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Abstract. Generally, material constants and their corresponding stability regions of 
hyperelastic constitutive models can be obtained by well-known commercial software. 
Nonetheless, reproduction of engineering stress-strain curves from these software do not 
accurately represent of the uniaxial testing data of a Polydimethylsiloxane material (PDMS). 
This research aimed to develop PP algorithm, which are MATLAB codes, used to 
determinate hyperelastic material constants and their stability regions from uniaxial testing 
data of PDMS material. Hyperelastic constitutive models composed of Neo-Hookean; 3, 5, 
and 9 parameters Mooney-Rivlin; 2nd and 3rd order Yeoh; and 1st, 2nd and 3rd order Ogden. 
Moreover, the accuracies of our results were evaluated by the residual sum of squares (RSS) 
between testing data and hyperelastic models and compared with ones of ANSYS. In Neo-
Hookean and Ogden models, the PP algorithm effectively determined material constants 
from the uniaxial testing data in which their RSS were lower than ones from ANSYS while 
the strain limit ranges were comparable. However, in Mooney-Rivlin and Yeoh models, the 
PP algorithm obtained lower RSS but had narrower strain limit ranges than ones from 
ANSYS. Finally, the Ogden 3rd order model is the accurate constitutive model for PDMS 
since it obtained not only low RSS but also no strain range limit. 
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1. Introduction 
 
Hyperelastic constitutive models are mathematical 

models that design to simulate behaviors of rubber-like 
materials, such as silicone, soft tissue, skin, polymer, 
leather etc. Many researchers have focused on 
determination of hyperelastic materials parameters from 
laboratory testing data. Ali et al. [1] reviewed constitutive 
models for rubber-like materials. López-Campos et al. [2] 
applied genetic algorithm in MATLAB to determine 
material constants in hyperelastic constitutive models and 
compared accuracies of these results with ANSYS and 
ABAQUS program. Kindo et al. [3] studied on selection 
and validation of hyperelastic finite element model for 
analysis of silicone rubber. They found that the most 
accurate hyperelastic material model was Yeoh and 
Mooney-Rivlin models. Tobajas et al. [4] focused on 
comparative study of hyperelastic constitutive models for 
an automotive shaft seal material made of Santoprene 101-
73. The authors used of R-Squares (correlation coefficient) 
to determine quality of each hyperelastic constitutive 
model. They found that Mooney-Rivlin model had the 
highest R-squared. Mansouri and Darijani [5] developed 
the constitutive model of isotropic hyperelastic materials 
in an exponential framework using a self-contained 
approach and used residual sum of squares (RSS) for 
comparison the accurate each model. Gorash, Comlekci, 
and Hamilton [6] developed a CAE-based application with 
a convenient GUI for identification and verification of 
material parameters for hyperelastic models available in 
the current release of the FE-code ANSYS Mechanical 
APDL. Kumar, and Rao [7] studied determination and 
physical interpretation of material constants in Mooney-
Rivlin model. Marckmann, and Verron [8] evaluated 
materialparameters and the stretch range of hyperelastic 
models for rubber-like materials. Elgström [9] studied 
practical implementation of hyperelastic material methods 
in FEA models using MATLAB program. Iniguez-
Macedo et al. [10] developed finite element model 
updating by combining multi-responses of force-
displacement curves from tensile, plane stress, 
compression, volumetric compression and shear tests to 
optimize hyper-elastic materials characterization. Kim et 
al. [11] comparative study of several material models for 
prediction of hyperelastic properties of silicone-rubber 
and soft tissues in ABAQUS. Ruggiero et al [12] used 
inverse method to determine material properties of soft 
tissues using Mooney-Rivlin model in ABAQUS. 

Finite element analyses of structures made of 
hyperelastic materials under loading are also interesting 
designing issues. Mansouri, Darijani, and Baghani [13] 
studied simulation deflected shapes of the inflation 
experiment of silicone rubber with various constitutive 
model in ABAQUS and measures accuracies of each 
constitutive models by RSS. Liu et al. [14] studied uniaxial 
tension of thin rubber liner sheets and hyperelastic model 
investigation. They found that the Mooney–Rivlin model 
up to the second order and the Ogden model capture the 
constitutive behaviour of both the silica-filled and the 

Kevlar-filled rubber sheets quite accurate. Pawlikowski 
[15] studied non-linear approach in visco-hyperelastic 
constitutive modelling of polyurethane nanocomposite. 
They found that the mean relative error of the Ogden 
model and the Mooney-Rivlin model was less than 10 %. 
Zhong, and Peters [16] studied hyperelastic tissue model 
under compressive loading in ABAQUS. 

Wang, Ma, and Wang [17] developed the finite 
element stratification method for a polyurethane jounce 
bumper, which was divided into three regions (the ‘skin 
layer’, the ‘transition layer’, and the ‘core area’), having 
different material properties in ABAQUS. The 
coefficients of the Ogden model obtained by nonlinear 
least-squares fitting by Levenberg-Marquard algorithm 
was applied to fit in ABAQUS. 

