
function. Another idea is to incorporate the scheduling parameter into off-line MPC formulation. In [14], 
the sequences of state feedback gains corresponding to the sequences of ellipsoids are pre-computed off-
line. At each sampling instant, the scheduling parameter is measured and the real-time state feedback gain is 
calculated by linear interpolation between the pre-computed state feedback gains of each sequence. Off-line 
robust MPC can also be formulated by using polyhedral invariant sets [15-20] in order to enlarge the size of 
stabilizable region. Later, an interpolation technique for polyhedral invariant sets was developed to reduce 
conservativeness and improve the control performances [21].  

Recently, Bumroongsri and Kheawhom [22] have developed on-line robust MPC based on nominal 
performance cost by extending the results of Ding et al. [13] to the case of parameter-dependent Lyapunov 
function. However, the optimization problem solved at each sampling instant has many decision variables 
and constraints so its application is rather restricted to relatively slow dynamic processes. This algorithm 
was then further improved by off-line pre-computing a sequence of state feedback gains corresponding to 
the sequences of ellipsoidal invariant sets [23]. 

In this paper, the off-line robust MPC based on nominal performance cost for uncertain polytopic 
discrete-time systems [23] is further improved by implementing interpolation techniques. Three 
interpolation techniques are proposed. A sequence of state feedback gains is pre-computed off-line. At each 
sampling time, the real-time state feedback gain is calculated by linear interpolation between the pre-
computed state feedback gains. The control performance of each technique is evaluated and compared 
within an example.  

The paper is organized as follows. In section 2, the problem description is presented. In section 3, 
interpolation-based off-line robust MPC is presented. In section 4, we present an example to illustrate the 
implementation of the proposed algorithm. Finally, in section 5, we conclude the paper. 

 
2. Problem Description 
 
The model considered here is the following  linear time varying (LTV) system with polytopic uncertainty  
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where )(kx  is the vector of states, )(ku  is the vector of control inputs and )(ky  is the vector of plant 

outputs. Moreover, we assume that 
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   is the uncertain parameter vector. The aim of this research is to find the state 

feedback control law 
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which stabilizes the system (1) and minimizes the following nominal performance cost 
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where )/(
^

kikx   denotes the predicted nominal state, 0  and 0R  are symmetric weighting matrices, 

subject to input and output constraints 
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where 
un   is the number of control inputs and 

yn  is the number of plant outputs. 

In [22], the optimization problem (5) is formulated as the convex optimization involving linear matrix 
inequalities (LMIs). At each sampling time, the state feedback control law which minimizes the upper 
bound n  on the nominal performance cost )(, kJn  and asymptotically stabilizes the closed-loop systems 

within the ellipsoids },...,21,1/{ 1 L,jxQxx j
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and G  are obtained by solving the following problem 
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where ],[
^^

BA  denotes the nominal model of the plant, the symbol   denotes the corresponding transpose 

of the lower block part of symmetric matrices, I denotes the identity matrix, X is the diagonal matrix of 

input constraints and S  is the diagonal matrix of output constraints. 
Robust stability is guaranteed by the Lyapunov stability constraint (10). For proof details, the reader is 

referred to [22]. Since the on-line optimization problem contains many decision variables and constraints, 
the algorithm requires large on-line computational time.  Moreover, the number of constraints grows 
exponentially with the number of vertices of the polytope Ω . 

 

3. The Proposed Algorithm 
 

In this section, interpolation-based off-line robust MPC for uncertain polytopic discrete-time systems is 
presented. The aim is to reduce the on-line computational burdens while the same level of control 
performance is still ensured. The on-line computational time is reduced by solving off-line the optimization 

problem (8) to find a sequence of state feedback gain NiKi ,...,2,1 ,  corresponding to the sequences of 

ellipsoids  1/ 1
,,   xQxx ji

T
ji  where Ni ,...,2,1  is the number of ellipsoids and Lj ,...,2,1  is the 

number of vertices of polytope Ω . At each sampling time, the real-time state feedback gain is calculated by 
linear interpolation between the pre-computed state feedback gains.  
 
