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Abstract. In this study, a Multiple-Objective Aggregate Production Planning (MOAPP) 
problem in a supply chain under an uncertain environment is developed. The proposed 
model considers simultaneously four different conflicting objective functions. To solve the 
proposed Fuzzy Multiple-Objective Mixed Integer Linear Programming (FMOMILP) 
model, a hybrid approach has been developed by combining Fuzzy Credibility-based 
Chance-constrained Programming (FCCP) and Fuzzy Multiple-Objective Programming 
(FMOP). The FCCP can provide a credibility measure that indicates how much confidence 
the decision-makers may have in the obtained optimal solutions. In addition, the FMOP, 
which integrates an aggregation function and a weight-consistent constraint, is capable of 
handling many issues in making decisions under multiple objectives. The consistency of 
the ranking of objective’s important weight and satisfaction level is ensured by the weight-
consistent constraint. Various compromised solutions, including balanced and unbalanced 
ones, can be found by using the aggregation function. This methodology offers the decision 
makers different alternatives to evaluate against conflicting objectives. A case experiment 
is then given to demonstrate the validity and effectiveness of the proposed formulation 
model and solution approach. The obtained outcomes can assist to satisfy the decision-
makers’ aspiration, as well as provide more alternative strategy selections based on their 
preferences. 
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1. Introduction 
 
A Supply Chain (SC) is defined as a set of activities 

that are coordinated among suppliers, manufacturers, 
distribution centers, and customers so that the final 
products are manufactured and distributed to customers 
with the right quantities at the right time. Based on this 
definition, Supply Chain Management (SCM) has become 
the core value of operations management in production 
planning for the entire supply chain. Its impacts have an 
important role in the performance of an organization for 
competitiveness based on sales price, commodity quality, 
customer reliability, quick responsiveness, and flexibility in 
the market [1].  

Without Aggregate Production Planning (APP), 
procurement, production, transportation, and distribution 
activities will be implemented independently and separately, 
causing conflicts in operations and with the given goals. 
Hence, APP is one of the most crucial issues that should be 
addressed in supply chain management. APP is 
acknowledged as an essential stage in production systems 
because of its links with business strategies. It makes a 
significant contribution to the planning for enterprise 
resources and organizational integration. APP is a process 
by which a company identifies the planned levels of 
production, capacity, inventory, subcontracting, stockouts, 
and even pricing in an intermediate time frame (3 to 12 or 
even 18 months). Most organizations attempt to create an 
effective aggregate production plan that meets customer 
requirements and has a minimum total cost [2, 3]. 

In the presence of such a competitive environment, 
Decision-Makers (DMs) have to cope with two important 
problems that can affect the performance of the entire 
supply chain. The first problem is the conflicting 
objectives from the properties of operations and the 
configuration of an SC when adjusting the targets of the 
different partners in the SC. Each partner in the SC, it has 
its own goals or interests (e.g. minimizing the total cost of 
the supply chain, maximizing the satisfaction of customers, 
or maximizing the value of purchasing). The second 
problem is the uncertainty of data. The uncertainty of data 
could arise from two sources: (1) Environmental 
uncertainty due to the performance of suppliers and the 
behavior of customers in terms of supply and demand, and 
(2) System uncertainty due to the unreliability of 
operations and processes inside an organization [4]. 
Therefore, it is necessary to address these two problems 
when designing and operating a supply chain. 

The main contribution of this study is to address the 
two main issues. Firstly, a multiple-objective model for 
APP in an SC under uncertainty including multiple 
suppliers, a production plant, and multi-customers that 
integrate the plan of procurement, production, and 
distribution is addressed. Secondly, a hybrid approach that 
integrates the defuzzification method (Credibility-based 
Fuzzy Chance-constrained Programming (CFCCP) and 
Fuzzy Multiple-Objective Programming (FMOP) is 
proposed. This can help decision-makers to cope with the 
fuzziness of data under a multiple-objective problem. 

Fuzzy chance-constrained programming using the 
credibility measure currently is known as a defuzzification 
method that can be used to substitute for the traditional 
fuzzy programming. It is based on the measurement of 
possibility or the necessity for a fuzzy event. The capability 
of CFCCP not only deals with non-deterministic 
parameters that are denoted as fuzzy sets, but also 
provides a credibility level that indicates the confidence 
level of the created (efficient) management strategies. To 
the best of the authors’ knowledge, so far, there has been 
little research using CFCCP as the optimization method in 
production planning problems. With fuzzy multiple-
objective programming, some approaches have been 
researched and applied, but one of the common 
approaches is fuzzy programming with several objective 
functions that was proposed by Zimmermann [5]. This 
model is known as the symmetric model because there is 
no priority for any fuzzy objective functions (All of the 
fuzzy objective functions are considered to have the same 
importance). Therefore, the symmetric model is not 
suitable for making decisions for multiple objectives in a 
practical environment. Being aware of a deficiency in the 
above problem, Tiwari et al. [6] proposed an improved 
approach, called the weighted additive method. By 
assigning a specific weight to represent the importance of 
each fuzzy objective function, this method can provide an 
efficient compromise solution that can satisfy the 
aspiration level of each objective function according to the 
preferences of the DMs. Subsequently, some extended 
approaches (e.g. the LH method, LZL method, SO 
method, and TH method) were introduced by Lai and 
Huang [7], Li et al. [8], Selim and Ozkarahan [9], and 
Torabi and Hassini [10], respectively. However, these 
approaches still did not consider the weight-consistent 
solution (the homogeneity of ranking objective function 
weights and their satisfaction levels). As a result, these 
approaches do not satisfy the aspiration level of the DMs 
in some cases. Considering this matter, a weight-
consistent constraint is further proposed in this study to 
add to the fuzzy multiple-objective programming. This 
ensures that the obtained solution can be more consistent 
with DM expectations. 

The remainder of this paper is arranged as follows: A 
review of the related literature is presented in Section 2. 
The description, assumption, notation, and mathematical 
formulation of the APP problem in an SC are described in 
Sections 3 and 4. The proposed methodology for solving 
the multiple-objective APP model in an SC under 
uncertainty is developed in Section 5. Then, an illustration 
of a case experiment is shown in Section 6. Subsequently, 
the results of the proposed mathematical model are 
provided in Section 7. Finally, the conclusions and 
directions for further work are presented in Section 8.  
 

2. Literature Review 
 

According to the content of our research in this paper, 
the literature review can be divided into two parts. The 
first part focuses on the relevant studies, which define the 
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structure of the APP model. The second part attempts to 
review past research that is related to the application of the 
single-objective and multiple-objective optimizations 
under uncertainty. 
 
2.1. Aggregate Production Planning (APP) Models 

 
An Aggregate Production Planning (APP) problem is 

an intermediate-time capacity plan that identifies the cost 
minimization of the production plan and the human 
resources to fulfill market needs in the most effective way. 
Its purpose is to determine a suitable quantity of 
production and the inventory level in a term of 
aggregation. The time-period range of APP is from 2 to 
12 (or even 18 months) [11]. APP brings a connection 
between strategic and operations management. Besides, 
APP operating strategies play a significant role in 
organizational integration and enterprise resource 
planning. The target of making APP in a manufacturing 
enterprise is to acquire the minimum cost or the maximum 
profit by determining the quantity of produced products, 
the quantity of subcontracting products, the levels of labor, 
etc., to fulfill the market demand [12]. 

Based on the uncertainty level in the APP model, the 
APP model can be categorized into two different groups. 
The input data are used in the APP model could change 
from a deterministic value to a fuzzy value, or a stochastic 
value. There is another significant criterion that can also 
impact the structure of the APP model. This criterion is the 
consideration of the number of objective functions in the 
model. By combining these two above-mentioned criteria, 
the APP model can be separated into six major structural 
groups: deterministic models with a single objective, 
deterministic models with multiple objectives, fuzzy models 
with a single objective, fuzzy models with multiple 
objectives, stochastic models with a single objective, and 
stochastic models with multiple objectives [13]. 
 
2.1.1. Number of Objective Functions 
 

With a single-objective function model, the most 
optimal solution is related to the value of minimizing or 
maximizing of a single objective function. The integration 
of all different objectives is then found. It is valuable as a 
model that gives DMs an insight into the properties of the 
problem. However, it is often impossible to give 
alternative solutions (compromise solutions), which is a 
trade-off among the different conflicting objectives. 
Sillekens et al. [14] introduced a new modeling approach 
in Mixed-Integer Linear Programming (MILP) for APP 
problems in the automobile industry. Their single- 
objective function is the total cost minimization including 
production cost, holding cost, fixed cost, and cost of 
changing the production capacity. Zhang et al. [15] 
presented a MILP model for APP problems in a 
production system with capacity extension and many 
activity centers. In the model formulation, the objective 
function minimizes the total costs of the APP plan that 
consists of production cost, holding cost, and investment 

cost in the whole planning horizon. Wang and Yeh [16] 
studied Particle Swarm Optimization (PSO) for the APP 
problem. They presented an APP model for a 
manufacturing company specializing in garden equipment. 
Their APP model is formulated as a Mixed Integer Linear 
Programming (MILP) model in which the main objective 
function minimizes the total relevant cost. The total cost 
consists of production cost (regular time and overtime 
production cost, inventory cost, backorder cost, and 
subcontracting cost), and labor cost (hiring cost and firing 
cost).  

For a multiple-objective function model, the objective 
functions in the model can conflict with each other.  Thus, 
its solution is an interaction among different objective 
functions. The multiple-objective model can provide a set 
of different efficient solutions (compromise solutions) 
that are widely known as non-dominated or Pareto-
optimal solutions [1, 17]. The consideration of many 
objective functions (simultaneously) in the model can help 
to determine a larger scope of these different options, to 
makes the model of a problem more realistic. Silva and 
Marins [18] presented a multiple-objective model for APP 
in sugar and ethanol milling companies. In their study, a 
Fuzzy Goal Programming (FGP) model is used to cope 
with the multiple objective APP problem in vague 
conditions. The outcome of the proposed model brings an 
efficient analysis of the problem, providing more 
dependable and more accurate outcomes from the 
perspectives of technology and the economy. Entezaminia 
et al. [19] developed a multiple-objective APP model in a 
Green Supply Chain (GSC) considering a reverse logistic 
network. The main goal of their study is to generate 
compromise solutions among costs and green criteria. The 
objective functions simultaneously minimize the total 
Supply Chain (SC) cost and maximize the total 
environmental commodity scores. The obtained outcome 
of their model is a set of Pareto-optimal solutions that 
show the trade-off among the conflicting objective 
functions. Mehdizadeh et al. [20] presented a bi-objective 
optimization model for APP considering labor skills and 
machine degradation. The first objective function of the 
model maximizes the total profit, and the second objective 
function improves customer satisfaction. 
 
2.1.2. Type of Data 

 
As mentioned earlier, the input data in the APP model 

can be deterministic, fuzzy, or stochastic values. Thus, the 
approaches or methodologies that are applied can be 
categorized according to the different types of input data 
that are used in the model. In the deterministic model for 
APP problems, parameters such as production cost, 
inventory cost, labor cost, subcontracting cost, backorder 
cost, machine capacity, market demand, sale price, etc. are 
assumed to be exactly known before planning and to be 
deterministic. The first model of APP problem was 
proposed by Holt et al. [21] along with its linear decision 
rules. Since then, a lot of researchers have evolved many 
models to tackle APP problems. Based on the 
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complications of an APP problem, it is often modeled by 
the MILP model. MILP is well-known for solving APP 
problems with inputs of data that are deterministic or crisp 
values [22-24]. 

In contrast, fuzzy data are imprecise data. Their 
boundaries are not defined explicitly. This is often 
encountered in the field of human judgment, where 
assessment and decisions are crucial, such as reasoning, 
learning, decision-making, etc. [25]. The fuzzy data can be 
described and analyzed based on the fuzzy set theory. The 
fuzzy set theory can be applied with an APP models in 
unclear situations. Some uncertain data in the APP model 
such as production time, production capacity, customer 
demand, etc. are not suitable for the probability 
distribution. Therefore, an APP model needs to be 
formulated based on the principle of fuzzy set theory and 
fuzzy optimization approaches so that the APP models 
can handle and be optimized with uncertainty [26, 27]. 

Stochastic data are uncertain data that can be 
described by the theory of randomness and probability. 
The stochastic model and its method are restricted to 
tackling uncertainties with probability distributions [28]. 
Besides, its method requires a large amount of collected 
historical data, which is hard to obtain for an APP 
problem. Lai and Hwang [29] argued that the application 
of stochastic models can lead to a lack of computational 
efficiency. The theory of probability could not provide the 
correct means for solving several decision-making 
problems in practice. Most stochastic data are used in 
simulation-based optimization problems as these data can 
be modeled and captured by the simulation processor. 
Therefore, the stochastic model and its method are not 
mentioned in this study since the main optimization 
algorithm of this study is focused on the mathematical or 
analytical optimization model. 
 
2.1.3. Important Issues in the APP Models 
 

The complexity of APP problems is largely caused by 
the requirement of coordinating interactive variables so 
that the company can meet the market demand most 
efficiently [30]. Some primary problems that are mostly 
used in any APP model such as production capacity, 
inventory, backorder, warehouse space, market demand, 
costs of production, subcontracting, labor level, hiring and 
firing cost, and product price. In addition, there have been 
some supplementary problems (or new assumptions) 
considered as “crucial problems” that are also integrated 
into the APP model (e.g. multiple product items, product 
characteristics, labor characteristics, degree of DMs 
satisfaction for a solution, set up decisions, multiple 
production plants, time value of money, machine 
utilization, financial concepts, supply chain concepts, and 
multiple product markets). These supplementary 
problems were discussed and explained in detail by 
Cheraghalikhani et al. [13]. Based on these crucial 
problems, APP problems can be developed and modeled 
more effectively, which helps to enhance their capacities 
as well as their compatibility in a real-life environment. 