Drucker stability condition requires energy functions 
obeying to ensure stable material responses for all strain 
rates which can be derived from the tangential material 
stiffness matrix (D).  Thus, material models will be stable 
if D is positive definite matrix. Oden, and Fung [18] 
summarized the suitable range of strain in hyperelastic 
constitutive models. The Neo-Hookean model gives a 
good correlation with the experimental data up to 40% 
strain in uniaxial tension. The Mooney-Rivlin model 
shows a good agreement with tensile test data up to 100% 
strains. The Yeoh model was suitable for wider range of 
strains and useful in capturing different modes of 
deformation. Finally, the Ogden model gives a good 
correlation with test data in simple tension up to 700%. 
Upadhyay, Subhash, and Spearot [19] developed 
thermodynamics-based stability criteria for constitutive 
equations of isotropic hyperelastic solids. They found that 
stability of the Neo-Hookean model requied C10 > 0 for 
all deformation mode while the stability of Mooney-Rivlin 
2 parameter model, required C10 + C01 > 0 and C01 >0 for 
uniaxial compression and C10 + C01 > 0 and C10 > 0 for 
uniaxial tension. Liu [20] formulated thermodynamic 
stability criterion for an isothermal uniaxial test and 
determined limiting tensile and compressive tests strain 
for the Mooney-Rivlin model. They found that the 
uniaxial stress-strain curve become unstable if the curve 
was concave-downward.  

Hydrophobic surfaces have the ability of water 
repellent which can be coated on medical devices and 
marine structures. These surfaces are generally fabricated 
from the soft lithography technique which creates 
micropillars on a substrate made of Polydimethylsiloxane 
(PDMS). Since PDMS has low surface energy, non-toxic, 
non-flammable and good biocompatibility. Thanakhun 
and Puttapitukporn [21] studied the structural behaviour 
of micropillars fabricated from a core made of PUA 
material coated with a PDMS material and compared their 
lateral strength under shear loadings in ANSYS 
Mechanical APDL program. The authors found that the 
PUA core coated with 100 nm-thick PDMS micropillar 
illustrated better lateral strength than pure PDMS 
micropillar. Pakawan et al. [22] studied effects of 
decreasing the substrate thicknesses on the mechanical 
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behaviour of PDMS micropillar sheets under compressive 
loading in ANSYS Mechanical APDL program.  

This research aimed to propose the PP algorithm 
which is the effective MATLAB algorithm used to 
determinate material constants and strain limit ranges in 
hyperelastic constitutive models of PDMS materials. 
These constitutive models compose of Neo-Hookean, 
Yeoh, Mooney-Rivlin, and Ogden. Finally, accuracies of 
engineering stress-strain curves reproduction were 
evaluated by RSS between testing data and hyperelastic 
models and were compared with ones of the commercial 
finite element program, ANSYS. 
 

2. Theory 
 
2.1. Hyperelastic Material Models 
 

Hyperelastic material models are used to formulate 
the nonlinear large deformation behaviour of elastomer 
materials which are implemented in the most finite 
element software. Here, the stress-strain relation is derived 
from the strain energy density function (W), unlike linear 
elastic materials in which the stress-strain relationship is 
given by Young’s modulus and Poisson ratio.  Figure 1 
shows the difference of the stress-strain relation of elastic 
and hyperelastic materials. Moreover, the hyperelastic 
materials can be used to derive nonlinear constitutive 

models in terms of 1st, 2nd and 3rd invariants (I1,  I2, and I3), 

such as Neo-Hookean, Mooney-Rivlin, and Yeoh models. 
However, some constitutive models are not written in 
term of these invariants. For example, the Ogden model 
expresses its constitutive model in term of a stretch ratio. 
 
2.1.1. Invariants 
 

The invariants of the green deformation tensor 
consist of the invariants of  I1, I2, and I3. These invariants 
can be written in term of the principal stretch ratios of

1 2, ,  and 
3 as shown in Eqs. (1)-(4). 

 
 

 
Fig. 1. Engineering stress-strain curves of elastic and 
hyperelastic materials. 

 

 2 2 2

1 1 2 3= + +I     (1) 

 2 2 2 2 2 2

2 1 2 1 3 2 3I      = + +  (2) 

 2 2 2

3 1 2 3=I      (3) 

The stretch ratio in the i-direction can be written in term 
of the engineering strain as 

 1= +i i    (4) 

For incompressible materials, the third invariant 
3I

equals 1. The stretch ratios of 1 2 3,  , and    obtain from 

elastomer material testing which composes of the uniaxial 
test, equibiaxial test, and planar test as shown in Fig. 2. 
The constitutive models of these testing results are 
influenced by both I1 and I2. In this research, we focused 
our study on determination of material parameters of 
incompressible materials from the uniaxial testing. 
Therefore, the three principal stretch ratios are given as

0.5

1 2 3,  ,−= = =      and 
11= +  . As result, the 

three invariants are written in Eqs. (5)-(6). 
 
 2 1

1 2 −= +I    (5) 

 2

2 2 −= +I    (6) 

 
For equibiaxial test, the three principal stretch ratios 

are given as 
1 2= =   , 2

3

−=  , and 
11= +   (since

1 2=  ). Invariants are shown in Eqs. (7)-(8). 

 
 2 4

1 2 −= +I    (7) 

 2 4

2 2 −= +I    (8) 

 
For planar test, the three principal stretch ratios are 

given as 1

1 2 3,  1,  ,−= = =     and
11= +  . 

Invariants are shown in Eq. (9). 
 
 2 2

1 2 1−= = + +I I    (9) 

 
2.2. Strain Energy Density Function (W) 
 
2.2.1. Neo-Hookean model 
 

The Neo-Hookean model is used for predicting the 
nonlinear stress-strain behaviour of rubber-like materials 
under large deformation, in contrast with the linear elastic 
behaviour defined by Hooke's law. It can be written as in 
Eq. (10). 
 
 

10 1( 3)= −W C I  (10) 

 

where 
10C  is a material constant. 