3.1. Interpolation-Based Off-Line Robust MPC 
 

Off-line: Choose a sequence of states Nixi ,...,2,1 ,  . For each ix , substitute )/( kkx  in (9) by ix  and 

solve the optimization problem (8) to obtain the corresponding state feedback gain 
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On-line: The real-time state feedback gain is calculated by linear interpolation between the pre-computed 
state feedback gains. Three interpolation techniques are proposed as follows 
 
Technique 1: The first technique is based on an approximation of the smallest ellipsoids containing the 
measured state. Instead of solving the optimization problem (8) at each sampling instant, the solution of 
the optimization problem (8) is approximated by finding the smallest ellipsoids containing the measured 
state. Then the corresponding real-time state feedback gain can be calculated by linear interpolation 

between the pre-computed state feedback gains. At each sampling time, when ,)( ,)( ,1, jiji kxkx    

NiL...,j   ,,,21 , the real-time state feedback gain 1))(1()())((  ii KkKkkK   can be calculated 

from )(k  obtained by solving the following problem.  
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It is seen that 0)( k  and 1)( k  correspond to the ellipsoids ji ,1  and ji, , respectively. Thus, 

the smallest ellipsoids containing the measured state )(kx  can be found by minimizing )(k  in (14). 

Moreover, it is seen that the optimization problem (14) is linear programming and the number of 
constraints grows only linearly with the number of vertices of the polytope Ω . 

Figure 1 shows the graphical representation of the state feedback gain in each prediction horizon. It is 

seen that the same state feedback gain ))(( kK  is implemented throughout the prediction horizon and 

control horizon. Thus, the state must be restricted to lie in the smallest ellipsoids approximated by (15) and 
robust stability is guaranteed. 
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Fig.1. The graphical representation of the state feedback gain in each prediction horizon of technique 1. 
 
Technique 2: In the second technique, the pre-computed state feedback gains NiKi ,...,2,1 ,   are 

interpolated in order to get the largest possible real-time state feedback gain. Since the pre-computed state 

feedback gains are larger as i  increases, when the measured state lies between 
ji,  and 

ji ,1 , this technique 

tries to use the value of 
1iK  as much as possible in the interpolation. This technique can implement larger 

real-time state feedback gain compared to technique 1 so faster response is obtained. At each sampling time, 
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1iK  is always larger than iK  because input and output constraints impose less limit on the state 

feedback gain as i  increases. Thus, the largest possible real-time state feedback gain 

1))(1()())((  ii KkKkkK   can be calculated by minimizing )(k  in (17). The next predicted state 

is restricted to lie in the ellipsoidal invariant set by (18) so robust stability is still guaranteed. The input 
constraint is guaranteed by (19). Note that the output constraint does not need to be incorporated into the 
problem formulation because the satisfaction of (18) also guarantees output constraint satisfaction. It is 
seen that the optimization problem (17) is formulated as the convex optimization involving linear matrix 
inequalities (LMIs) and the number of constraints grows only linearly with the number of vertices of the 
polytope Ω . 

 Figure 2 shows the graphical representation of the state feedback gain in each prediction horizon. It is 

seen that the largest possible real-time state feedback gain ))(( kK  is only implemented at each sampling 

time k . At time 1k  and so on, the state feedback gain iK  is implemented. Thus, the state must be 

restricted to lie in the ellipsoids ji,  and robust stability is guaranteed.   

 

 
Fig.2. The graphical representation of the state feedback gain in each prediction horizon of technique 2. 

 
Technique 3: In the last technique, the real-time state feedback gain is calculated by minimizing the 

violation of the constraints of the adjacent inner ellipsoids.  When the measured state lies between ji,  and 



DOI:10.4186/ej.2014.18.1.87 

92 ENGINEERING JOURNAL Volume 18 Issue 1, ISSN 0125-8281 (http://www.engj.org/) 

ji ,1 , the real-time state feedback gain calculated has to drive the state from ji,  to ji ,1  as fast as 

possible in order to minimize the violation of the constraints of ji ,1 . At each sampling time, when 

NiL...,jkxkx jiji     ,,,21  ,)(  ,)( ,1,  , the real-time state feedback gain 

1))(1()())((  ii KkKkkK   can be calculated from )(k  obtained by solving the following problem.  
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By applying Schur complement to (22), we obtain )(1)1()1( 1
,1 kkxQkx jji

T
j  


 where 

)()))((()1( kxkKBAkx jjj  . By minimizing )(k  in (21), the real-time state feedback gain 

1))(1()())((  ii KkKkkK   calculated has to regulate the state from the current ellipsoids ji,  to the 

adjacent inner ellipsoids ji ,1  as fast as possible. The next predicted state is restricted to lie in the 

ellipsoidal invariant set by (23) so robust stability is still guaranteed. The input constraint is guaranteed by 
(24). Note that the output constraint does not need to be incorporated into the problem formulation 
because the satisfaction of (23) also guarantees output constraint satisfaction. It is seen that the 
optimization problem (21) is formulated as the convex optimization involving linear matrix inequalities 
(LMIs) and the number of constraints grows only linearly with the number of vertices of the polytope Ω . 