2.2. Mathematical Approaches under Uncertainty 
 

In practice, the input data of APP problems are 
regularly imprecise due to some information that is 
incomplete or cannot be accurately obtained. In these 
circumstances, fuzzy logic can provide a form of reasoning 
that allows approximate human inference skills to be used 
as knowledge-based systems. Zadeh [26] first introduced 
the theory of fuzzy logic, and a mathematical framework 
was provided to incorporate the uncertainty related to 
human operations, such as reasoning and thinking. The 
theory of fuzzy sets has been extensively adopted in many 
fields (e.g. management science, operations research, 
artificial intelligence, and control theory). By applying the 
theory of fuzzy sets, Fuzzy Mathematical Programming 
(FMP) has become a well-known method for decision-
making. Zimmermann [27] first proposed the fuzzy set 
theory in a typical Linear Programming (LP) model that 
has fuzzy objectives and fuzzy constraints. An equivalent 
single-goal linear programming model is obtained by 
combining a linear membership function and the fuzzy 
decision-making method of Bellman and Zadeh [25] that 
is introduced in this study. Subsequently, some fuzzy 
optimization methods for handling APP problems in 
ambiguous conditions have been developed based on 
FMP. Moreover, Zadeh [31] introduced the possibility 
theory, which is related to the fuzzy set theory. The 
possibility distribution concept is defined as a vague 
limitation, which can work as a flexible constraint on the 
values that may be allocated to a variable. The research 
also shows the significance of the possibility theory 
because most of the information about human decisions 
is understood to be possibilistic instead of being 
probabilistic (as in nature). The uncertainties of these 
types of data cannot be completely depicted by frequency-
based probability distributions. Therefore, it is necessary 
to use the fuzzy set theory and fuzzy optimization 
approaches in formulating and optimizing the APP model. 

Fuzzy Linear Programming (FLP) is an approach that 
can be used to associate fuzzy input data that should be 
modeled by subjective preference-based membership 
functions. Tang et al. [32] developed a fuzzy optimization 
method to deal with multiple product APP problems. This 
was the first time an APP problem with fuzzy demands 
and fuzzy capacities was formulated by utilizing the 
concept of fuzzy equation in terms of a degree of accuracy. 
They also explained the satisfaction levels in making 
production and inventory plans to meet the market 
demand. The fuzzy solution of this approach can offer 
DMs more options in constructing an aggregate 
production plan, in order to guarantee the feasibility of the 
family disaggregation plan, especially in an uncertain 
environment. Wang and Fang [33] studied an APP 
problem with some fuzzy parameters that consist of the 
product price, subcontracted cost, production quantity, 
workforce level, market demand, and the fuzzy 
satisfaction levels of objective functions. Their proposed 
approach provided a systematic framework to interactively 
support DMs until satisfactory results were achieved. An 
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aggregation operator was deployed at the final step to 
acquire the compromise solution of the proposed system. 
Chen and Huang [34] proposed a novel methodology for 
solving the APP problem in uncertain conditions. After 
constructing the membership function by applying 
Zadeh’s extension principle and fuzzy solutions, an 
equivalent mathematical parametric programming is 
formed to identify the lower and upper bound of the total 
cost with the different levels of α. The objective value is 
represented based on a membership function. Thus, the 
achieved solutions can have more information with more 
accuracy, which provides more opportunities to gain the 
optimal solution on the disaggregate plan. That is also 
beneficial to DMs in practical applications. 

Credibility-based Fuzzy Chance-constrained 
Programming (CFCP) is known as a fuzzy optimization 
approach that is based on the credibility measure of fuzzy 
numbers in the theory of fuzzy sets (as the average of 
possibility and necessity measures). This method is used 
to ensure that the satisfaction of the fuzzy objectives and 
fuzzy constraints can be solved at a minimum allowed 
confidence level [35]. Currently, CFCP has been applied 
to solve some uncertain problems in a practical 
environment. Zhu and Zhang [36] investigated a model 
for an APP problem under uncertainty. By applying 
credibility-based fuzzy chance-constrained programming, 
the fuzzy APP model is converted into an equivalent crisp 
model and then solved with different confidence levels. 
Zhang et al. [37] studied an APP model with uncertain 
information in the realistic conditions of a manufacturing 
company. To solve the proposed fuzzy APP model, a 
fuzzy chance-constrained programming model was 
formulated based on the theory of credibility. Throughout 
the results of this model, it was found that the theory of 
credibility is capable of decreasing the influence of 
uncertainty. Zhang et al. [38] presented a comprehensive 
credibility-based chance-constrained programming 
approach by applying the concept of credibility theory to 
the fuzzy mathematical optimization model. The 
proposed approach can cope with the imprecise 
parameters in the right-hand side and the left-hand-side of 
fuzzy constraints. It also yields a level of credibility that 
represents how much confidence the DMs are able to trust 
the obtained solution. 

To simultaneously satisfy many conflicting objectives 
in an APP problem, Goal Programming (GP) is an 
optimization method that is used to solve an APP problem 
with multiple objectives by order of priority. The lower- 
priority goal is solved later without decreasing the relative 
importance of a higher-priority goal. Leung et al. [39] 
proposed a GP approach for a multiple site APP model 
with multiple objectives that maximizes the total profit, 
minimizes the variation of the workforce level, and 
maximizes the utilization of import quotas. By changing 
the hierarchy of the priority that corresponds to each 
objective, DMs can realize the flexibility and robustness of 
the proposed model. Leung and Ng [40] formulated a pre-
emptive GP model to optimize the APP problem for 
perishable products in ambiguous conditions. The model 

of their study considered three objective functions which 
minimize the operational cost, minimize the inventory 
cost, and minimize the labor cost. Leung and Chan [41] 
presented a multi-objective model for the APP problem 
with constraints on resource utilization. Maximizing the 
profit, minimizing the repairing cost, and maximizing the 
utilization of machine are the three main objective 
functions, with goal values that are optimized 
hierarchically. To cope with multiple goals in the APP 
problem, a goal programming model was applied. The 
flexibility and robustness of the model were illustrated by 
different scenarios. 

Fuzzy Goal Programming (FGP) is an extension of 
traditional GP, in which the satisfaction level of each 
objective is taken as unity. FGP is concerned with the 
achievement of the highest degree of fuzzy goals based on 
the linear membership function. Jamalnia and Soukhakian 
[42] presented a Hybrid Fuzzy Multi-Objective Nonlinear 
Programming (H-FMONLP) model with different goal 
priorities for a multiple-product multiple-period APP 
problem under an uncertain environment. Liang and 
Cheng [43] designed a fuzzy multiple-objective LP model 
for the APP problem that simultaneously minimizes the 
total costs, total carrying and back-ordering levels, and 
total changing rates of labor levels. These parameters are 
related to the machine capacity, inventory holding levels, 
labor levels, warehouse storage space, and budget 
availability. A two-phase FGP approach for handling 
multiple-objective APP decision problems with multiple 
products and multiple periods was developed. Mosadegh 
et al. [44] presented a multiple objective APP problem. In 
their study, the FGP model is applied for solving the APP 
problem with four objectives (goals): (1) lost sales and 
inventory, (2) idle time and overtime, (3) labor level, and 
(4) exchange savings. Chauhan et al. [45] studied fuzzy 
multiple-objective MILP for the APP decision problem in 
an uncertain environment. In their study, FGP was 
introduced to optimize APP problems for multiple 
products and multiple periods. 

Taking into consideration of the achieved solutions of 
the Fuzzy Goal Programming (FGP) approach, the 
weight-consistent solution implies that the satisfaction 
level of each fuzzy goal must be compatible with the 
expected relative-importance weight of its goal. In other 
words, the ranking of achieved satisfaction levels for a 
fuzzy goal must be the same as the ranking of the goal’s 
weight. For instance, it is assumed that the goal’s weights 
(𝜃ℎ) are ranked as follows: 𝜃1 ≥ 𝜃2 ≥ 𝜃3 ≥ 𝜃4 . Where ℎ 
represents the index of a goal. As a result, the weight-
consistent solution has the ranking of the achieved 
satisfaction levels of goals (𝜇ℎ) as follows: 𝜇1 ≥ 𝜇2 ≥ 𝜇3 ≥

𝜇4. Generally, if a goal is assigned with a high-importance 
weight, that means the DMs want to obtain a high 
satisfaction level for that goal, and otherwise. 

Based on a literature review, some research gaps related 
to APP models were identified, such as the integration of 
new concepts (important issues) into APP models, the 
consideration of uncertain data, and optimization 
approaches under uncertainty. Therefore, to fill the research 
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gaps, this study focuses on developing a mathematical 
model for an Aggregate Production Planning (APP) 
problem in an uncertain environment. To make the APP 
problem more effective, informative, and more compatible 
with a real-life environment, the APP problem is considered 
with multiple objectives and integrated into a Supply Chain 
(SC) including a production plant, multiple suppliers, and 
multiple customers. In addition, several important 
problems such as multiple products, product characteristics, 
and labor characteristics are embedded in the model. Then, 
we propose a hybrid approach that integrates Fuzzy 
Chance-constrained Programming (FCCP) and Fuzzy 
Multiple-Objective Programming (FMOP) for solving the 
proposed model. FCCP is utilized to deal with fuzzy 
parameters in the proposed model while FMOP is applied 
to deal with multiple objective functions. For FMOP, we 
apply an aggregation function and integrate for the weight-
consistent solution. The proposed approach can achieve the 
optimal solutions under the balanced and unbalanced 
compromise solutions among conflicting objective 
functions. It can also achieve weight-consistent solutions 
that can satisfy the decision-maker's aspirations and provide 
more alternative strategy selections based on their 
preferences. A summary of the literature on APP problems 
is presented in Table 1. 
 

3. Problem Description 
 

In this study, the proposed fuzzy multiple-objective, 
multi-product, multi-period APP problem in a supply 
chain (SC) can be described as follows: 

Our Aggregate Production Planning (APP) problem 
is built for the type of raw material R that is provided from 
supplier S to assemble and produce the type of product N 
in the production plant, and finally transfer to customer J 
so that the customer demand can be fulfilled in planning 
time period T. Each product is manufactured by 
determining the rate of raw materials. The structure of the 
supply chain network is depicted in Fig. 1. In fact, this 
problem aggregates three sub-problems of planning 
including the (1) procurement plan for purchasing raw 
materials from suppliers, (2) production plan for 
producing finished products, and (3) distribution plan for 
delivering each finished product to each customer in each 
period. This study concentrates on developing a Fuzzy 
Multiple-Objective Mixed Integer Linear Programming 
(FMOMILP) model to optimize the APP plan in a supply 
chain (SC) under an uncertain environment. Therefore, 
customer demand, operating costs (e.g. regular time 
production cost, overtime production cost, 
subcontracting cost, purchasing cost, salary, hiring cost, 
firing cost, transportation cost, and penalty cost) and some 
other influential parameters are considered as imprecise 
parameters over each planning period. The fuzzy numbers 
are considered to represent uncertain parameters. Four 
conflicting objective functions are formulated 
simultaneously in the mathematical model. The first 
objective is to minimize the total Supply Chain (SC) cost. 
The second objective is to minimize the total maximum 

product shortages. The third objective is to minimize the 
rate of changes in human resources, and the fourth 
objective is to maximize the total value of purchasing.  

 

 
 
Fig. 1. Structure of a supply chain network. 
 
3.1. Problem Assumption 

 
The basic assumptions of the fuzzy multiple 

objectives mathematical programming model are as 
follows. 

• Only the demand for the final product is known 
but it is imprecise. 

• The capacities of the machines and storage are 
limited by the maximum level at the production 
plant. 

• A production plant produces many types of 
products to meet customer demand during the 
planning horizon. 

• A set of qualified suppliers is given. 

• Before the beginning of the planning period, 
there is no demand for the finished products. 

• The initial labor level is known at the beginning 
of the planning period. 

• The production capacities of suppliers and plant 
are estimated by taking into consideration of 
various contingent situations (setups, machine 
break down, etc.) and achievable capacity 
supplements (overtime or/and subcontracting 
production). 

• A shortage of products is allowed in the supply 
chain. However, it will be charged as a penalty 
cost for compensation if a shortage occurs. 

• The acceptable defect rate and service level of 
suppliers at the production plant are imprecise. 
They are determined based on the manufacturer’s 
preferences. 

• Lead-time is considered as zero. 

• The pattern of a triangular fuzzy number is 
utilized to represent uncertain parameters. 

• The membership function of objective functions 
is expressed in a linear form for all fuzzy sets. 

 
3.2. Problem Notation 

 
The notations that are used to formulate the 

mathematical model of the APP problem in a supply chain 
are expressed as follows: 
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Table 1. Summary of the literature on APP problems.
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Chiadamrong and Sutthibutr [2] Single F – ✓ – – – ✓ ✓ – MILP PLP 

Techawiboonwong and Yenradee [11] Single D  – ✓ – – – ✓ – – MILP LDR 

Iris and Cevikcan [12] Single F – ✓ – – – ✓ – – FMILP ParP 
Sillekens et al. [14] Single D – ✓ – ✓ – ✓ – – MILP H 
Zhang et al. [15] Single D – ✓ – ✓ – ✓ – – MILP H 
Wang and Yeh [16] Single D – – – ✓ – ✓ – – MILP PSO 
Da Silva and Marins [18] Multiple D – ✓ ✓ – S-P ✓ – – MOMILP SS 
Entezaminia et al. [19] Multiple D – ✓ – – S-P-C-Co-R ✓ – – MOMILP SS 
Mehdizadeh et al. [20] Multiple D – ✓ – – – ✓ – – MOMILP GA 
Paiva and Morabito [22] Single D – ✓ ✓ – S-P ✓ – – MILP SS 
Chaturvedi and Bandyopadhyay [23] Single D – – – – – – – – MILP H 
Tang et al. [32] Single F – ✓ – – – ✓ ✓ – FMILP FLP 
Wang and Fang [33] Multiple F – ✓ – – – ✓ ✓ – FMOMILP FLP 

Chen and Huang [34] Single F – ✓ – – – ✓ – – FMILP ParP 
Zhu and Zhang [36] Single F ✓ ✓ – – – ✓ – – FMILP FCCP 
Zhang et al. [37] Single F ✓ ✓ – – – ✓ – – FMILP FCCP 
Leung et al. [39] Multiple D – ✓ – – – ✓ ✓ – MOMILP GP 
Leung and Ng [40] Multiple D – ✓ ✓ – – ✓ – – MOMILP GP 
Leung and Chan [41] Multiple D – ✓ – – – ✓ – – MOMILP GP 