 
2.2.2. Mooney-Rivlin model 
 

The Mooney-Rivlin model is developed from the 
Neo-Hookean model. The model is popular for modelling 
the large strain nonlinear behaviour of incompressible 
materials. It can be expressed in terms of the first and 
second invariants as Eq. (11). 

https://en.wikipedia.org/wiki/Strain_energy_density_function
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( ) ( )1 2

1

3 3
+ =

= − −
n

i j

ij

i j

W C I I  (11) 

where n is the number of material constants and ijC  is the 

material constant. 

 

 
(a)           (b)      (c) 

 
Fig. 2. Hyperelastic material testing: (a) uniaxial test, (b) 
equibiaxial test, and (c) planar test. 
 
2.2.3. Yeoh model 
 

The Yeoh model is a phenomenological model for the 
deformation of nearly incompressible and nonlinear elastic 
materials, such as rubbers. It is also called the reduced 
polynomial model. The strain energy density function 
depends only on the first strain invariant, I1. It can be 
written in Eq. (12). 
 
 

( )1

1

3
=

= −
n

i

ij

i

W C I  (12) 

where n is the number of material constants and ijC is the 

material constant. 
 
2.2.4. Ogden model 
 

The Ogden model is a general hyperelastic model in 
which its strain energy density is expressed in terms of the 
principal stretches. The strain energy density can be 
written in Eq. (13). 
 

 ( )1 2 3

1

3
=

= + + − i i i

n
i

i i

W
  

  


 (13) 

 
where n is the number of material constants, i

 and  i

are material constants. 
 
2.3. Determination of Stresses 
 

The engineering stress can be derived from a 
derivative of the strain energy density function by the 
stretch ratio as written in Eq. (14).  

 i

i

W





=


 (14) 

where 
i and 

i  are an engineering stress and a stretch 

ratio in the i-direction respectively. In addition, many 
constitutive models are written in term of the invariants. 
Therefore, if W is a function of I1 and I2, the engineering 
stress in the i-direction can be rewritten as in Eq. (15). 
 

 
1 2

1 2

  
= +
   

i

i i

I IW W

I I


 
 (15) 

 
2.3.1. Neo-Hookean model 
 

For a uniaxial loading in the 1-direction, the 
engineering stress derived from the Neo-Hookean model 
depends only on the 1st invariant so that it can be derived 
from Eq. (15) by neglecting the 2nd invariant term. 
Therefore, the engineering stress can be written in Eq. 
(16). 
 
 ( )2

1 10 2 2C   −= −  (16) 

 
2.3.2. Mooney-Rivlin model 
 

Engineering stresses derived from the Mooney-Rivlin 
model depends on both the 1st invariant and 2nd invariant. 
By substituting the strain energy density model in Eq. (15).  
The engineering stress can be expressed as: 
 
3-parameters 

( ) ( )2 3

10 01

2 2
1

11 3 4

2 2 1

1
6

  

   

 

− −

−

− −

 − + −
  

=   − − +
+    −   

C C

C
 (17) 

 
5-parameters 

( ) ( )

( )

( )

( )

2 3

10 01

2 2 3 4

11

1
3 2 3

20

2 3 5

02

2 2 1

6 + 1

4 3 3 2 +1

4 2 +3 3

  

    


   

   

− −

− − −

− −

− − −

 − + −
 
 + − + − − 

=  
+ − + − 
 
+ − − −  

C C

C

C

C

  (18) 
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9-parameters 

( ) ( )

( )

( )

( )

2 3

10 01

2 2 3 4

11

3 2 3

20

2 3 5

02

3 2 2 3

12 4 5 6

1

4 3 2

21 2 3 4 5

3

2 2 1

6 + 1

4 3 3 2 +1

4 2 +3 3

8 18 3 3 27
2

+18 +6 5 +24

5 6 18 27
2

24 +3 +18 8 +3

2

  
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   

   

    

  

   

   

− −

− − −

− −

− − −

− −

− − −

− − − −

− + −

+ − + − −

+ − + −

+ − − −

 − − − −
+   − =

 − − +
+   − − 

+

C C

C

C

C

C

C

C

5 3 2 2

0 3 4

2 2 3

03 4 5 7

3 18 +9 27 27

+36 12 18

12 36 +18 27
2

9 +18 3 +27
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 

   

  

−

− −

− −

− − −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 − + − 
   − −  

  − −
 +    − −  

C

 (19) 

 
2.3.3. Yeoh model 
 

Engineering stress derived from the Yeoh model 
depends only on the 1st invariant. By substituting the strain 
energy density model in Eq. (15) and neglecting the 2nd 
invariant term, the engineering stress can be written in Eq. 
(20). 
 

 
2 2 1 1

1 0

1

2 ( )( 2 3)
n

i

i

i

iC    − − −

=

= − + −  (20) 

 
2.3.4. Ogden model 
 

Engineering stress derived from the Ogden model 
does not depend on both 

1I  and 
2I , such that the 

engineering stress can be determined by substituting the 
strain energy density function into Eq. (14) as shown in 
Eq. (21). 
 

 ( )1 0.5 1

1

1

i i

n

i

i

 
   

− − −

=

= −  (21) 

 
2.4. Drucker Stability Conditions 
 

The stability region of each constitutive model can be 
determined from the Drucker stability condition for the 
first three modes of deformation. The condition requires 
that the changes of the true stress and true strain are 
satisfied in the inequality as shown in Eq. (22).  
 

 : 0d d    (22) 

 
For isotropic hyperelastic materials, the inequality can 

be represented in terms of the principal stresses and 
strains as given in Eq. (23). 

 1 1 2 2 3 3 0+ + d d d d d d       (23) 

2.5. Residual Sum of Squares 
 

The residual sum of squares (RSS) measures of errors 
remaining between the model function and the data set. It 
is used as an optimality criterion in the parameter selection 
and the model selection which can be calculated by Eq. 
(24). 
 