Figure 3 shows the graphical representation of the state feedback gain in each prediction horizon. It is 

seen that the real-time state feedback gain calculated ))(( kK   is only implemented at each sampling time k . 

At time 1k  and so on, the state feedback gain iK  is implemented. Thus, the state must be restricted to lie 

in the ellipsoids ji,  and robust stability is guaranteed.   

 

 
Fig. 3. The graphical representation of the state feedback gain in each prediction horizon of technique 3. 
 

4. Example 
 
We will consider an application of our approach to an angular positioning system [2]. The system consists 
of an electric motor driving a rotating antenna so that it always points in the direction of a moving object. 
The motion of the antenna can be described by the following discrete-time equation 
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where )(k  is the angular position of the antenna, )(
.

k  is the angular velocity of the antenna and  )(ku  is 

the input voltage to the motor. The uncertain parameter )(k  is proportional to the coefficient of viscous 

friction in the rotating parts of the antenna. It is assumed to be arbitrarily time-varying in the range of 

10)(1.0  k . Since the uncertain parameter )(k  is varied between 0.1 and 10, we conclude that 

ΩkA )(   where Ω  is given as follows   
 

    






























00

1.01
,

99.00

1.01
CoΩ                                                                      (27) 

 

The objective is to regulate   to the origin by manipulating u . The input constraint is 2)( ku volts. 

Here )(, kJ n   is given by (5) with 





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00

01
Θ  and .00002.0R  

Figure 4 shows two sequences of ellipsoids  21 921 ,1/ 1
,, ,j,,...,,ixQxx ji

T
ji    constructed off-line. 

Note that the ellipsoids are constructed such that jiji ,,1   . In this example, two sequences of ellipsoids 

are constructed because the polytope Ω  has two vertices. Each sequence contains 9 ellipsoids. 
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 921 ,1/    b) 1

2,2, ,...,,ixQxx i
T

i    

 

Fig. 4. Two sequences of ellipsoids
 

 21 921 ,1/ 1
,, ,j,,...,,ixQxx ji

T
ji   , each sequence has 9 

ellipsoids. 
 

Figure 5 shows norm of state feedback gains 9,...,2,1 , iKi . It is seen that norm of iK increases as i

increases. This is due to the fact that input constraint imposes less limit on the state feedback gain as i  
increases. 
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Fig. 5. Norm of state feedback gains 9,...,2,1 , iKi . 

 
Figure 6 shows the closed-loop responses of the system when )(k  is randomly time-varying between 

10)(1.0  k . As compare to on-line robust MPC [22], technique 1 gives slower response because the 

real-time state feedback gain and the ellipsoids calculated in technique 1 are only approximations of those 
calculated by solving on-line optimization problem (8). In comparison, technique 2 and technique 3 give 
faster responses than technique 1 because they are based on ideas that are completely different from 
technique 1. In technique 2, the pre-computed state feedback gains are interpolated to get the largest 
possible real-time state feedback gain so technique 2 tends to make the process responses less sluggish than 
technique 1.  In technique 3, the real-time state feedback gain calculated has to regulate the state from the 

current ellipsoids ji,  to the adjacent inner ellipsoids ji ,1  as fast as possible in order to minimize the 

violation of the constraints of the adjacent inner ellipsoids. For this reason, technique 3 tends to produce 
faster responses than technique 1.  
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a) The regulated output. 

 

    
b) The control input. 

 
Fig. 6. The closed-loop responses of the system when )(k  is randomly time-varying between 

10)(1.0  k ; a) The regulated output; b) The control input. 

 
Figure 7 shows the state trajectories. It can be observed that the states at each time step of techniques 2 

and 3 are closer to the origin that that of technique 1. In this example, techniques 2 and 3 behave almost 
identically in regulating the states. 
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 921 ,1/    a) 1

1,1, ,...,,ixQxx i
T

i  
 

 

 
 921 ,1/    b) 1

2,2, ,...,,ixQxx i
T

i    

 
Fig. 7. The state trajectories: a) 1,i ; b) 2,i . 