Jamalnia and Soukhakian [42] Multiple F – ✓ – – – ✓ ✓ – FMONILP FLP+GA 
Liang and Cheng [43] Multiple F – ✓ – – – ✓ ✓ – FMOMILP FGP 
Mosadegh et al. [44] Multiple F – ✓ – – – ✓ ✓ – FMOMILP FGP 
Chauhan et al. [45] Multiple F – ✓ ✓ – S-P-C ✓ ✓ – FMOMILP FLP 
This study Multiple F ✓ ✓ ✓ ✓ S-P-C ✓ ✓ ✓ FMOMILP FCCP+FGP 

Notes: D: Deterministic, F: Fuzzy, S: Supplier, P: Production plant, C: Customer, Co: Collection center, R: Recycling center, MILP: Mixed-integer linear programming, FMILP: 
Fuzzy mixed-integer linear programming, MOMILP: Multiple-objective mixed-integer linear programming, FMOMILP: Fuzzy multiple-objective mixed-integer linear 
programming, FMONILP: Fuzzy multiple-objective mixed-integer non-linear programming, PLP: Possibilistic Linear Programming, LDR: Linear decision rules, ParP: 
Parametric Programming, PSO: Particle Swarm Optimization, SS: Solver software (i.e. Lingo, Gam, Cplex), H: Heuristic, GA: Genetic algorithm, FLP: Fuzzy linear 
programming , GP: goal programming, FGP: Fuzzy goal programming, FCCP: Fuzzy chance-constrained programming.
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Set of Indices: 
𝑅 Index of raw materials {𝑟 = 1, . . . , 𝑅} 
𝑆 Index of suppliers {𝑠 = 1, . . . , 𝑆} 
𝐽 Index of customers {𝑗 = 1, . . . , 𝐽} 
𝑁 Index of finished products {𝑛 = 1, . . . , 𝑁} 
𝐾 Index of worker levels {𝑘 = 1, . . . , 𝐾} 
𝑇 Index of periods in planning horizon {𝑡 = 1, . . . , 𝑇} 
 
Fuzzy Parameters: 

𝑅𝑇𝑃𝐶̃𝑡 Fuzzy regular-time production unit cost at the 
production plant in period 𝑡 ($/min) 

𝑂𝑇𝑃𝐶̃𝑡 Fuzzy overtime production unit cost at the 
production plant in period 𝑡 ($/min) 

𝑆𝑇𝑃𝐶̃𝑡 Fuzzy subcontracting production unit cost at 
the production plant in period 𝑡 ($/min) 

𝑅𝑀𝑆𝐶̃𝑠𝑟𝑡 Fuzzy purchasing unit cost of supplier 𝑠 for 
raw material 𝑟 in period 𝑡 ($/unit) 

𝑆𝐶̃𝑘𝑡 Fuzzy salary of a worker at level 𝑘 in period 𝑡 
($/person) 

𝐻𝐶̃𝑘𝑡 Fuzzy hiring cost of a worker at level 𝑘  in 
period 𝑡 ($/person) 

𝐹𝐶̃𝑘𝑡 Fuzzy firing cost of a worker at level 𝑘  in 
period 𝑡 ($/person) 

𝐼𝑅𝑀𝐶̃𝑟𝑡 Fuzzy inventory unit cost of raw material 𝑟 at 
the production plant in period 𝑡 ($/unit) 

𝐼𝑃𝐶̃𝑛𝑡 Fuzzy inventory unit cost of product 𝑛 at the 

production plant in period 𝑡 ($/unit) 

𝑇𝑅𝑀𝐶̃𝑠𝑡 Fuzzy shipping unit cost of raw material from 
supplier 𝑠 to the production plant in period 𝑡 
($/unit) 

𝑇𝑃𝐶̃𝑗𝑡 Fuzzy transportation unit cost of finished 
product from the production plant to 
customer 𝑗 in period 𝑡 ($/unit) 

𝑃𝑆𝐶̃𝑛𝑗𝑡 Fuzzy penalty unit cost of shortage of 
product 𝑛 for customer 𝑗 in period 𝑡 ($/unit) 

𝐴𝐹𝑅𝑆̃𝑠𝑟 Fuzzy average failure rate of raw material 𝑟 
supplied from supplier 𝑠  to the production 
plant (%) 

𝐴𝐹𝑅𝑃̃𝑟  Fuzzy acceptable failure rate of the 
production plant for raw material 𝑟 (%) 

𝐴𝑆𝐿̃𝑠 Fuzzy average service level of supplier 𝑠 (%) 

𝐴𝑆𝐿𝑃̃ Fuzzy acceptable service level of the 
production plant (%) 

𝐷𝑛𝑗𝑡 Fuzzy demand of customer 𝑗  for finished 
product 𝑛 in period 𝑡 (units) 

 
Deterministic Parameters: 
𝑀𝑎𝑥𝑃𝑆𝑛𝑡  Maximum capacity allowed for 

subcontracting product 𝑛 in period 𝑡 (units) 
𝑀𝑎𝑥𝑀𝐴𝑛𝑡  Maximum machine capacity available for 

product 𝑛 at the production plant in period 𝑡 
(machine-hours) 

𝑀𝑎𝑥𝑊𝑆𝐴𝑡  Maximum warehouse space available at the 
production plant in period 𝑡 (m2) 

𝑀𝑎𝑥𝑅𝑆𝑠𝑟  Maximum capacity of raw material 𝑟 provided 
by supplier 𝑠 (units) 

𝑀𝐻𝑈𝑛𝑡  Machine hourly usage for a unit of product 𝑛 
at the production plant in period 𝑡 (machine-
hours/unit) 

𝑊𝑆𝑃𝑛𝑡 Warehouse space for a unit of product 𝑛 at 

the production plant in period 𝑡 (m2/unit) 
𝑊𝑆𝑅𝑀𝑟𝑡  Warehouse space for a unit of raw material 𝑟 

at the production plant in period 𝑡 (m2/unit) 
𝑁𝑜𝑅𝑀𝑟𝑛 Number of raw material 𝑟 needed to produce 

a unit of product 𝑛 (units) 
𝑁𝑜𝐿0𝑘 Number of initial workers at level 𝑘  at the 

production plant (persons) 
𝑅𝑇𝑃𝐴𝑡 Available regular time at the production plant 

in period 𝑡 (hours) 
𝑂𝑇𝑃𝐴𝑡  Available over-time at the production plant in 

period 𝑡 (hours) 
𝑆𝑇𝑃𝐴𝑡  Available subcontracting time at the 

production plant in period 𝑡 (hours) 
𝑃𝑇𝑃𝑛 Production time required for producing 

product 𝑛 at the production plant (min) 
𝑆𝐶𝑅𝑀 Storage capacity of raw material at the 

production plant (units) 
𝑆𝐶𝑃 Storage capacity of final product at the 

production plant (units) 
𝑃𝑟𝑜𝑑𝑘 Worker’s productivity at level 𝑘 (0 < 𝑃𝑟𝑜𝑑 < 1) 
𝐹𝑊𝑉 Acceptable fraction of workforce variation (%) 
𝑇𝑆𝑆𝑄𝑠  Total score of supplier 𝑠 by considering the 

quality of raw material (%) 
 
Decision variables: 
𝑄𝑅𝑇𝑃𝑛𝑡 Quantity of product 𝑛 produced in regular 

time at the production plant in period 𝑡 
(units) 

𝑄𝑂𝑇𝑃𝑛𝑡 Quantity of product 𝑛 produced in overtime 
at the production plant in period 𝑡 (units) 

𝑄𝑆𝑇𝑃𝑛𝑡  Subcontracting quantity of product 𝑛 
produced at the production plant in period 𝑡 
(units) 

𝑄𝑅𝑀𝑆𝑠𝑟𝑡  Quantity of raw material 𝑟  provided by 
supplier 𝑠 to the production plant in period 
𝑡 (units) 

𝑄𝑃𝑆𝐶𝑛𝑗𝑡 Quantity of final product 𝑛  from the 
production plant to customer 𝑗 in period 𝑡 
(units) 

𝑄𝑊𝑘𝑡  Number of workers at level 𝑘  at the 

production plant in period 𝑡 (persons) 
𝑄𝑊𝐻𝑘𝑡  Number of hired workers at level 𝑘 at the 

production plant in period 𝑡 (persons) 
𝑄𝑊𝐹𝑘𝑡  Number of fired workers at level 𝑘  at the 

production plant in period 𝑡 (persons) 
𝐼𝑃𝑛𝑡 Inventory of final product 𝑛  at the 

production plant at the end of period 𝑡 
(units) 

𝐼𝑅𝑀𝑟𝑡 Inventory of raw material 𝑟 at the 
production plant at the end of period 𝑡 
(units) 

𝑄𝑆𝑃𝑛𝑗𝑡  Shortage of product 𝑛  for customer 𝑗  in 
period 𝑡 (units) 

 
 



DOI:10.4186/ej.2021.25.7.31 

ENGINEERING JOURNAL Volume 25 Issue 7, ISSN 0125-8281 (https://engj.org/)     39 

4. Problem Formulation 
 

The FMOMILP model for the APP problem in a SC 
is formulated below. 
 
4.1. Objective Functions 
 

The current global market of competition forces 
companies to consider multiple objectives for effective 
aggregation of procurement, production, and distribution 
planning at the same time. By considering important 
decisions of the practical APP problem in a supply chain, 
it is found that objective functions related to the 
minimization of the overall cost, minimization of product 
shortages, minimization of changes in workforce levels, 
and maximization of the total value of purchasing are 
considered as multiple conflicting objective functions. 
 

Minimizing the total supply chain costs (𝑍1): 
Minimizing the total overall cost is the most popular 

objective that is used in supply chain planning models. The 
total overall costs of the model in this study comprise the 
production costs, purchasing cost, labor costs, inventory 
costs, transportation costs, and shortage costs. The 
mathematical formulations and explanations of these 
components are presented as follows: 

 
Total supply chain costs (𝑇𝐶)  = Production costs 

(𝐶1) + Purchasing cost (𝐶2)  + Labor costs (𝐶3)  + 
Inventory costs (𝐶4)  + Transportation costs (𝐶5)  + 
Shortage cost (𝐶6) 

 

Production costs (𝐶1) include the cost of regular time 
production, overtime production, and subcontracting 
production. They are described as follows: 

 

𝐶1 = ∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑅𝑇𝑃𝐶̃𝑡 × 𝑄𝑅𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

       +∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑂𝑇𝑃𝐶̃𝑡 × 𝑄𝑂𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

       +∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑆𝑇𝑃𝐶̃𝑡 × 𝑄𝑆𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

 
Purchasing cost (𝐶2) of raw materials from suppliers 

can be defined as follows: 
 

𝐶2 = ∑ ∑ ∑ 𝑅𝑀𝑆𝐶̃𝑠𝑟𝑡 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡    
𝑇
𝑖=1

𝑅
𝑟=1

𝑆
𝑠=1   

 
Labor costs (𝐶3) are the costs that the manufacturer 

pays for a worker including salary, hiring cost, and firing 
cost, which are presented as follows: 

 

𝐶3 = ∑ ∑ 𝑆𝐶̃𝑘𝑡 × 𝑄𝑊𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘=1   

       +∑ ∑ 𝐻𝐶̃𝑘𝑡 × 𝑄𝑊𝐻𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘=1   

       +∑ ∑ 𝐹𝐶̃𝑘𝑡 × 𝑄𝑊𝐹𝑘𝑡
𝑇
𝑡=1  𝐾

𝑘=1   

 
Inventory costs (𝐶4) are the summation of the holding 

cost of raw materials and final product at the production 
plant. This is expressed as: 

 

𝐶4 = ∑ ∑ 𝐼𝑅𝑀𝐶̃𝑟𝑡 × 𝐼𝑅𝑀𝑟𝑡
𝑇
𝑡=1

𝑅
𝑟=1   

     +∑ ∑ 𝐼𝑃𝐶̃𝑛𝑡 × 𝐼𝑃𝑛𝑡
𝑇
𝑡=1

𝑁
𝑛=1   

Transportation costs (𝐶5)  from suppliers to the 
production plant and from the production plant to 
customers for different kinds of raw materials and the final 
product are defined as follows: 

 

𝐶5 = ∑ ∑ ∑ 𝑇𝑅𝑀𝐶̃𝑠𝑡𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑇
𝑡=1

𝑅
𝑟=1

𝑆
𝑠=1   

       +∑ ∑ ∑ 𝑇𝑃𝐶̃𝑗𝑡𝑄𝑃𝑆𝐶𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   

 
The shortage cost (𝐶6) is the cost of shortages for not 

being able to fulfill the customer demand which is defined 
as follows: 

 

𝐶6 = ∑ ∑ ∑ 𝑃𝑆𝐶̃𝑛𝑗𝑡𝑄𝑆𝑃𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   

 
Generally, the first objective function for minimizing 

the total supply chain costs can be summarized as follows: 
 

𝑀𝑖𝑛 𝑇𝐶̃ 

          = ∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑅𝑇𝑃𝐶̃𝑡 × 𝑄𝑅𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

               +∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑂𝑇𝑃𝐶̃𝑡 × 𝑄𝑅𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

               +∑ ∑ 𝑃𝑇𝑃𝑛 × 𝑅𝑇𝑃𝐶̃ × 𝑄𝑅𝑇𝑃𝑛𝑡
𝑇
𝑖=1

𝑁
𝑛=1   

               +∑ ∑ ∑ 𝑅𝑀𝑆𝐶̃𝑠𝑟𝑡 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑇
𝑖=1

𝑅
𝑟=1

𝑆
𝑠=1   

          +∑ ∑ 𝑆𝐶̃𝑘𝑡 × 𝑄𝑊𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘   

          +∑ ∑ 𝐻𝐶̃𝑘𝑡 × 𝑄𝑊𝐻𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘   

          +∑ ∑ 𝐹𝐶̃𝑘𝑡 × 𝑄𝑊𝐹𝑘𝑡
𝑇
𝑡=1

𝐾
𝑘   

          +∑ ∑ 𝐼𝑅𝑀𝐶̃𝑟𝑡 × 𝐼𝑅𝑀𝑟𝑡
𝑇
𝑡=1

𝑅
𝑟=1   

          +∑ ∑ 𝐼𝑃𝐶̃𝑛𝑡 × 𝐼𝑃𝑛𝑡
𝑇
𝑡=1

𝑁
𝑛=1   

          +∑ ∑ ∑ 𝑇𝑅𝑀𝐶̃𝑠𝑡𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑇
𝑡=1

𝑅
𝑟=1

𝑆
𝑠=1   

          +∑ ∑ ∑ 𝑇𝑃𝐶̃𝑗𝑡𝑄𝑃𝑆𝐶𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   

          +∑ ∑ ∑ 𝑃𝑆𝐶̃𝑛𝑗𝑡𝑄𝑆𝑃𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   

(1)  

 
Minimizing the shortages of product to improve the 

customer’s satisfaction (𝑍2): 
Customer satisfaction makes a significant contribution 

in business APP problems. It is the indicator that is used to 
recognize the dissatisfied customers, measure the loyalty of 
customers, and enhance revenue. It also is an important 
point of differentiation that can help companies to attract 
new customers in competitive business environments. In 
this study, the customer’s satisfaction is assessed through 
product shortages as follows:  

 

𝑀𝑖𝑛 𝐶𝑆 = ∑ ∑ ∑ 𝑄𝑆𝑃𝑛𝑗𝑡
𝑇
𝑡=1

𝐽
𝑗=1

𝑁
𝑛=1   (2)  

 
This second objective function aims to improve the 

customer’s satisfaction by minimizing the summation of 
shortage product 𝑛 among customer 𝑗 in all periods, as is 
presented in Eq. (2).  
 