( )
2

1

N

i

i

RSS  
=

= −  (24) 

 
where  i

 is the engineering stress obtained from the 

experimental data,   is the engineering stress obtained 

from hyperelastic constitutive models, and N is the 
number of a data set. 
 

3. Methodology 
 

The PP algorithm, named after two researchers, J. 
Phothiphatcha and T. Puttapitukporn, which is written in 
MATLAB program for determining material parameters 
and their strain limit ranges from uniaxial testing data of 
hyperelastic materials. The hyperelastic models consist of 
Neo-Hookean; 3, 5, and 9 parameters Mooney-Rivlin; 2nd 
and 3rd order Yeoh; and 1st, 2nd, and 3rd order Ogden. The 
PP algorithm uses the polynomial function to create the 
smooth and continuous function from the uniaxial testing 
data. Then, the specified pairs of the fitted engineering 
stress-strain data are selected which are equal to the 
number of material constants in each hyperelastic model. 
After that, the system of equations can be formulated for 
determining the material constants. Finally, the stability 
region is determined from the Drucker stability criterion. 
 
3.1. Uniaxial Test Data 
 

Experimental data [21, 22] of tensile and compressive 
tests on testing specimens made of PDMS material having 
the PDMS monomers to a curing agent ratio of 10:1 are 
shown in Figs. 3-4. The engineering stress and strain 
curves reproduced from various constitutive models by 
the ANSYS program are shown in Figs. 3-4. 

 

Fig. 3. Comparison of engineering tensile stress and strain 
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curves obtained from the experimental data and various 
constitutive models by the ANSYS program. 

 

 
 
Fig. 4. Comparison of engineering compressive stress and 
strain curve obtained from the experimental data and 
various constitutive models by the ANSYS program. 

 
3.2. Determination of Material Constants 

 
3.2.1. Curve fitting 
 

Uniaxial experimental data are often unsmooth curve 
which necessary to fit curve by using Polynomial function. 
This equation is shown in Eq. (25) and the coefficients can 
be determine in Eq. (26), by define as 
 

2

0 1 2 ...   = + + + + n

Fit na a a a  (25) 

0

2 1

1

1 2

 

 

  

   

+

+

    
    
     =
    
    

       

 
  

  

n

i

n

i

nn n n

n i

an

a

a

 (26) 

where  Fit
 is the fitted engineering stress,  i

 is the 

engineering stress obtained from experimental data, and 

  is the engineering strain. 

 
3.2.2. Data selection 
 

After the uniaxial experimental data are fitted by the 
polynomial function, the strain range T is equally divided 
by the number of strain intervals which gives an interval 
length of L as shown in Eq. (27).  
 
 T

L
n

=  (27) 

where n is number of material constants in constitutive 
models. However, this proposed procedure is suitable for 
Mooney-Rivlin, Yeoh and Ogden models. The Neo-
Hookean model has only one material constant C10; 
therefore, it must be used different procedure to 
determine its material constant. 

The uniaxial testing data will be accurately matched to 

the fitted data as shown in Fig. 5.  
{ } i

Fit  and 
{ }i

Eng  are the 

fitted engineering stress and the engineering strain at the 
end of an i-interval respectively. 
 

 
Fig. 5. Selection of the engineering stress-strain data. 
 

Some hyperelastic constitutive models are generally 
written in a function of stretch ratio, the stretch ratio at 
the end of i-interval can be expressed as shown in Eq. (28). 
 

 
{ } { }1i i

Eng = +  (28) 

 
3.2.3. Determination material constants 
 

The material constants of Neo-Hookean, Mooney-
Rivlin, Yeoh, and Ogden can be solved with our proposed 
algorithm in form of a single equation or multiple 
equations. 
 

A single equation: 
 
The Neo-Hookean model has only one material 

constant C10 which can determine from the fitted 
engineering stress-strain data at T/4, T/2, 3T/4, and T 
respectively. For the uniaxial testing data, the material 

constant C10 can be solved by substituting {1} =  into 
Eq. (16) as shown in Eqs. (29)-(30). 

 

 ( )
2

{1} {1} {1}

102 2 FitC  
− − =

  
 (29) 

 
( )

{1}

10 2
{1} {1}

1

2 2
−

=
−

FitC 
 

 (30) 

 
Multiple equations: 
 
Mooney-Rivlin and Yeoh models can separate 

material constants from the matrix formed by hyperelastic 
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constitutive models which is shown in Eq. (31) and solved 
by Eqs. (32)-(33). 
 

 

( )

( )

( )

{1}
{1}

{2} {2}

{ }
{ }

1
1

model
Fit

model Fit
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where ( ){ }  i

model  is a function of the hyperelastic 

constitutive model at { } i  (i start at 1 to n). 

 
- Mooney-Rivlin 3 parameter model 
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Elements of the matrix M are written as: 
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Additionally, the Mooney-Rivlin n-parameter model 

has n material constants which required n selected data 
points. Thus, the matrix M has the size of n x n and each 
element of M is given in Eq. (17)-(19). 

 

- Yeoh 2nd order model 
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Elements of the matrix Y are written as: 
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Additionally, the Yeoh 3rd order model has 3 material 

constants which required 3 selected data points. Thus, the 
matrix Y has the size of 3 x 3 and each element of Y is 
given in Eq. (20). 
 