 
Table 1 shows the on-line computational time at each sampling instant. By using the proposed 

techniques, it is seen that the on-line computational time is significantly reduced. Technique 1 gives the 
smallest on-line computational time because only linear programming is involved in the optimization 
problem. The numerical simulations have been performed in Intel Core i-5 (2.4GHz), 2 GB RAM, using 
SeDuMi [24] and YALMIP [25, 26] within Matlab R2008a environment. 
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Table 1. The on-line computational time at each sampling instant. 

Algorithms On-line computational time (s) 
On-line robust MPC [17] 0.213 
Technique 1 0.001 
Technique 2 0.047 
Technique 3 0.101 

 
Next, the effect of the number of ellipsoids constructed off-line is investigated. Figures 8 and 9 show 

the sequences of ellipsoids when the number of ellipsoids constructed off-line is varied from 9 in Fig. 4 to 3 
and 5, respectively. Less computer memory is required as the number of ellipsoids constructed off-line is 

decreased. Note that in the construction of ellipsoids, the inequality ,0)()( 1
1

,1
1

,  





ijjli
T

ijjji KBAQKBAQ  

....L,l....L,j 21,21  must be satisfied. This inequality tends to be violated if the number of ellipsoids 

constructed off-line is too small. 
 

 
 

 321 ,1/    a) 1

1,1, ,,ixQxx i

T

i    

      
 

 321 ,1/    b) 1

2,2, ,,ixQxx i

T

i    

 

Fig. 8. Two sequences of ellipsoids
 

 21 321 ,1/ 1

,, ,j,,,ixQxx ji

T

ji   , each sequence has 3 ellipsoids. 
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 521 ,1/    a) 1

1,1, ,...,,ixQxx i

T

i  
 

 
 521 ,1/    b) 1

2,2, ,...,,ixQxx i

T

i    

 

Fig. 9. Two sequences of ellipsoids
 

 21 5...21 ,1/ 1

,, ,j,,,ixQxx ji

T

ji   , each sequence has 5 

ellipsoids. 
 
Figure 10 shows the closed-loop responses of technique 1 when the number of ellipsoids constructed 

off-line is varied from 3, 5 and 9. The basic idea of this technique is to approximate the smallest ellipsoids 
containing the measured state. The approximated ellipsoids become closer to the ellipsoids computed on-
line as the number of ellipsoids constructed off-line is increased. Thus, the control performance of 
technique 1 becomes closer to on-line robust MPC [22] as the number of ellipsoids constructed off-line is 
increased. 
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a) The regulated output 

 

 
   b)     The control input 

 
Fig. 10. The closed-loop responses of technique 1 when the number of ellipsoids constructed off-line is 

varied from 3, 5 and 9; a) The regulated output;  b) The control input. 
 
Figure 11 shows the closed-loop responses of technique 2 when the number of ellipsoids constructed 

off-line is varied from 3, 5 and 9. Since 1iK  is larger than iK  as shown in Fig. 5, larger real-time state 

feedback gain is obtained as the number of ellipsoids is decreased. For this reason, technique 2 tends to 
produce faster responses as the number of ellipsoids is decreased. 
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a) The regulated output. 

 

 
b)     The control input. 

 
Fig. 11. The closed-loop responses of technique 2 when the number of ellipsoids constructed off-line is 

varied from 3, 5 and 9; a) The regulated output; b) The control input. 
 
Figure 12 shows the closed-loop responses of technique 3 when the number of ellipsoids constructed 

off-line is varied from 3, 5 and 9. The real-time state feedback gain calculated has to regulate the state from 

the current ellipsoids ji,  to the adjacent inner ellipsoids ji ,1  as fast as possible in order to minimize the 

violation of the constraints of ji ,1 . As the number of ellipsoids is decreased, ji ,1  are closer to the 

origin so faster responses are obtained.  
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a) The regulated output. 

 

 
b) The control input. 

 
Fig. 12. The closed-loop responses of technique 3 when the number of ellipsoids constructed off-line is 

varied from 3, 5 and 9: a) The regulated output; b) The control input. 
 

5. Conclusions 
 
This paper presents interpolation-based off-line robust MPC for uncertain polytopic discrete-time systems. 
The algorithm pre-computes off-line a sequence of state feedback gains corresponding to the sequences of 
ellipsoids. At each sampling time, the real-time state feedback gain is calculated by linear interpolation 
between the pre-computed state feedback gains. Three interpolation techniques are proposed. As compared 
to on-line robust MPC, the on-line computational time is significantly reduced while the same level of 
control performance is still ensured. 
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