Minimizing the rate of change in the workforce level 
(𝑍3): 

In an actual situation of APP, through aggregating the 
forecast demand in advance, companies are able to 
estimate the workforce requirements. However, it is 
difficult to have a varying workforce plan because of 
worker skills, employment law, and other factors related 
to the benefits of the workforce. Thus, the workforce 



DOI:10.4186/ej.2021.25.7.31 

40 ENGINEERING JOURNAL Volume 25 Issue 7, ISSN 0125-8281 (https://engj.org/) 

levels are required to be stable, to easily manage workforce, 
and can be presented as follows: 

 

𝑀𝑖𝑛 𝑅𝐶𝑊 = ∑ ∑ (𝑄𝑊𝐻𝑘𝑡 + 𝑄𝑊𝐹𝑘𝑡)
𝑇
𝑡=1

𝐾
𝑡   (3)  

 
Equation (3) shows the third objective function that 

considers the rate of changes in workforce levels by 
minimizing the variation between the number of fired and 
hired workers.  

 
Maximizing the total value of purchasing (𝑍4): 
The fourth objective function shown in Eq. (4) 

maximizes the total value of purchasing. The total value of 
purchasing can be described as purchasing criteria (such as 
sale price, quality of provided raw material, and service 
level) that influence the selection of the best supplier in 
procurement planning. It can be calculated by multiplying 
the overall assessed score of supplier s with the purchased 
quantity of raw materials from that supplier, and presented 
as follows: 
 

𝑀𝑎𝑥 𝑇𝑉𝑃 = ∑ 𝑇𝑆𝑆𝑄𝑠
𝑆
𝑠=1 × ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑇
𝑡=1

𝑅
𝑟=1   (4)  

 
Note that: 𝑇𝑆𝑆𝑄𝑠  denotes the supplier’s overall score 

(weight). Based upon the knowledge and experience of 
DMs, the supplier’s overall score (weight) can be 
determined in an efficient way. For example, the Analytic 
Hierarchy Process (AHP) is an efficient approach that can 
help the DMs to calculate the appropriate score (weight) 
of each supplier [46, 47].  

 
4.2. Constraints  
 

Constraint on finished product inventory: 
 

𝐼𝑃𝑛𝑡 = 𝐼𝑃𝑛(𝑡−1) + 𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡  

                        +𝑄𝑆𝑇𝑃𝑛𝑡 − ∑ 𝑄𝑃𝑆𝐶𝑛𝑗𝑡  
𝐽
𝑗=1 ;  ∀ 𝑛, 𝑡  

(5)  

 
Equation (5) is related to the finished product 

inventory balance at the production plant. The inventory 
quantity of finished products at the end of period 𝑡 should 
be equal to the inventory quantities in the previous period 
(𝑡 − 1) plus the number of products manufactured at the 
production plant minus the sum of the quantity of the 
finished products transferred to the customers. 
 

Constraint on raw materials inventory: 
 

𝐼𝑅𝑀𝑟𝑡 = 𝐼𝑅𝑀𝑟(𝑡−1) + ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1   

             −∑ (𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡 + 𝑄𝑆𝑇𝑃𝑛𝑡)
𝑁
𝑛=1   

                                                        × 𝑁𝑜𝑅𝑀𝑟𝑛;   ∀ 𝑟, 𝑡  

(6)  

 
Equation (6) presents the balance of the raw material 

inventory at the production plants. This constraint shows 
that the inventory quantity of raw materials in period 𝑡 is 
equal to the inventory quantity in the prior period (𝑡 − 1) 
plus the sum of the quantity of provided raw materials 
from all suppliers, minus the quantity of needed raw 
materials at the production plant. 

Constraint on assigning the initial workforce level: 
 

𝑄𝑊𝑘𝑡 = 𝑁𝑜𝐿0𝑘;                                          ∀ 𝑘, 𝑡 < 2 (7)  
 
Equation (7) corresponds to one of assumptions that 

assigns the initial workforce level to the first period of 
planning (𝑡 − 2). 

 
Constraint on balancing the workforce level: 

 
𝑄𝑊𝑘𝑡 = 𝑄𝑊𝑘(𝑡−1) +𝑄𝑊𝐻𝑘𝑡−𝑄𝑊𝐹𝑘𝑡;  ∀ 𝑘, 𝑡 > 1 (8)  

 
Equation (8) is the balancing constraint of the 

workforce level. This constraint guarantees that the 
number of workers at level 𝑘 in period 𝑡 must equal the 
change in workforce in the current period plus the number 
of workers in the previous period (𝑡 − 1).  
 

Constraint on limiting the available production time 
due to the limited workforce: 
 

∑ 𝑄𝑊𝑘𝑡 × 𝑃𝑟𝑜𝑑𝑘 × (𝑅𝑇𝑃𝐴𝑡 + 𝑂𝑇𝑃𝐴𝑡)
𝐾
𝑘=1   

               ≥ ∑ (𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡) × 𝑃𝑇𝑃𝑛; 
𝑁
𝑛=1  ∀ 𝑡  

(9)  

 
Constraint (9) shows that the available production 

time is limited by the available regular-time and overtime 
workers along with their productivity. This implies that 
the available production time is determined by the 
number of workers in regular production and overtime 
production.  

 
Constraint on limiting the available production time 

of the subcontractor: 
 

∑ 𝑄𝑆𝑇𝑃𝑛𝑡 × 𝑃𝑇𝑃𝑛 ≤ 𝑆𝑇𝑃𝐴𝑡 ; 
𝑁
𝑛=1                       ∀ 𝑡  (10)  

 
Equation (10) shows that the available subcontracting 

time is limited by the allowed subcontracting time at each 
production plant. 

 
Constraint on limiting the maximum quantity of 

produced products from the subcontractor: 
 

𝑄𝑆𝑇𝑃𝑛𝑡 ≤  𝑀𝑎𝑥𝑃𝑆𝑛𝑡 ;                                   ∀ 𝑛, 𝑡 (11)  
 

Equation (11) means that the quantity of produced 
products from a subcontractor of production plant must 
not exceed the allowable maximum quantity of products 
of the subcontractor. 

 
Constraint on the machine capacity: 

 
𝑀𝐻𝑈𝑛𝑡 × (𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡) 
                                                    ≤ 𝑀𝑎𝑥𝑀𝐴𝑛𝑡 ;   ∀ 𝑛, 𝑡 

(12)  

 
Equation (12) presents the limitation of machine 

capacity, where the machine hour usage for producing all 
the products at the production plant in each period should 
not surpass the maximum available machine capacity. 
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Constraint on the shortages of customer demand: 
 

𝑄𝑆𝑃𝑛𝑗𝑡 = 𝑄𝑆𝑃𝑛𝑗(𝑡−1) + 𝐷𝑛𝑗𝑡 − 𝑄𝑃𝑆𝐶𝑛𝑗𝑡 ;    ∀ 𝑛, 𝑗, 𝑡 (13)  

 
Equation (13) computes the shortage of products in 

supplying customer 𝑗 in each period 𝑡. This constraint is 
one of the fuzzy constraints used in the model because it 
contains a fuzzy parameter, which is customer demand 

𝐷𝑛𝑗𝑡. 

 
Constraint on limiting the warehouse space: 

 
∑ (𝑊𝑆𝑃𝑛𝑡 × 𝐼𝑃𝑛𝑡)
𝑁
𝑛=1  +∑ (𝑊𝑆𝑅𝑀𝑟𝑡 × 𝐼𝑅𝑀𝑟𝑡)

𝑅
𝑟=1   

                                                     ≤ 𝑀𝑎𝑥𝑊𝑆𝐴𝑡 ;   ∀ 𝑡   
(14)  

 
Equation (14) shows that the total inventory 

quantities of the finished products and raw materials at the 
production plant is limited by the maximum warehouse 
space. 

 
Constraint on limiting the storage capacity for raw 

materials: 
 

∑ 𝐼𝑅𝑀𝑟𝑡 
𝑅
𝑟=1 ≤ 𝑆𝐶𝑅𝑀;                                           ∀ 𝑡          (15)  

 
Constraint on limiting the storage capacity of the final 

products: 
 

∑ 𝐼𝑃𝑛𝑡 
𝑁
𝑛=1 ≤ 𝑆𝐶𝑃;                                                  ∀ 𝑡          (16)  

 
Equations (15) and (16) show that the inventory 

quantities of finished products and raw materials are 
limited by the storage allowable capacities at each 
production plant. 

 
Constraint on the ratio of worker in each period: 

 
∑ (𝑄𝑊𝐻𝑘𝑡 + 𝑄𝑊𝐹𝑘𝑡)
𝐾
𝑘=1   

                               ≤ 𝐹𝑊𝑉 × ∑ 𝑄𝑊𝑘(𝑡−1); 
𝐾
𝑘=1   ∀ 𝑡  

(17)  

 
Equation (17) guarantees that the change in the 

workforce level in period 𝑡 cannot surpass the fraction of 
variation allowed in the previous period. 
 

Constraint on supplier capacity: 
 

𝑄𝑅𝑀𝑆𝑠𝑟𝑡 ≤ 𝑀𝑎𝑥𝑅𝑆𝑠𝑟𝑡 ;                            ∀ 𝑠, 𝑟, 𝑡 (18)  
 
Equation (18) shows that the purchased quantity of 

raw material 𝑟 is limited by the capacity of supplier 𝑠. 
 

Constraint on balancing flow among the suppliers and 
production plant: 
 

∑ 𝑁𝑜𝑅𝑀𝑟𝑛 × (𝑄𝑅𝑇𝑃𝑛𝑡 + 𝑄𝑂𝑇𝑃𝑛𝑡
𝑁
𝑛=1   

                       +𝑄𝑆𝑇𝑃𝑛𝑡) ≤  ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1 ;   ∀ 𝑟, 𝑡  

(19)  

 
Equation (19) displays the flow balances of raw 

materials from the suppliers to the production plant. 

Constraint on the quality of raw materials: 
 

∑ 𝐴𝐹𝑅𝑆̃𝑠𝑟 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1   

                          ≤ 𝐴𝐹𝑅𝑃̃𝑟 × ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1 ;   ∀ 𝑟, 𝑡  

(20)  

 
Constraint on service level (on-time delivery): 

 

∑ ∑ 𝐴𝑆𝐿̃𝑠 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡 ≥
𝑆
𝑠=1

𝑅
𝑟=1   

                           𝐴𝑆𝐿𝑃̃ × ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1 ;𝑅

𝑟=1   ∀ 𝑡  
(21)  

 
The quality of raw materials and the service level (on-

time delivery) are crucial quantitative criteria that are used 
to evaluate the performance of each supplier. These 
requirements are presented in Eq.s (20) and (21). 
 

Constraints on non-negativity of decision variables:  
 

𝑄𝑊𝑘𝑡 , 𝑄𝑊𝐻𝑘𝑡 , 𝑄𝑊𝐹𝑘𝑡 ≥ 0 & 𝑖𝑛𝑡𝑒𝑟𝑔𝑒𝑟; ∀𝑘, 𝑡 
𝑄𝑅𝑇𝑃𝑛𝑡 , 𝑄𝑂𝑇𝑃𝑛𝑡 , 𝑄𝑆𝑇𝑃𝑛𝑡 ≥ 0;  ∀𝑛, 𝑡      
𝑄𝑅𝑀𝑆𝑠𝑟𝑡 ≥ 0;  ∀𝑠, 𝑟, 𝑡  
𝑄𝑃𝑆𝐶𝑛𝑗𝑡 ≥ 0;  ∀𝑛, 𝑗, 𝑡 

𝐼𝑅𝑀𝑟𝑡  ≥ 0;  ∀𝑟, 𝑡:  𝐼𝑃𝑛𝑡 ≥ 0;  ∀𝑛, 𝑡  
𝑄𝑆𝑃𝑛𝑗𝑡  ≥ 0;  ∀𝑛, 𝑗, 𝑡 

(22)  

 
Constraint (22) shows that most of the decision 

variables are non-negative, and some of them are non-
negative and integer. 

 

5. Solution Methodology 
 

Transforming the fuzzy mathematical model into an 
analogous crisp model is a widely used approach to deal 
with the uncertainty in the fuzzy mathematical model. The 
transformation of the fuzzy model can be completed 
based on the measurement of possibility, necessity, or the 
integration of the possibility and necessity (credibility) [48]. 
In this study, the theory of credibility measure is applied 
for transforming the fuzzy model into a crisp model. To 
cope with the multiple-objective function problem, a 
fuzzy multiple-objective programming approach with the 
weight-consistent solution is introduced to solve the crisp 
multiple-objective model. 