- Ogden model 
 

In Ogden models, the material constants cannot be 
solved explicitly. For the PP algorithm, the Ogden models 
have 2, 4, and 6 material constants respectively which 
require to selected data points being equal to the number 
of material constants. Thus, each component of the stress 
vector is given in Eq. (48). For example, the Ogden 2nd 
order model has 4 material constants which required 4 
selected data points, the material constants are acquired 
from Eq.(49) by using the Levenberg–Marquardt 
algorithm [17] which is well-known method to solve non-
linear least squares problems. 
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(49) 

 
Additionally, the Ogden 1st order model has 2 material 

constants which required 2 selected data points, and the 
Ogden 3rd order model has 6 material constants which 
required 6 selected data points; therefore, each element of 
the stress vector is defined in Eq. (48). Finally, material 
constants can then be obtained from the Levenberg–
Marquardt algorithm. 
 
3.3. Determination of Stability Regions 
 

For incompressible materials, we assigned 

3 3 0d = =  into Eq. (23); therefore the inequality is 

written as shown in Eq. (50). 
 
 1 1 2 2 0d d d d   +   (50) 

 
where 

i  is the Cauchy stress in the i-principal direction 

and 
i  is Cauchy strain in the i-principal direction. The 

changes of true strain are related to the stretch ratios 
which can be given in Eq. (51). 
 
 

= i
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i

d
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
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The relation between the changes of the Cauchy stress 

and the Cauchy strain can be formulated by the matrix 
equation as written in Eq. (52). 
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where D is the tangential stiffness matrix and each element 
of D can be calculated from Eq. (53). 
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Constitutive equations of the Neo-Hookean, 

Mooney-Rivlin and Yeoh models depend on the 1st and 
2nd invariant; therefore, each elements of the symmetric 
matrix D can determine from Eq. (53). 

Constitutive equation of the Ogden model depends 
only on the stretch ratio; therefore, each element of the 
symmetric matrix D is determined from Eqs. (54)–(56). 
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For material stability, the tangential stiffness matrix D 

must be positive definite which requires D to satisfied two 
conditions as written in Eqs. (57)-(58). 
 

 11 22 0D D+   (57) 

 11 22 12 21 0D D D D−   (58) 

 
4. Results and Discussion 
 
4.1. Determination of Material Constants 
 

The material constants of hyperelastic models were 
determined from both the tensile and compressive testing 
data of the PDMS material. The PP algorithm was 
evaluated for its accuracy of reproducing stress-strain 
curves compared to ones of the ANSYS program and the 
uniaxial testing data. 
 
4.1.1. Neo-Hookean model 
 

The Neo-Hookean model has only one material 
constant C10; therefore the fitted pairs of data have to 
carefully select as an input of the PP algorithm which are 
at T/4, T/2, 3T/4, and T. Here, we found that PP 
algorithm obtained quite accurate results when L is 3T/4. 
Finally, we found that PP algorithm obtains quite accurate 
prediction of stress-strain relationship under uniaxial 
testing. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm for various L is shown 
in Fig. 6. Figure 7 shows comparison of compressive 
stress- strain reproduced from the PP algorithm for 
various L. Table 1 illustrates RSS between uniaxial testing 
data and data reproducing from the PP algorithm for 
various L. Figures 8 and 9 show comparison of tensile and 
compressive stress-strain curves, which generated from 
both the PP algorithm (L = 3T/4) and the ANSYS 
program. Tables 1-2 illustrate comparison of RSS between 
the uniaxial testing data and the data reproduced from the 
PP algorithm and the ANSYS program. Table 3 shows the 
material constant C10 determined from the uniaxial testing 
data by the PP algorithm and the ANSYS program. 
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Table 1. RSS between the uniaxial testing data and the data 
reproduced from the PP algorithm by the Neo-Hookean 
model. 
 

Location of a 
selected data  

RSS 

Tensile test Compressive test 

4T  483.20367 91.08280 

/ 2T  307.98142 27.97998 

3 4T  132.46641 9.17438 

T 510.78097 20.15709 

 
Table 2. RSS between the uniaxial testing data and the data 
reproduced from the ANSYS program and the PP 
algorithm (with fitted data at 3T/4) by the Neo-Hookean 
model. 
 

Type of data 
RSS 

ANSYS PP algorithm 

Tensile test 325.99015 132.46641 

Compressive test 98.59628 9.17438 

 
Table 3. The material constant C10 in the Neo-Hookean 
model determined from the uniaxial testing data by the PP 
algorithm (with fitted data at 3T/4) and the ANSYS 
program. 
 

Type of data 
Neo-Hookean model 

ANSYS PP algorithm 

Tensile test 0.45578 0.67085 

Compressive test 0.12506 0.24041 

 

 
Fig. 6. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm by the  
Neo-Hookean model to the tensile testing data. 

 

 
Fig. 7. Comparison of compressive stress-strain curves 
reproduced from the PP algorithm by the 
Neo-Hookean model to the compressive testing data. 
 

 
Fig. 8. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm (with fitted data at 
3T/4) and the ANSYS program by the Neo-Hookean 
model to the tensile testing data. 

 

 
Fig. 9. Comparison compressive stress-strain curves 
reproduced from the PP algorithm (with fitted data at 
3T/4) and the ANSYS program by the Neo-Hookean 
model to the compressive testing data. 
 
4.1.2. Mooney-Rivlin models 
 

The Mooney-Rivlin 3, 5, and 9 parameters model had 
been studied to determine their material constants. Here, 
we found impressive reproducing results from the PP 
algorithm. Moreover, the Mooney-Rivlin 9 parameters 
model obtained the accurate model representing of the 
stress-strain curves with lowest RSS. Figures 10-12 show 
comparison of tensile stress-strain reproduced from the 
PP algorithm and the ANSYS program to the tensile 
testing data. Figures 13-15 show comparison of 
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compressive stress-strain reproduced from the PP 
algorithm and the ANSYS program to the compressive 
testing data. Tables 4-5 illustrates RSS between the 
uniaxial testing data and the data reproducing from the PP 
algorithm and the ANSYS program. As the number of 
parameters in the Mooney-Rivlin model increases, the 
accuracy of the constitutive model increases. Tables 6-7 
show the material constants determined from the tensile 
testing data in the PP algorithm and the ANSYS program. 
Tables 8-9 shows the material constants determined from 
the compressive testing data in the PP algorithm and the 
ANSYS program respectively. 
 