In this section, an appropriate hybrid solution 
approach for solving the Fuzzy Multi-Objective Mixed-
Integer Linear Programming (FMOMILP) model (as 
explained in Section 4) is developed. To solve the 
FMOMILP model, a proposed approach with two-phased 
solution is implemented. In the first phase of the solution, 
the FMOMILP model is transformed into an analogous 
crisp model by using the credibility measure (credibility 
theory). In the second phase, fuzzy multiple-objective 
programming, integrating a weight-consistent constraint 
and an aggregation function, is used for finding 
compromise efficient solutions. The consistency of 
solutions will be ensured by the weight-consistent 
constraint, while the aggregation function can generate the 
balanced and unbalanced compromise efficient solutions 
for the different conflicting objectives. 
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5.1. First Phase: Transforming the FMOMILP 
Model into the Equivalent Crisp Model Based 
on FCCP with Credibility Measure 

 
5.1.1. Credibility-Based Fuzzy Chance-constrained 

Programming (CFCCP) 
 

CFCCP is an efficient fuzzy mathematical 
programming approach based on the credibility measure 
of fuzzy numbers [49, 50]. This method assists DMs in 
solving some chance constraints at a minimum confidence 
level. It can also be applied for uncertain parameters with 
different membership functions such as the triangular, 
trapezoidal, and nonlinear membership functions, in 
symmetric and asymmetric forms [35]. For a good 
understanding of credibility-based fuzzy chance-
constrained programming, some basic knowledge of 
credibility theory and fuzzy chance-constrained 
programming is introduced in the next sub-sections. 
 
5.1.1.1. Credibility Fundamentals 
 

The theory of fuzzy sets was introduced by Zadeh [26]. 
Since then, it has been developed and applied in various 
practical situations. In the fuzzy world, there are three 
main types of measures for dealing with ambiguous 
parametric information: possibility, necessity, and 
credibility. In opposition to the possibility and necessity 
measures that have no self-dual nature, the credibility 
measure is a self-dual measure [51]. Therefore, if the 
credibility value of a fuzzy event attains 1, the fuzzy event 
will surely occur. However, when the possibility value of a 
fuzzy event attains 1, the fuzzy event may fail to occur. In 
other words, if the possibility value of a fuzzy event 
achieves 1, that event may fail to occur, and if the necessity 
value of a fuzzy event is 0, that fuzzy event may occur. If 
the credibility value of a fuzzy event attains 1, the fuzzy 
event will occur and if the credibility value of a fuzzy event 
attains 0, the fuzzy event will not occur [52]. 

 

Let 𝜉 be a fuzzy variable with membership function 𝜇 
and let 𝑢 and 𝑅 be real numbers. The possibility of a fuzzy 
event, characterized by 𝑅, is defined by: 

 

𝑃𝑜𝑠{𝜉 ≤ 𝑅} = 𝜇(𝑢) 𝑢≤𝑅
𝑠𝑢𝑝

 (23)  

 
The necessity degree of occurrence of this fuzzy event 

can be specified as follows: 
 

𝑁𝑒𝑐{𝜉 ≤ 𝑅} = 1 − 𝑃𝑜𝑠{𝜉 ≤ 𝑅} = 1 − 𝜇(𝑢)𝑢>𝑅
𝑠𝑢𝑝

 (24)  

 
The credibility measure (Cr) can be determined as an 

average of the possibility and necessity measures as 
follows: 

 

𝐶𝑟{𝜉 ≤ 𝑅} =
1

2
(𝑃𝑜𝑠{𝜉 ≤ 𝑅} = 1 + 𝑁𝑒𝑐{𝜉 ≤ 𝑅}) (25)  

 

Let the fuzzy variable 𝜉  be fully determined by the 

triplet (𝑎, 𝑎, 𝑎) of crisp numbers with (𝑎 ≤ 𝑎 ≤  𝑎) (Fig. 

2.a), whose membership function is presented as follows: 
 

𝜇(𝑅) =  

{
 
 

 
 
𝑅 − 𝑎

𝑎 − 𝑎
              if 𝑎 ≤ 𝑅 < 𝑎  

𝑅 − 𝑎

𝑎 − 𝑎
              if  𝑎 ≤ 𝑅 ≤  𝑎

0                        otherwise.     

 (26)  

 
According to Eqs. (23)–(25), the possibility, necessity, 

and credibility of {𝜉 ≤ 𝑅} and {𝜉 ≥ 𝑅} are as follows: 
 

𝑃𝑜𝑠{𝜉 ≤ 𝑅}  =  

{
 

 
0,               𝑅 ≤ 𝑎            

𝑅 − 𝑎

𝑎 − 𝑎
,      𝑎 ≤ 𝑅 ≤ 𝑎 ; 

1,               𝑅 ≥ a             

 

𝑁𝑒𝑐{𝜉 ≤ 𝑅}  =  {

0,               𝑅 ≤ 𝑎          
𝑅 − 𝑎

𝑎 − 𝑎
,      𝑎 ≤ 𝑅 ≤ 𝑎 

1,               𝑅 ≥ 𝑎          

 

(27)  

𝑃𝑜𝑠{𝜉 ≥ 𝑅}  =  {

0,              𝑅 ≥ 𝑎             
𝑎 − 𝑅

𝑎 − 𝑎
,     𝑎 ≤ 𝑅 ≤ 𝑎 ; 

1,              𝑅 ≤ a            

 

𝑁𝑒𝑐{𝜉 ≥ 𝑅}  =  

{
 

 
0,              𝑅 ≥ 𝑎           
𝑎 − 𝑅

𝑎 − 𝑎
,     𝑎 ≤ 𝑅 ≤ 𝑎  

1,             𝑅 ≤ 𝑎            

 

(28)  

 
Credibility is the quality of being believable or worthy 

of trust. An event will definitely occur when the credibility 
value is 1. The credibility of {𝜉 ≤ 𝑅}  and {𝜉 ≥ 𝑅}  are 
presented by: 

 

𝐶𝑟{𝜉 ≤ 𝑅} =

{
  
 

  
 
0,                       𝑅 ≤ 𝑎          

𝑅 − 𝑎

2(𝑎 − 𝑎)
,        𝑎 ≤ 𝑅 ≤ 𝑎 

𝑎 − 2𝑎 + 𝑅

2(𝑎 − 𝑎)
,   𝑎 ≤ 𝑅 ≤  𝑎

1,                       𝑅 ≥ 𝑎          

 

𝐶𝑟{𝜉 ≥ 𝑅} =

{
  
 

  
 
0,                       𝑅 ≥ 𝑎          
𝑎 − 𝑅

2(𝑎 − 𝑎)
,        𝑎 ≤ 𝑅 ≤ 𝑎 

2𝑎 − 𝑎 − 𝑅

2(𝑎 − 𝑎)
,    𝑎 ≤ 𝑅 ≤ 𝑎 

1,                        𝑅 ≤ 𝑎         

 

(29)  

 
To illustrate the three types of measurements in the 

fuzzy world, consider a triangular fuzzy set 𝜉 = (𝑎, 𝑎, 𝑎), 

the possibility, necessity, and credibility of {𝜉 ≤ 𝑅}  are 
depicted in Fig 2. 

Figure 2 shows the triangular fuzzy variable 𝜉 =

(𝑎, 𝑎, 𝑎)  as a specific case. Let 𝑃𝑜𝑠{𝜉 ≤ 𝑅} = 1 

when  𝑅 ≥ 𝑎 . Nevertheless, it is obvious that the event 
{𝜉 ≤ 𝑅} will not hold when 𝑅 = 𝑎 which implies that the 

desired event will not surely occur even when the 
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confidence level is set as high as “1”. Moreover, for two 
real number 𝑎1  and 𝑎2  where 𝑎 ≤ 𝑎1 ≤ 𝑎2 ≤ 𝑎 , clearly, 
there is no different information about the fuzzy events 
when the possibility values of the event {𝜉 ≤ 𝑎1}  and 
{𝜉 ≤ 𝑎2}  are 1. However, when applying credibility, 

𝐶𝑟{𝜉 ≤ 𝑎1} ≤ 𝐶𝑟{𝜉 ≤ 𝑎2}, which means fuzzy event {𝜉 ≤
𝑎2} will have more chance to happen than fuzzy event 
{𝜉 ≤ 𝑎1}  does. Once 𝑅 ≥ 𝑎  then 𝐶𝑟{𝜉 ≤ 𝑅} = 1 , which 
implies that when the confidence level is 1, the desired 
event would certainly occur. Based on the credibility 
measure, it is obvious that no feature of fuzzy sets is 
missing. The higher the credibility value is, the more 
reliable the result is. 

 

 
 
Fig. 2. Measures of fuzzy events: (a) fuzzy set, (b) possibility, 
(c) necessity, and (d) credibility. 
 

Let 𝜉 = (𝑎, 𝑎, 𝑎)  and 𝑅̃ = (𝑏, 𝑏, 𝑏) . According to 

the credibility definition and the rule of fuzzy operations, 

the credibility of a fuzzy event characterized by {𝜉 ≤ 𝑅̃} 

and {𝜉 ≥ 𝑅̃} are as follows: 

 

𝐶𝑟{𝜉 ≤ 𝑅̃} =

{
 
 
 

 
 
 
1,                                  𝑎 ≤  𝑏           

𝑎 − 2𝑎 + 2𝑏 − 𝑏

2(𝑎 − 𝑎 + 𝑏 − 𝑏)
,   𝑎 ≤ 𝑏, 𝑎 > 𝑏

𝑏 − 𝑎

2(𝑏 − 𝑏 + 𝑎 − 𝑎)
,   𝑎 > 𝑏, 𝑎 < 𝑏

0,                                  𝑎 ≥ 𝑏           

 

𝐶𝑟{𝜉 ≥ 𝑅̃} =

{
 
 
 

 
 
 1,                                  𝑎 ≥ 𝑏            

𝑏 − 2𝑏 + 2𝑎 − 𝑎

2(𝑏 − 𝑏 + 𝑎 − 𝑎)
,    𝑎 > 𝑏, 𝑎 < 𝑏

𝑎 − 𝑏

2(𝑎 − 𝑎 + 𝑏 − 𝑏)
,    𝑎 ≤ 𝑏, 𝑎 > 𝑏

0,                                  𝑎 ≤  𝑏          

 

(30)  

 
 The credibility measure may display the satisfaction 

degree of an event when parametric information is shown 
as fuzzy sets. Fig 3 demonstrates four credibility situations 
between two fuzzy sets. 

Based on Eqs. (29) and (30), it can be shown that for 
(0 ≤ 𝛼 ≤ 0.5): 

 
 
Fig. 3. Relative positions of two fuzzy sets are based on 
credibility measures. 
 

𝐶𝑟{𝜉 ≤ 𝑅} ≥ 𝛼 ⇔ 𝑅 ≥ (1 − 2𝛼)𝑎 + (2𝛼)𝑎   (31)  

𝐶𝑟{𝜉 ≥ 𝑅} ≥ 𝛼 ⇔ 𝑅 ≤ (2𝛼)𝑎 + (1 − 2𝛼)𝑎 (32)  

𝐶𝑟{𝜉 ≤ 𝑅̃} ≥ 𝛼 ⇔ (1 − 2𝛼)𝑎 + (2𝛼)𝑎  

                                               ≤ (2𝛼)𝑏 + (1 − 2𝛼)𝑏 
(33)  

𝐶𝑟{𝜉 ≥ 𝑅̃} ≥ 𝛼 ⇔ (2𝛼)𝑎 + (1 − 2𝛼)𝑎  

                                               ≥  (1 − 2𝛼)𝑏 + (2𝛼)𝑏 
(34)  

 
Similarly, it can be shown that for (0.5 ≤ 𝛼 ≤ 1): 
 

𝐶𝑟{𝜉 ≤ 𝑅} ≥ 𝛼 ⇔ 𝑅 ≥ (2 − 2𝛼)𝑎 + (2𝛼 − 1)𝑎 (35)  

𝐶𝑟{𝜉 ≥ 𝑅} ≥ 𝛼 ⇔ 𝑅 ≤ (2𝛼 − 1)𝑎 + (2 − 2𝛼)𝑎 (36)  

𝐶𝑟{𝜉 ≤ 𝑅̃} ≥ 𝛼 ⇔ (2 − 2𝛼)𝑎 + (2𝛼 − 1)𝑎  

                                       ≤  (2𝛼 − 1)𝑏 + (2 − 2𝛼)𝑏 
(37)  

𝐶𝑟{𝜉 ≥ 𝑅̃} ≥ 𝛼 ⇔ (2𝛼 − 1)𝑎 + (2 − 2𝛼)𝑎  

                                       ≥  (2 − 2𝛼)𝑏 + (2𝛼 − 1)𝑏 
(38)  

 
5.1.1.2. Fuzzy Chance-constrained Programming Model 

 
The Chance-constrained Programming (CCP) model 

was first introduced by Charnes and Cooper [53]. Then, it 
was modified and improved in a fuzzy environment [51, 
52, 54]. CCP is used for solving uncertain optimization 
problems with chance constraints that must be maintained 
at a specified confidence level, to satisfy DMs. 
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The general fuzzy chance-constrained programming 
model can be formulated as follows: 
 

𝑚𝑖𝑛 𝑓 ̅ 

𝑠. 𝑡.     𝐶𝑟{∑ 𝑐̃𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑓}̅ ≥ 𝛼  

            𝐶𝑟{∑ 𝑎̃𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥ 𝑏̃𝑖} ≥ 𝛼  

            𝑥𝑗 ≥ 0       

(39)  

 
Applying Eqs. (31)–(38), the credibility-based fuzzy 

chance-constrained programming model is shown in Eq. 
(39). They can be converted to the following crisp 
equivalent equations with confidence levels as follows: 

 

𝑚𝑖𝑛 𝑓 ̅ 
𝑠. 𝑡.     
∑ [(1 − 2𝛼)𝑐𝑗 + (2𝛼)𝑐𝑗]𝑥𝑗
𝑛
𝑗=1 ≤ 𝑓;̅           𝑖𝑓  𝛼 ≤ 0.5  

∑ [(2 − 2𝛼)𝑐𝑗 + (2𝛼 − 1)𝑐𝑗]𝑥𝑗
𝑛
𝑗=1 ≤ 𝑓;̅   𝑖𝑓  𝛼 ≥ 0.5  

∑ [(2𝛼)𝑎𝑖𝑗 + (1 − 2𝛼)𝑎𝑖𝑗]𝑥𝑗
𝑛
𝑗=1   

                           ≥ (1 − 2𝛼)𝑏𝑖 + (2𝛼)𝑏𝑖 ;   𝑖𝑓 𝛼 ≤ 0.5 

∑ [(2𝛼 − 1)𝑎𝑖𝑗 + (2 − 2𝛼)𝑎𝑖𝑗]𝑥𝑗
𝑛
𝑗=1   

                   ≥ (2 − 2𝛼)𝑏𝑖 + (2𝛼 − 1)𝑏𝑖;   𝑖𝑓 𝛼 ≥ 0.5   

 𝑥𝑗  ≥ 0;  𝑗 = 1, . . . , 𝑛;  0 ≤ 𝛼 ≤ 1   

(40)  