Table 4. RSS between the tensile testing data and the data 
reproduced from the PP algorithm and the ANSYS 
program by various Mooney-Rivlin models. 
 

Mooney-Rivlin 
models 

RSS 

ANSYS PP algorithm 

3 parameters 2.30004 0.94446 
5 parameters 0.12339 0.03349 
9 parameters 0.05598 0.02348 

 
Table 5. RSS between the compressive testing data and the 
data reproduced from the PP algorithm and the ANSYS 
program by various Mooney-Rivlin models. 
 

Mooney-Rivlin 
models 

RSS 

ANSYS PP algorithm 

3 parameters 0.70566 0.14429 
5 parameters 0.45302 0.00085 
9 parameters 0.06440 0.00074 

 
Table 6. The material constants in the Mooney-Rivlin 
models determined from the tensile testing data with the 
PP algorithm. 
 

Material 
constants 

Mooney-Rivlin models 

Parameters 

3 5 9 
 

10C  -1.83101 1.16746 -0.01920 

01C  2.52817 -0.86298 0.40418 

11C  0.76883 1.41975 -2241.08500 

20C   -0.04522 111.02655 

02C   -2.05832 113.60225 

30C    -0.38632 

21C    0.98571 

12C    -27.07851 

03C    11.46141 

 

Table 7. The material constants in the Mooney-Rivlin 
models determined from the tensile testing data with the 
ANSYS program. 
 

Material 
constants 

Mooney-Rivlin models 

Parameters 

3 5 9 
 

10C  -0.54115 -0.46701 -9.79208 

01C  0.97146 0.88163 10.34925 

11C  0.49612 -3.91278 -246155.84137 

20C   1.54142 122917.86244 

02C   3.11667 123270.12261 

30C    505.37389 

21C    -3186.21598 

12C    -23261.11861 

03C    8036.22988 

 
Table 8. The material constants in Mooney-Rivlin models 
determined from the compressive testing data with the PP 
algorithm. 
 

Material 
constants 

Mooney-Rivlin models 

Parameters 

3 5 9 

10C  -0.18295           -1.17299                -0.69856 

01C  0.28694               1.18820                           0.73024 

11C  -0.01761 0.75693 -2097.97604 

20C   -1.13998 1052.14911 

02C   -0.18100 1046.16820 

30C    74.90284 

21C    -206.10185 

12C    -22.89094 

03C    3.527831 

 
Table 9. The material constants in the Mooney-Rivlin 
models determined from the compressive testing data 
with the ANSYS program. 
 

Material 
constants 

Mooney-Rivlin models 

Parameters 

3 5 9 

10C  -0.44501 -0.16808 3.04478 

01C  0.50429 0.23398 -2.93246 

11C  -0.0622 -2.54487 -61745.70617 

20C   2.09914 30935.06855 

02C   0.78043 30821.49306 

30C    2095.10625 

21C    -5951.49632 

12C    -731.22547 

03C    113.39422 
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Fig. 10. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Mooney-Rivlin 3 parameters model to the 
tensile testing data. 

 

Fig. 11. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Mooney-Rivlin 5 parameters model to the 
tensile testing data. 

 

Fig. 12. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Mooney-Rivlin 9 parameters model to the 
tensile testing data. 

 

 
Fig. 13. Comparison of compressive stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Mooney-Rivlin 3 parameters model to the 
compressive testing data. 

 

Fig. 14. Comparison of compressive stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Mooney-Rivlin 5 parameters model to the 
compressive testing data. 

 

 
Fig. 15. Comparison of compressive stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Mooney-Rivlin 9 parameters model to the 
compressive testing data. 
 
4.1.3. Yeoh models 
 

The PP algorithm obtained impressive results of 
reproduction of stress-strain curves. Figures 16-17 show 
comparison of tensile stress-strain curves reproduced 
from the PP algorithm and the ANSYS program to the 
tensile testing data. Figures 18-19 show comparison of 
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compressive stress-strain curves reproduced from the PP 
algorithm and the ANSYS program to the tensile testing 
data. Table 10 illustrates RSS between the tensile testing 
data and the data reproducing from the PP algorithm and 
the ANSYS program. Table 11 illustrates RSS between the 
compressive testing data and the data reproducing from 
the PP algorithm and the ANSYS program. As the order 
of the Yeoh model increases, the accuracy of the 
constitutive model increases. Tables 12-13 show the 
material constants determined from the tensile testing data 
and the compressive testing data by the PP algorithm and 
the ANSYS program respectively. 
 

 
Fig. 16. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Yeoh 2nd order model to the tensile testing 
data. 

 

Fig. 17. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Yeoh 3rd order model to the tensile testing 
data. 
 

 
Fig. 18. Comparison of compressive stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Yeoh 2nd order model to the compressive 
testing data. 

 

 
Fig. 19. Comparison of compressive stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Yeoh 3rd order model to the compressive 
testing data. 

 
Table 10. RSS between the tensile testing data and the data 
reproduced from the PP algorithm and the ANSYS 
program by various Yeoh Models. 
 

Yeoh Models 
RSS 

ANSYS PP algorithm 

2nd order 7.90918 2.39860 
3rd order 0.56914 0.18280 

 
Table 11. RSS between the compressive testing data and 
the data reproduced from the PP algorithm and the 
ANSYS program by various Yeoh Models. 
 