 
5.1.2. Equivalent Crisp Multiple-Objective Linear 

Programming Model 
 
In relation to Eqs. (31)–(39), it can be used to 

transform the fuzzy chance-constraints model into 
equivalent crisp constraints. As aforementioned, the 
measurement of credibility is an average of the possibility 
measure and the necessity measure (optimistic and 
pessimistic viewpoints). Thus, the proposed FMOMILP 
model, applying the credibility-based chance-constrained 
modeling can be presented as follows: 

 

𝑀𝑖𝑛 𝑍1 (41)  

𝑀𝑖𝑛 𝑍2 = ∑ ∑ ∑ 𝑄𝑆𝑃𝑛𝑗𝑡
𝑇
𝑡=1  𝐽

𝑗=1
𝑁
𝑛=1   (42)  

𝑀𝑖𝑛 𝑍3 = ∑ ∑ (𝑄𝑊𝐻𝑘𝑡 + 𝑄𝑊𝐹𝑘𝑡)
𝑇
𝑡=1

𝐾
𝑘=1   (43)  

𝑀𝑎𝑥 𝑍4 = ∑ 𝑇𝑆𝑆𝑄𝑠
𝑆
𝑠=1 ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡

𝑇
𝑡=1

𝑅
𝑟=1   (44)  

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
 

𝐶𝑟{𝑇𝐶 ≤ 𝑍1} ≥ 𝛼 (45)  

𝐶𝑟{𝑄𝑆𝑃𝑛𝑗𝑡 = 𝑄𝑆𝑃𝑛𝑗(𝑡−1) + 𝐷̃𝑛𝑗𝑡 − 𝑄𝑃𝑆𝐶𝑛𝑗𝑡} ≥ 𝛼 

                                                                            ∀ 𝑛, 𝑗, 𝑡 
(46)  

𝐶𝑟{∑ 𝐴𝐹𝑅𝑆̃𝑠𝑟𝑡 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1     

             ≤ 𝐴𝐹𝑅𝑃̃𝑟 × ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1 } ≥ 𝛼;  ∀ 𝑟, 𝑡  

(47)  

𝐶𝑟{∑ ∑ 𝐴𝑆𝐿̃𝑠 × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡 ≥
𝑆
𝑠=1

𝑅
𝑟=1     

           𝐴𝑆𝐿𝑃̃ × ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1

𝑅
𝑟=1 } ≥ 𝛼; ∀ 𝑟, 𝑡  

(48)  

 
Other constraints are the same as the constraints in 

the FMOMILP model. If (𝛼 > 0.5), this means that the 
chance constraints must be met at a level of confidence 
that is greater than 0.5. Then, according to Eqs. (39)–(40), 
the fuzzy chance constraints (Eqs. (45)–(48)) can be 
converted into the following crisp equivalents with the 
confidence level 𝛼 as follows: 

(45) ⇔ ∑ ∑ 𝑃𝑇𝑃𝑛 × [(2 − 2𝛼) × 𝑅𝑇𝑃𝐶𝑡
𝑚𝑇

𝑖=1
𝑁
𝑛=1   

                              +(2𝛼 − 1) × 𝑅𝑇𝑃𝐶𝑡
𝑝] × 𝑄𝑅𝑇𝑃𝑛𝑡  

+∑ ∑ 𝑃𝑇𝑃𝑛 × [(2 − 2𝛼) × 𝑂𝑇𝑃𝐶𝑡
𝑚𝑇

𝑖=1
𝑁
𝑛=1   

                             +(2𝛼 − 1) × 𝑂𝑇𝑃𝐶𝑡
𝑝] × 𝑄𝑂𝑇𝑃𝑛𝑡  

+∑ ∑ 𝑃𝑇𝑃𝑛 × [(2 − 2𝛼) × 𝑆𝑇𝑃𝐶𝑖𝑡
𝑚𝑇

𝑖=1
𝑁
𝑛=1   

                               +(2𝛼 − 1) × 𝑆𝑇𝑃𝐶𝑖𝑡
𝑝] × 𝑄𝑆𝑇𝑃𝑛𝑡  

+∑ ∑ ∑ [(2 − 2𝛼) × 𝑅𝑀𝑆𝐶𝑠𝑟𝑡
𝑚𝑇

𝑖=1
𝑅
𝑟=1

𝑆
𝑠=1   

                        +(2𝛼 − 1) × 𝑅𝑀𝑆𝐶𝑠𝑟𝑡
𝑝 ] × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡   

+∑ ∑ [(2 − 2𝛼) × 𝑆𝐶𝑘𝑡
𝑚𝑇

𝑡=1
𝐾
𝑘   

                                       +(2𝛼 − 1) × 𝑆𝐶𝑘𝑡
𝑝 ] × 𝑄𝑊𝑘𝑡  

+∑ ∑ [(2 − 2𝛼) × 𝐻𝐶𝑘𝑡
𝑚𝑇

𝑡=1
𝐾
𝑘   

                                   +(2𝛼 − 1) × 𝐻𝐶𝑘𝑡
𝑝 ] × 𝑄𝑊𝐻𝑘𝑡  

+∑ ∑ [(2 − 2𝛼) × 𝐹𝐶𝑘𝑡
𝑚𝑇

𝑡=1
𝐾
𝑘   

                                    +(2𝛼 − 1) × 𝐹𝐶𝑘𝑡
𝑝 ] × 𝑄𝑊𝐹𝑘𝑡 

+∑ ∑ [(2 − 2𝛼) × 𝐼𝑅𝑀𝐶𝑟𝑡
𝑚𝑇

𝑡=1
𝑅
𝑟=1   

                                +(2𝛼 − 1) × 𝐼𝑅𝑀𝐶𝑟𝑡
𝑝 ] × 𝐼𝑅𝑀𝑟𝑡  

+∑ ∑ [(2 − 2𝛼) × 𝐼𝑃𝐶𝑛𝑡
𝑚𝑇

𝑡=1
𝑁
𝑛=1   

                                       +(2𝛼 − 1) × 𝐼𝑃𝐶𝑛𝑡
𝑝 ] × 𝐼𝑃𝑛𝑡  

+∑ ∑ ∑ [(2 − 2𝛼) × 𝑇𝑅𝑀𝐶𝑠𝑡
𝑚𝑇

𝑡=1
𝑅
𝑟=1

𝑆
𝑠=1   

                          +(2𝛼 − 1) × 𝑇𝑅𝑀𝐶𝑠𝑡
𝑝
] × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡   

+∑ ∑ ∑ [(2 − 2𝛼) × 𝑇𝑃𝐶𝑗𝑡
𝑚𝑇

𝑡=1
𝐽
𝑗=1

𝑁
𝑛=1   

                               +(2𝛼 − 1) × 𝑇𝑃𝐶𝑗𝑡
𝑝] × 𝑄𝑃𝑆𝐶𝑛𝑗𝑡   

+∑ ∑ ∑ [(2 − 2𝛼) × 𝑃𝑆𝐶𝑛𝑗𝑡
𝑚𝑇

𝑡=1
𝐽
𝑗=1

𝑁
𝑛=1   

                      +(2𝛼 − 1) × 𝑃𝑆𝐶𝑛𝑗𝑡
𝑝 ] × 𝑄𝑆𝑃𝑛𝑗𝑡 ≤ 𝑍1  

(49)  

(46) ⇔ 𝑄𝑆𝑃𝑛𝑗𝑡 = 𝑄𝑆𝑃𝑛𝑗(𝑡−1) + [(2 − 2𝛼) × 𝐷𝑛𝑗𝑡
𝑚  

                    +(2𝛼 − 1) × 𝐷𝑛𝑗𝑡
𝑝 ] − 𝑄𝑃𝑆𝐶𝑛𝑗𝑡 ;    ∀ 𝑛, 𝑡 

(50)  

(47) ⇔ ∑ [(2 − 2𝛼) × 𝐴𝐹𝑅𝑆𝑠𝑟𝑡
𝑚𝑆

𝑠=1   

     +(2𝛼 − 1) × 𝐴𝐹𝑅𝑆𝑠𝑟𝑡
𝑝 ] × 𝑄𝑅𝑀𝑆𝑠𝑟𝑡  

         ≤ [(2𝛼 − 1) × 𝐴𝐹𝑅𝑃𝑟
𝑜 + (2 − 2𝛼) × 𝐴𝐹𝑅𝑃𝑟

𝑚] 

                                                  × ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1 ;  ∀ 𝑟, 𝑡  

(51)  

(48) ⇔ ∑ ∑ [(2𝛼 − 1) × 𝐴𝑆𝐿𝑠
𝑜𝑆

𝑠=1
𝑅
𝑟=1   

      +(2 − 2𝛼) × 𝐴𝑆𝐿𝑠
𝑚] × 𝑄𝑅𝑀𝑆𝑠𝑟𝑖𝑡    

         ≥ (2 − 2𝛼) × 𝐴𝑆𝐿𝑃𝑚 + (2𝛼 − 1) × 𝐴𝑆𝐿𝑃𝑝] 

                                            × ∑ ∑ 𝑄𝑅𝑀𝑆𝑠𝑟𝑡
𝑆
𝑠=1

𝑅
𝑟=1 ;   ∀ 𝑡  

(52)  

 
5.2. Second Phase: Fuzzy Multiple-Objective 

Programming (FMOP) 
 

Fuzzy Multiple-Objective Programming (FMOP) is 
one of the fuzzy optimization approaches that could be 
formulated by using subjective preference-based 
membership functions. It can solve multiple-objective 
models that contain fuzzy numbers. This approach can be 
deployed in three steps as follows: 

(i). Specify the Positive Ideal Solution (PIS), and the 
Negative Ideal Solution (NIS) corresponding to 
each objective function. 

(ii). Formulate the membership function for each of 
the objective functions based on the PIS and the 
NIS. 

(iii). Convert the multiple-objective model into a 
single-objective model by applying Fuzzy Goal 
Programming (FGP). 

In the FMOP model, the memberships of each 
objective function are constructed by classifying every 
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objective function into the maximum objective and the 
minimum objective. For the minimum objective, the value 

of the objective function varies from the 𝑍ℎ
𝑃𝐼𝑆 value to the 

𝑍ℎ
𝑁𝐼𝑆 value. In contrast, the value of the objective function 

varies from the 𝑍ℎ
𝑁𝐼𝑆  value to the 𝑍ℎ

𝑃𝐼𝑆  value for the 
maximum objective. A graphical interpretation is 
presented in Fig. 4: 

 

 
 

Fig. 4. Membership function representing the (a) minimum 
objective and (b) maximum objective. 
 

The results of the model are presented in tabular form, 
commonly referred to as the “Payoff” table. The “Payoff” 

table includes the positive ideal solution (𝑍ℎ
𝑃𝐼𝑆) and the 

negative ideal solution (𝑍ℎ
𝑁𝐼𝑆) of the objective functions. A 

typical payoff table is shown in Table 2. 
 

Table 2. Payoff table for achieving positive and negative 
ideal solutions. 

 𝒁𝒉 
𝒗𝒌 
∗  

𝒗𝟏
∗  𝒗𝟐

∗  𝒗𝟑
∗  𝒗𝟒

∗  

𝑍1 𝑍1(𝑣1
∗) 𝑍1(𝑣2

∗) 𝑍1(𝑣3
∗) 𝑍1(𝑣4

∗) 

𝑍2 𝑍2(𝑣1
∗) 𝑍2(𝑣2

∗) 𝑍2(𝑣3
∗) 𝑍2(𝑣4

∗) 

𝑍3 𝑍3(𝑣1
∗) 𝑍3(𝑣2

∗) 𝑍3(𝑣3
∗) 𝑍3(𝑣4

∗) 

𝑍4 𝑍4(𝑣1
∗) 𝑍4(𝑣2

∗) 𝑍4(𝑣3
∗) 𝑍4(𝑣4

∗) 

 
in which 𝑣1

∗, 𝑣2
∗, 𝑣3

∗ , and 𝑣4
∗  are the Positive Ideal 

Solutions (PISs) for objective functions 𝑍1, 𝑍2, 𝑍3, and 𝑍4, 

respectively. Based on the results in Table 1, the PIS and 
NIS for each objective function of the model can be defined. 

𝑍ℎ
𝑃𝐼𝑆 is the optimal result of the ℎ − 𝑡ℎ objective function 

when neglecting the remaining objective functions, while 

𝑍ℎ
𝑁𝐼𝑆  is selected by the following equation: 

 

𝑍ℎ
𝑁𝐼𝑆 = 𝑚𝑎𝑥{𝑍ℎ(𝑣𝑘

∗); ℎ ≠ 𝑘} (53)  

 
Note that: Eq. (53) is only correct for the minimum 

of the objective function. In contrast, if the objective 

function is maximum, 𝑍ℎ
𝑁𝐼𝑆  is selected based on the 

following equation: 
 

𝑍ℎ
𝑁𝐼𝑆 = 𝑚𝑖𝑛{𝑍ℎ(𝑣𝑘

∗); ℎ ≠ 𝑘} (54)  

 

Based on the 𝑍ℎ
𝑃𝐼𝑆  and 𝑍ℎ

𝑁𝐼𝑆 values defined in the 
"Payoff" table and the membership functions in Fig. 4, the 
linear membership function for having a minimum 
objective is formulated as follows: 

𝜇𝑧ℎ(𝑣) = {

1                     
𝑧ℎ
𝑁𝐼𝑆 − 𝑧ℎ(𝑣)

𝑧ℎ
𝑁𝐼𝑆 − 𝑧ℎ

𝑃𝐼𝑆

0                     

 

, 𝑧ℎ(𝑣) ≤ 𝑧ℎ
𝑃𝐼𝑆              

 , 𝑧ℎ
𝑃𝐼𝑆 ≤ 𝑧ℎ(𝑣) ≤ 𝑧ℎ

𝑁𝐼𝑆

, 𝑧ℎ(𝑣) ≥ 𝑧ℎ
𝑁𝐼𝑆             

 (55)  

 
The linear membership function for having a 

maximum objective is formulated as follows: 
 

𝜇𝑧ℎ(𝑣) = {

1                     
𝑧ℎ(𝑣) –  𝑧ℎ

𝑁𝐼𝑆

𝑧ℎ
𝑃𝐼𝑆  –  𝑧ℎ

𝑁𝐼𝑆

0                     

  

, 𝑧ℎ(𝑣) ≥ 𝑧ℎ
𝑃𝐼𝑆               

, 𝑧ℎ
𝑁𝐼𝑆 ≤ 𝑧ℎ(𝑣) ≤ 𝑧ℎ

𝑃𝐼𝑆

, 𝑧ℎ(𝑣) ≤ 𝑧ℎ
𝑁𝐼𝑆              

 (56)  

 
The FGP model can be formed after all the 

membership functions have been formulated. 
 