Yeoh Models 
RSS 

ANSYS PP algorithm 

2nd order 9.89472 0.22798 
3rd order 4.18434 0.45872 
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Table 12. The material constants in the Yeoh models 
determined from the tensile testing data by the PP 
algorithm and the ANSYS program. 
 

Material 
constants 

Yeoh models 

2nd order 3rd order 

ANSYS 
PP 

algorithm 
ANSYS 

PP 
algorithm 

10C  0.33845 0.25126 0.36428 0.33892 

20C  0.16787 0.22521 0.07036 0.11533 

30C  - - 0.05307 0.03365 

 
Table 13. The material constants in the Yeoh models 
determined from the compressive testing data by the PP 
algorithm and the ANSYS program. 
 

Material 
constant 

Yeoh models 

2nd order 3rd order 

ANSYS 
PP 

algorithm 
ANSYS 

PP 
algorithm 

10C  0.09511 0.17019 0.08454 0.13591 

20C  0.11852 0.05661 0.24102 0.11755 

30C  - - -0.09507 -0.02520 

 
4.1.4. Ogden models 
 

With the PP algorithm, the Ogden 3rd order model was 
the accurate constitutive model for reproducing of stress-
strain curves since it had the lowest RSS. Figures 20-22 
show comparison of tensile stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program to the tensile testing data. Figures 23-25 show 
comparison of compressive stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program to the compressive testing data. Table 14 
illustrates RSS between the tensile testing data and the data 
reproducing from the PP algorithm and the ANSYS 
program. Table 15 illustrates RSS between the 
compressive testing data and the data reproducing from 
the PP algorithm and the ANSYS program. As the order 
of the Ogden model increases, the accuracy of the 
constitutive model increases. Tables 16-17 show the 
material constants determined from the tensile testing data 
by the PP algorithm and the ANSYS program respectively. 
Tables 18-19 show the material constants determined 
from the compressive testing data by the PP algorithm and 
the ANSYS program respectively. 
 
Table 14. RSS between the tensile testing data and the data 
reproduced from the PP algorithm and the ANSYS 
program with the Ogden models. 
 

Ogden Models 
RSS 

ANSYS PP algorithm 

1st order 9.13155 1.17705 
2nd order 0.56855 0.15337 
3rd order 0.03369 0.02966 

Table 15. RSS between the compressive testing data and 
the data reproduced from the PP algorithm and the 
ANSYS program by various Ogden models. 
 

Ogden Models 
RSS 

ANSYS PP algorithm 

1st order 72.61336 0.12535 
2nd order 78.38356 0.11588 
3rd order 78.13855 0.11570 

 
Table 16. The material constants in the Ogden model 
determined from the tensile testing data by the PP 
algorithm. 
 

Material 
constants 

Ogden models 

1st order 
 

2nd order 
 

3rd order 
 
 

1  0.17666 56.05795 47.19930 

1  5.54368 0.01435 2.08600 

2   0.07938 -78.36774 

2   6.57819 2.57958 

3    35.21105 

3    2.98970 

 
Table 17. The material constants in the Ogden models 
determined from the tensile testing data with the ANSYS 
program. 
 

Material 
constants 

Ogden models 

1st order 
 

2nd order 
 

3rd order 
 
 

1  0.26299 0.04102               -149.35934        

1  4.75275         7.57032                0.30898                

2   422.57243 0.26001 

2   0.00276               5.29229             

3    494.13556 

3    0.09382               

 
Table 18. The material constants in the Ogden models 
determined from the compressive testing data by the PP 
algorithm. 
 

Material 
constants 

Ogden models 

1st order 
 

2nd order 
 

3rd order 
 
 

1  -0.25722 -0.12413 -0.07254 

1  -2.23321 -2.27832 -2.28350 

2   -0.12412 -0.07255 

2   -2.27831 -2.28349 

3    -0.10215 

3    -2.28322 
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Table 19. The material constants in the Ogden models 
determined from the compressive testing data by the 
ANSYS program. 
 

Material 
constants 

Ogden models 

1st order 
 

2nd order 
 

3rd order 
 
 

1  12397.06910 5.11284 4.36077 

1  0.00004 0.04722 0.03681 

2   5.11285 4.36085 

2   0.04713 0.03693 

3    4.36099 

3    0.03688 

 

Fig. 20. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Ogden 1st order model to the tensile 
testing data. 

 

 
Fig. 21. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm and ANSYS program 
by the Ogden 2nd order model with the tensile testing data. 

 

 
Fig. 22. Comparison of tensile stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Ogden 3rd order model to the tensile 
testing data. 

 

 
Fig. 23. Comparison of compressive stress-strain curves  

reproduced from the PP algorithm and the ANSYS 
program by the Ogden 1st order model to the compressive 
testing data. 
 

 
Fig. 24. Comparison of compressive stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Ogden 2nd order model to the compressive 
testing data. 
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Fig. 25. Comparison of compressive stress-strain curves 
reproduced from the PP algorithm and the ANSYS 
program by the Ogden 3rd order model to the compressive 
testing data. 
 