5.2.1. Zimmerman’s Method 
 

This approach was first developed by Zimmermann 
[3] for dealing with MOLP problems. It attempts to 
maximize the lowest or minimum satisfaction level of 
objective functions. This ensures that the satisfaction 
levels of objective functions are equal or higher than the 
level of the lowest objective functions. The mathematical 
model of Zimmermann’s method is presented as follows: 

 

𝑀𝑎𝑥    𝜆   

𝑠. 𝑡       𝜆 ≤ 𝜇ℎ(𝑣),     ℎ = 1, … , 𝐻,  

             𝑣 ∈ 𝐹(𝑣),        𝜆 ∈ [0, 1].   

(57)  

 
where 𝜆 represents the minimum satisfaction level of 

objective functions, and 𝐹(𝑣) denotes the feasible region 
for the constraints of the equivalent crisp model. 
 
5.2.2. Torabi and Hassini (TH) Method 
 

This approach is known as a hybrid method. An 
aggregate function is proposed in this method that can 
yield balanced and unbalanced compromise solutions 
(symmetric and asymmetric solutions). The TH model is 
formulated as follows: 

 

𝑀𝑎𝑥    𝜆(𝑣) = 𝛾 × 𝜆0 + (1 − 𝛾) × ∑ 𝜃ℎ × 𝜇ℎ(𝑣)
𝐻
ℎ    

𝑠. 𝑡       𝜆0 ≤ 𝜇ℎ(𝑣),           ℎ = 1, … , 𝐻,   

             ∑ 𝜃ℎ
𝐻
ℎ = 1,            𝜃ℎ ≥ 0  

             𝑣 ∈ 𝐹(𝑣),               𝜆0 𝑎𝑛𝑑 𝛾 ∈ [0, 1].   

(58)  

 
where 𝜆0 = 𝑚𝑖𝑛ℎ{𝜇ℎ(𝑣)}  represents the minimum 

satisfaction level of objectives, while 𝜇ℎ(𝑣)  indicates the 
satisfaction level of the ℎ − 𝑡ℎ  objective function. The 
objective function of this approach is defined as an 
integration of the lowest bound for obtaining the 
satisfaction level of objectives (𝜆0).  The weighting 
summation of these obtained satisfaction levels 𝜇ℎ(𝑣) 
could be adjusted to bring unbalanced compromise 
solutions. In addition, 𝛾  and 𝜃ℎ  are the coefficients of 
compensation and the relative importance weight of the 
ℎ − 𝑡ℎ objective, respectively. The weighted values 𝜃ℎ  are 
specified by the DMs based on their preferences so that 
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∑ 𝜃ℎℎ = 1, 𝜃ℎ ≥ 0 . Besides that, 𝛾  can be used as an 
aligning parameter to control the minimum satisfaction 
level of objectives and the compromise level among the 
objectives. As a result, this approach could generate and 
provide balanced and unbalanced compromised solutions 
by adjusting the value of 𝛾. In relation to this problem, a 
higher value of 𝛾 implies that the DMs pay more attention 

to getting the higher bound of the satisfaction level for 
objectives (𝜆0) with more balanced compromise solutions 
(symmetric fuzzy decision-making). In contrast, the lower 
value of 𝛾 means that the DMs get more concerned about 
the solutions with a high satisfaction level of some 
objectives in connection with the relative importance of 
objectives. This can help for providing unbalanced 
compromise solutions (asymmetric fuzzy decision-making). 
 
5.2.3. Proposed Consistency Method 

Taking into consideration of the weight consistency 
of solutions, the proposed model uses a ranking constraint 
(weigh-consistence constraint) to ensure that the achieved 
solution of the aspiration level of objectives and its 
assigned weights will be homogeneous. The proposed 
model is as follows: 

 

𝑀𝑎𝑥    𝜆(𝑣) = 𝛾 × 𝜆0 + (1 − 𝛾)∑ 𝜃ℎ × 𝜇ℎ
𝐻
ℎ    

𝑠. 𝑡       𝜆0 ≤ 𝜇ℎ(𝑣),              ℎ = 1, … , 𝐻, 
             ∑ 𝜃ℎ

𝐻
ℎ = 1,                𝜃ℎ ≥ 0   

             𝜇ℎ ≥
𝜃ℎ

𝜃ℎ+1
× 𝜇ℎ+1   ∀ℎ 

             𝑣 ∈ 𝐹(𝑣),                  𝜆0 𝑎𝑛𝑑 𝛾 ∈ [0, 1]. 

(59)  

 
where 𝜇ℎ × 𝜃ℎ+1 ≥ 𝜃ℎ × 𝜇ℎ+1 is a weight consistent 

constraint. It is supplemented to ensure that the ratio of 
the satisfaction level of each objective function matches 
their allocated importance weights. It is highly noted that 
the weight value of objective (𝜃ℎ) must be larger than the 

weight value of the objective (𝜃ℎ+1). If 𝜃ℎ ≥  𝜃ℎ+1  then 
𝜇ℎ ≥ 𝜇ℎ+1.  Therefore, it is guaranteed that the weight-
consistent solution can be obtained. 
 
5.3. Solution Procedure 
 

In summary, the proposed Fuzzy Multiple-Objective 
Mixed Integer Linear Programming (FMOMILP) can be 
solved by following these steps:  

• Step 1: Identify suitable triangular fuzzy numbers 
for the imprecise parameters and formulate the 
original fuzzy model for the APP problem in the 
supply chain. 

• Step 2: Give the minimum acceptable confidence 
level for each fuzzy chance constraints and assign 
the relative importance weight to each objective. 

• Step 3: Convert the FMOMILP model into the 
corresponding crisp MOMILP model by applying 
credibility-based fuzzy chance-constrained 
programming references to Eq. (40). 

• Step 4: Optimize each objective in the crisp 
MOMILP model as a single-objective problem. 

• Step 5: Determine the Positive Ideal Solution 
(PIS) and Negative Ideal Solution (NIS) for each 
objective function according to the description in 
Sub-section 5.2.  

• Step 6: Construct the linear membership function 
of the objective functions. 

• Step 7: Convert the crisp MOMILP model into a 
crisp single-objective MILP model by applying 
Fuzzy Goal Programming (FGP) that is 
presented in Sub-section 5.2. 

• Step 8: Implement the sensitivity analysis by 
modifying some parameters (the confidence level 

(α) and the coefficient compensation (γ)). 
 

6. Experimental Case  
 

To illustrate and evaluate the usefulness of the 
proposed FMOMILP model and the solution methodology, 
an industrial case from a manufacturing company is 
provided in this section. The supply chain of the 
manufacturing company consists of four suppliers, a 
production plant, and four customers. The company 
produces five types of products by assembling ten types of 
raw materials. The planning horizon of the APP in the 
supply chain is 12 months. The scope of the problem is 
shown in Table 3. The consumption rate of the raw 
materials for producing these types of products is described 
in Table 4. Production costs, labor costs, transportation 
costs, purchasing cost, customer demand, and some types 
of data related to the quality of the provided raw materials, 
and the service level, are all fuzzy data and follow the 
triangular possibility distribution. The remained data are 
deterministic data. All data are presented in the tables below. 
 
Table 3. Scope of the problem. 

R S J N K T 

10 4 4 5 5 12 

 
Table 4. Bill of Materials (BOM). 

Product 
(n) 

Raw materials (r) 

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 

n1 2 3 0 4 0 0 1 2 3 0 
n2 2 3 1 2 2 2 0 0 0 0 
n3 1 0 1 2 0 0 1 0 0 2 
n4 0 0 0 0 2 3 2 3 2 3 
n5 0 1 2 0 1 0 0 0 1 2 

 
The qualifications of these selected suppliers have 

been evaluated throughout a screening process based on 
some criteria such as the price, quality of raw materials, 
and service level (on-time delivery). In this regard, the 
provided raw materials from supplier 1 are assessed as 
having the highest selling price, the best quality, and the 
best service level. As opposed to supplier 1, supplier 3 has 
the cheapest selling price, the lowest quality, and the 
poorest service level. While the selling price of raw 
materials from suppliers 2 and 3 are supposed to be the 
same price at the medium level, the service level of 
supplier 2 is better than supplier 1. However, the quality 
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of supplier 2 is poorer than supplier 1. To sum up, the 
overall score of each supplier (representing their 
performance) is determined by using the AHP method. 
The information of setting problem for supplier selection 
and the outcome of the overall weighted score for each 
supplier is shown in Table 5.  
 
Table 5. Performance of suppliers. 

Supplier 
(s) 

Criteria Weighted 
score of the 

supplier 
Price Quality 

Service 
level 

s1 Expensive Excellent Excellent 0.44 
s2 Medium Low Good 0.20 
s3 Cheap Low Low 0.14 
s4 Medium Good Low 0.22 

 
From Table 5, it can be seen that supplier 1 has the best 

performance (the highest weighted score) and supplier 3 has 
the poorest performance (the lowest weighted score). The 
performance weighted score of suppliers 1, 2, 3, and 4 are 
0.44, 0.20, 0.14, 0.22, respectively. 

The available time and production costs for the 
regular time, overtime, and subcontracting production are 
presented in Table 6. Table 7 shows the purchasing cost 
and maximum capacity of all raw materials that are 
provided by suppliers. Table 8 presents the related 
workforce cost for each level including salary, hiring, and 
firing costs. Besides that, the worker’s productivity at each 
level is also presented. The inventory cost, warehouse 
storage-space limitation, initial units for both raw materials, 
and the finished products are given in Table 9. The 
transportation cost from suppliers to the production plant, 
and from the production plant to the customers are 
provided in Table 10. If the quantity of produced products 
is not enough to fulfill a customer’s demand, the customer 
will be compensated by a determined penalty cost based 

on the quantity of product shortages. The penalty unit cost 
of every type of product is shown in Table 11.  
 
Table 6. Available time and production costs. 

Period 
(t) 

Regular time 
(hours/period) 

Overtime 
(hours/period) 

Subcontracting 
(hours/period) 

t1 144 50 200 
t2 160 50 220 
t3 168 50 230 
t4 176 60 240 
t5 120 40 170 
t6 192 60 270 
t7 200 60 280 
t8 200 60 280 
t9 192 60 270 
t10 176 60 240 
t11 184 60 260 
t12 160 50 220 

Regular time cost ($/min) (0.5, 0.55, 0.65) 
Overtime cost ($/min) (0.9, 0.95, 1.05) 
Subcontracting cost ($/min) (1.25, 1.30, 1.40) 

 
The relevant data for the quality and service level of 

the suppliers (evaluated by the manufacturer) are 
summarized in Table 12. The maximum allowable quantity 
of produced products by subcontracting and the machine 
usage for producing each product at the production plant, 
and the maximum operating machine time and production 
time for producing different types of products are given in 
Table 13. The number of initially available workforce 
levels, the storage capacity, and the allowed variation in 
changing workforce levels at the production plant are 
summarized in Table 14. In Table 15, the forecasted 
demand of each customer in the optimistic case is reported. 
The most likely and pessimistic cases of forecasted 
demand are estimated by multiplying the optimistic case 
of forecasted demand by 1.2 and 1.3, respectively. 

 
Table 7. Purchasing cost of raw materials and the maximum quantity of raw materials provided by suppliers. 

Raw 

material 

(r) 

Purchasing cost of raw materials from supplier (s) ($/unit)  
Maximum quantity of raw materials 

provided by suppliers (s) (units) 

s1 s2 s3 s4  s1 s2 s3 s4 

r1 (1, 1.1, 1.3) (1, 1.1, 1.3) (1.5, 1.65, 1.95) (1.5, 1.65, 1.95)  3,500 3,000 3,500 3,000 

r2 (2, 2.2, 2.6) (2, 2.2, 2.6) (1, 1.1, 1.3) (1.5, 1.65, 1.95)  3,500 3,000 3,000 3,500 

r3 (1, 1.1, 1.3) (1, 1.1, 1.3) (1, 1.1, 1.3) (1, 1.1, 1.3)  3,500 3,000 4,500 3,500 

r4 (3, 3.3, 3.9) (3, 3.3, 3.9) (2, 2.2, 2.6) (2, 2.2, 2.6)  3,500 3,500 4,000 3,000 

r5 (2, 2.2, 2.6) (2, 2.2, 2.6) (1.5, 1.65,1.95) (2, 2.2, 2.6)  3,500 3,000 4,000 3,000 

r6 (1, 1.1, 1.3) (1, 1.1, 1.3) (2, 2.2, 2.6) (1, 1.1, 1.3)  2,500 3,000 3,500 3,500 

r7 (2, 2.2, 2.6) (2, 2.2, 2.6) (1.5, 1.65, 1.95) (1, 1.1, 1.3)  4,000 3,500 3,500 3,500 

r8 (1, 1.1, 1.3) (1, 1.1, 1.3) (1, 1.1, 1.3) (1, 1.1, 1.3)  3,500 3,500 4,500 3,500 

r10 (2, 2.2, 2.6) (2, 2.2, 2.6) (1.5, 1.65, 1.95) (1.5, 1.65, 1.95)  3,000 3,500 3,500 3,500 

 
Table 8. Workforce costs at the production plant ($/person). 