4.2. Stability Regions 
 

The Drucker stability of constitutive models for the 
first three modes of deformation of various hyperelastic 
models and loading conditions are listed in Tables 20-23. 
Here, the PP algorithm and the ANSYS program obtained 
the comparable strain range limit. Nonetheless, the 
computational error on the strain range limit from ANSYS 
was found in the Yeoh 3rd order model obtained from the 
compressive testing data. The plots of the trace and the 
determinant of the tangential stiffness matrix D for 
various compressive engineering strains are shown in Figs. 
26-27. It was found that the exact unstable condition 

occurred when  Eng < -0.472. In the Drucker stability 

criterion, the strain limit range depends on both the trace 
and the determinant of the tangential stiffness matrix [D] 
to be positive definite. They imply that the partial 
derivative of stress with respect to stretch ratio in the 1st 
and 2nd principal directions must be both positive while 
the PP algorithm determines the material constants from 
the 1st principal direction. Figures 28-29 show that the 5 
and 9 parameter Mooney-Rivlin models had the negative 
D22 (the slope in the 2nd principal direction) by both the 
PP algorithm and the ANSYS program. 
 

Table 20. Unstable conditions of various hyperelastic 
models obtained from the tensile testing data by the PP 
algorithm. 
 

Models 
Unstable conditions 

Uniaxial Equibiaxial Planar 

Neo-Hooken None None None  

Mooney-Rivlin:    

3 parameters None  Eng  > 

0.112 
None 

5 parameters Eng  > 

0.125 

Eng  > 

0.046 

Eng  >  

0.089 

9 parameters Eng  > 

0.154 

Eng  > 

0.067 

Eng  >  

0.116 

Yeoh:    
2nd order None None None 
3rd order None None None 
Ogden:    
1st order None None None 
2nd order None None None 

3rd order None None None 

 
Table 21. Unstable conditions of various hyperelastic 
models obtained from the tensile testing data by the 
ANSYS program. 
 

Models 
Unstable conditions 

Uniaxial Equibiaxial Planar 

Neo-Hooken None None None 

Mooney-Rivlin:    

3parameters None None None 

5parameters Eng  > 

1.330 

Eng  > 

0.200 
None  

9parameters Eng  > 

0.040 

Eng  > 

0.010 

Eng  >  

0.040 

Yeoh:    
2nd order None None None 
3rd order None None None 
Ogden:    
1st order None None None 
2nd order None None None 
3rd order None None None 
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Table 22. Unstable conditions of various hyperelastic 
models given from the compressive testing data by the PP 
algorithm. 
 

Models 
Unstable conditions 

Uniaxial Equibiaxial Planar 

Neo-Hookean None None None 

Mooney-Rivlin:    

3parameters Eng <  

-0.193 

Eng <  

-0.096 
None 

5parameters Eng <  

-0.007 

Eng <  

-0.004 

Eng <  

-0.006 

9parameters Eng < 

-0.021 

Eng < 

-0.014 

Eng < 

-0.020 

Yeoh:    
2nd order None None None 
3rd order None 

Eng < 

-0.302 

Eng < 

-0.492 

Ogden:    
1st order None None None 
2nd order None None None 
3rd order None None None 

 
Table 23. Unstable conditions of hyperelastic models 
obtained from the compressive testing data by the ANSYS 
program. 
 

Models 
Unstable conditions 

Uniaxial Equibiaxial Planar 

Neo-Hookean None None  None  

Mooney-Rivlin:    

3parameters Eng  <  

-0.060 

Eng  < 

 -0.029 

Eng  <  

-0.051 

5parameters Eng  <  

-0.506  

Eng  < 

 -0.175 

Eng  <  

-0.318 

9parameters Eng  <  

-0.032  

Eng  <  

-0.009  

Eng  <  

-0.032 

Yeoh:    
2nd order None None None 
3rd order None None None 
Ogden:    
1st order None None None 
2nd order None None None 
3rd order None None None 

 

 
Fig. 26. Comparison 

11 22+D D  of the Yeoh 3rd order 

model obtained from the PP algorithm and the ANSYS 
program. 
 

 
Fig. 27. Comparison 

11 22 12 21−D D D D  of the Yeoh 3rd 

order model obtained from the PP algorithm and the 
ANSYS program. 
 

 
Fig. 28. Plot of D22 and engineering strain for various 
Mooney-Rivlin models by the PP algorithm. 
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Fig. 29. Plot of D22 and engineering strain for various 
Mooney-Rivlin models by the PP algorithm. 
 

5. Conclusions 
 

In this research, the PP algorithm was proposed for 
determining material constants and strain limit ranges 
from 3, 5, and 9 parameter Neo-Hookean; Mooney-Rivlin; 
2nd and 3rd order Yeoh; and 1st, 2nd, and 3rd order Ogden. 
Moreover, the accuracies of engineering stress-strain curve 
reproduction were determined from RSS between the 
uniaxial testing data and the hyperelastic models and were 
evaluated with ones of the commercial finite element 
program, ANSYS. In the Neo-Hookean and Ogden 
models, the PP algorithm effectively determined material 
constants from the uniaxial testing data of the PDMS 
material in which their RSSs were lower than ones from 
the ANSYS program while the strain limit ranges were 
comparable. However, in Mooney-Rivlin and Yeoh 
models, the PP algorithm obtained lower RSS between the 
uniaxial testing data and the hyperelastic models but had 
smaller strain limit ranges than ones from ANSYS. Since 
their strain limit ranges were highly sensitive to their 
material constants. Therefore, it will need to improve the 
PP algorithm to have abilities to simultaneously optimize 
both RSS between the testing data and the hyperelastic 
models and the strain limit range (D11 and D22) which 
would achieve both wider strain limit ranges and the 
accurate and acceptable RSS. Additionally, by nature of 
hyperelastic constitutive models, the higher is the order of 
the hyperelastic constitutive model, the lower is the RSS 
and the narrower is the strain limit range. Finally, the most 
accurate constitutive model for PDMS is the Ogden 3rd 
order model since it obtained not only low RSS but also 
no strain range limit. 
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