Types of cost 
Labor level (k) 

k1 k2 k3 k4 k5 

Salary (180, 190, 210) (200, 210, 230) (220, 230, 250) (240, 250, 270) (260, 270, 290) 

Firing cost (70, 80, 100) (80, 90, 110) (90, 100, 120) (100, 110, 130) (110, 120, 140) 

Hiring cost (40, 50, 70) (40, 50, 70) (40, 50, 70) (40, 50, 70) (40, 50, 70) 

Productivity (%) 65 70 75 85 95 
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Table 9. Inventory cost, warehouse space limitation, initial units of raw material, and finished products. 
Raw 

material 

(r) 

Inventory 

costs 

($/unit) 

Initial raw 

material 

inventory 

(units) 

Warehouse 

space for a unit 

of product 

(m2/unit) 

 Product 

(n) 

Inventory 

costs 

($/unit) 

Initial finished 

product 

inventory 

(units) 

Warehouse 

space for a unit 

of raw material 

(m2/unit) 

r1 (4, 5, 7) 20 1  
n1 (5, 6, 8) 2 3 

r2 (4, 5, 7) 20 1.5  

r3 (4, 5, 7) 20 1.5  
n2 (7, 8, 10) 2 2 

r4 (4, 5, 7) 12 0.5  

r5 (4, 5, 7) 15 1.5  
n3 (9, 10, 12) 20 3 

r6 (5, 6, 8) 20 0.5  

r7 (5, 6, 8) 20 1  
n4 (11, 12, 14) 10 2 

r8 (5, 6, 8) 20 1  

r9 (5, 7, 9) 15 1.5  
n5 (13, 14, 16) 10 6 

r10 (5, 7, 9) 20 1.5  

 
Table 10. Transportation cost ($/unit). 

Suppliers (s) Production plant  Customers (j) Production plant 

s1 (0.014, 0.016, 0.024) 

 

j1 (0.036, 0.040, 0.060) 

s2 (0.029, 0.032, 0.048) j2 (0.058, 0.064, 0.096) 

s3 (0.079, 0.088, 0.132) j3 (0.072, 0.080, 0.120) 

s4 (0.101, 0.112, 0.168) j4 (0.065, 0.072, 0.108) 

 
Table 11. Penalty cost of product shortages ($/unit). 

Customer (j) 
Product (n) 

n1 n2 n3 n4 n5 

j1 (2, 2.25, 2.75) (2, 2.25, 2.75) (2, 2.25, 2.75) (3, 3.25, 3.75) (1, 1.25, 1.75) 

j2 (3, 3.25, 3.75) (4, 4.25, 4.75) (4, 4.25, 4.75) (4, 4.25, 4.75) (2, 2.25, 2.75) 

j3 (2, 2.25, 2.75) (2, 2.25, 2.75) (2, 2.25, 2.75) (2, 2.25, 2.75) (2, 2.25, 2.75) 

j4 (2, 2.25, 2.75) (2, 2.25, 2.75) (3, 3.25, 3.75) (2, 2.25, 2.75) (2, 2.25, 2.75) 

 
Table 12. Relevant data for the quality and the service level of suppliers evaluated by the manufacturer. 

Raw 

materials 

(r) 

Average defect rate of raw materials from suppliers (%)  Acceptable defect 

rate of production 

plant for raw 

materials (%) 

Suppliers (s)  

s1 s2 s3 s4  

r1 (2, 2.01, 2.03) (2.1, 2.11, 2.13) (2.65, 26.6, 2.68) (2.265, 2.265, 2.265)  (4.48, 5.6, 6.72) 

r2 (2, 2.01, 2.03) (2.2, 2.21, 2.23) (2.8, 2.81, 2.83) (2.465, 2.465, 2.265)  (4.64, 5.8, 6.96) 

r3 (2, 2.01, 2.03) (2.1, 2.11, 2.13) (2.18, 2.19, 2.21) (2.31, 2.31, 231)  (4.8, 6, 7.2) 

r4 (2, 2.01, 2.03) (2.3, 2.31, 2.33) (2.4, 2.41, 2.43) (2.22, 2.22, 2.22)  (4.48, 5.6, 6.72) 

r5 (2, 2.01, 2.03) (2.2, 2.21, 2.23) (2.6, 2.61, 2.63) (2.82, 2.82, 2.82)  (4.4, 5.5, 6.6) 

r6 (2.1, 2.11, 2.13) (2.1, 2.11, 2.13) (2.3, 2.31, 2.33) (2.71, 2.71, 2.71)  (4.72, 5.9, 7.08) 

r7 (2.2, 2.21, 2.23) (2.2, 2.21, 2.23) (2.365, 2.366, 2.38) (2.91, 2.91, 2.91)  (5.04, 6.3, 7.56) 

r8 (2.1, 2.11, 2.13) (2.1, 2.11, 2.13) (2.41, 2.42, 2.44) (2.91, 2.91, 2.91)  (4.4, 5.5, 6.6) 

r9 (2.2, 2.21, 2.23) (2.2, 2.21, 2.23) (2.26, 2.27, 2.29) (2.66, 2.66, 2.66)  (4.72, 5.9, 7.08) 

r10 (2.1, 2.11, 2.13) (2.1, 2.11, 2.13) (2.51, 2.52, 2.54) (2.82, 28.2, 2.82)  (4.88, 6.1, 7.32) 

 Average service level of suppliers (%)  
Acceptable service level 

of production plant (%) 

 (75, 94, 100) (72, 90, 100) (69, 86, 100) (70, 87, 100)  (69, 86, 100) 

 
Table 13. Subcontracting limitations and machine-hour usage. 

Product 

(n) 

Maximum quantity of 

subcontracting (unit-periods) 

Machine hour usage for products 

(machine-hours/ unit period) 

Maximum machine 

time (machine-hours) 

Production time 

(min/unit) 

n1 140 1 1,400 35 

n2 150 2 1,500 48 

n3 160 3 1,600 40 

n4 130 2 1,300 45 

n5 140 8 1,400 62 
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Table 14. Storage capacity and workforce information at the production plant. 

Storage capacity at the production plant (units) 
 Initial workforce (persons)  

Variation of 
workforce (%) 

 Worker level (k)  

Raw material Finished product   k1 k2 k3 k4 k5  

10,000 15,000  21 34 36 8 2  20 

 
Table 15. Forecasted demand of customers in the optimistic case (units). 

Customer 
(j) 

Product 
(n) 

Period (t) 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 

j1 n1 100 250 350 300 100 200 250 0 100 150 100 100 

n2 200 250 300 350 200 200 200 350 400 450 500 350 
n3 150 200 250 300 100 50 0 100 200 250 300 400 
n4 250 100 300 250 200 100 200 300 400 400 400 300 
n5 150 200 200 400 300 350 100 100 150 100 100 100 

j2 n1 190 350 540 590 120 320 380 200 180 190 130 110 

n2 280 330 320 570 370 330 290 690 670 650 950 430 
n3 210 370 490 400 150 70 100 160 330 380 400 620 
n4 300 180 370 410 310 130 270 460 770 780 520 590 
n5 290 400 220 690 420 380 170 190 190 120 170 140 

j3 n1 90 190 30 80 40 300 140 100 130 50 60 20 
n2 60 250 530 140 150 80 160 190 330 290 560 450 
n3 90 70 140 400 10 60 80 100 160 260 200 610 
n4 190 130 230 40 160 20 100 180 540 510 300 20 
n5 80 170 150 290 280 300 80 20 240 50 120 110 

j4 n1 170 580 750 880 290 350 560 0 230 310 250 330 

n2 460 620 470 710 680 540 570 920 830 660 1,260 810 

n3 200 500 300 830 160 90 0 140 620 540 550 850 

n4 710 240 530 810 620 180 260 520 980 460 810 710 

n5 400 310 490 600 630 1,110 320 200 170 180 250 190 

7. Results and Discussions 
 
7.1. Obtained Outcome from the Crisp MOMILP model 
 

As a primary stage of identifying the goal values for 
each objective to construct its membership function, the 
credibilistic MOMILP model is transformed into the 
equivalent crisp model with a given minimum confidence 

level (α = 0.9).  The gathered data from the case study in 
Section 6 are used to find the positive and negative ideal 
solutions (following the description in Section 5) by IBM 
ILOG CPLEX Optimization Studio (version 12.4) software. 
The crisp MOMILP model is solved to attain the positive 
and negative ideal solutions. As a result, a payoff table for 
determining the positive and negative ideal solutions of 
each objective function is formed, as shown in Table 16.  

According to the result in Table 16 and Eqs. (53)–(54), 
the obtained positive and negative ideal solutions of each 
objective function are presented in Table 17. 

 
7.2. Fuzzy Goal Programming 

 
7.2.1. Obtained Outcome from Zimmerman’s Method 
 

For Zimmerman’s method, each objective function is 
considered to have the same relative importance (there is 
no priority for any objective function). That is why it is 
known as a symmetric model. The objective function of 
this method maximizes the minimum value of the 
satisfaction level. As a result, the outcome of this method 
is the balanced efficient compromise solutions. By 
applying Zimmerman’s method for solving the proposed 
MOMILP model, the obtained results are presented in 
Table 18.  

From Table 18, the overall goal satisfaction (as 

denoted by 𝜆), which represents the maximum degree 
of the minimum satisfaction of all the objective 
functions is 77.36%. Under this circumstance, the 
satisfaction degree of the first, second, third, and fourth 
objective function is 77.37%, 91.01%, 77.65%, and 
77.36%, respectively. The total cost of aggregate 
production planning for the entire supply chain is 
$ 5,920,829.06, while the total number of products that 
could not be manufactured to fulfill customer demand 
is 530 units. The total number for the changed 
workforce level is 19 persons, and the maximum value 
of total purchasing is 331,053 units. 

 

Table 16. Payoff table for achieving positive and negative ideal solutions. 

Objective functions 𝒗𝟏
∗  𝒗𝟐

∗  𝒗𝟑
∗  𝒗𝟒

∗  

𝑍1 ($) 4,842,557.76 6,334,476.88 6,483,751.24 9,605,972.20  
𝑍2 (units) 2,357 0 5,886 4,479  
𝑍3 (persons) 85 0 0 0 
𝑍4 (units) 271,887 270,139 243,074 357,345  
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Table 17. Achieved positive and negative ideal solutions for each objective function. 

Objective functions 
 PIS  NIS 

 Type Value  Type Value 

𝑍1 ($)  Min 4,842,557.76   Max 9,605,972.20  

𝑍2 (units)  Min 0  Max 5,886  

𝑍3 (persons)  Min 0  Max 85  

𝑍4 (units)  Max 357,345   Min 243,074  

 
Table 18. Optimal solution of Zimmerman’s method. 
Implications Symbol Value Unit 

Overall satisfaction 𝜆 77.36 % 

Minimizing the total supply chain costs 𝑍1 5,920,829.06 $ 

Minimizing the shortages of product 𝑍2 530 units 

Minimizing the rate of changes in the workforce level 𝑍3 19 persons 

Maximizing the total value of purchasing 𝑍4 331,053 units 

Satisfaction of the first objective function 𝜇𝑍1 77.37 % 

Satisfaction of the second objective function  𝜇𝑍2 91.01 % 

Satisfaction of the third objective function 𝜇𝑍3 77.65 % 

Satisfaction of the fourth objective function 𝜇𝑍4 77.36 % 

Confidence level 𝛼 90 % 

7.2.2. Obtained Outcome from Applying TH’s Method 
 

TH’s method allows DMs to allocate the different 
weights to the objective functions based upon their 
importance level (asymmetric model). In this study, 
according to the DM preferences, the relative importance 
weight of the objective functions are given as 𝜃1 =
0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15 . Furthermore, the 
distribution of weights for each objective function means 
that the DMs pay more attention to the unbalanced 
compromise solutions (the higher satisfaction level of the 
objective that is indicated by its higher weight importance 
will be more concern). That is why the value of the 

coefficient of compensation is set to a low value (𝛾 = 0.2). 
The optimal results of the proposed model after being 
solved by using TH’s method is shown in Table 19. 

According to the obtained results from Table 19, as 
compared to the obtained results of Zimmerman’s 
method, it was found that the overall satisfaction level (𝜆) 
of DMs for TH’s method is 84.87%. This is higher than 
the overall satisfaction level of DMs for Zimmerman’s 
method (77.36%). The obtained satisfaction values of each 
objective from TH’s method are better than the obtained 
satisfaction values of each objective from Zimmerman’s 

method except for the fourth objective. This implies that 
there is a trade-off among these objectives (Once one of 
these objectives gets better, at least one other objective 
must be worse). As can be seen that there is only the 
satisfaction value of the first objective and the fourth 
objectives meet the DM preferences (𝜇𝑧1 > 𝜇𝑧4  agrees 

with 𝜃1 > 𝜃4). While the second and third objectives are 
supposed to be less important than the first objective 𝜃1 >

𝜃2 > 𝜃3 the obtained satisfaction values of the second and 
the third objective are still better than the satisfaction 
values of the first objective. Hence, the DM preferences 
cannot be satisfied totally although most objectives can get 
better results. That is why we need to improve the model 
so that the model can be able to generate consistent 
solutions (the satisfaction level of each objective must be 
compatible with the expected importance weight of its 
objective) that can totally satisfy the DM expectations. In 
relation to the above satisfaction value of each objective 
function, the actual total cost of aggregate production 
planning for the entire supply chain (𝑍1) is $ 5,963,618.11, 
while there is no shortage of product (𝑍2= 0 units). There 
is also no change in the workforce level (𝑍3 = 0 persons), 
and the maximum value of total purchasing (𝑍4) is 326,843 
units. 

 
Table 19. Optimal results from TH’s method with 𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15, and 𝛾 = 0.2. 
Implications Symbol Value Unit 

Overall satisfaction 𝜆 84.87 % 

Minimizing the total supply chain costs 𝑍1 5,963,618.11 $ 

Minimizing the shortages of product 𝑍2 0  units 

Minimizing the rate of changes in the workforce level 𝑍3 0 persons 

Maximizing the total value of purchasing 𝑍4 326,843 units 

Satisfaction of the first objective function 𝜇𝑍1 77.47 % 

Satisfaction of the second objective function  𝜇𝑍2 100 % 

Satisfaction of the third objective function 𝜇𝑍3 100 % 

Satisfaction of the fourth objective function 𝜇𝑍4 73.31 % 

Confidence level 𝛼 90 % 
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Table 20. Optimal results from proposed method with 𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15, and 𝛾 = 0.2. 
Implications Symbol Value Unit 

Overall satisfaction 𝜆 69.21 % 

Minimizing the total supply chain costs 𝑍1 4,940,544.27 $ 

Minimizing the shortages of product 𝑍2 946 units 

Minimizing the rate of changes in the workforce level 𝑍3 39 persons 

Maximizing the total value of purchasing 𝑍4 289,451 units 

Satisfaction of the first objective function 𝜇𝑍1 97.94 % 

Satisfaction of the second objective function  𝜇𝑍2 83.93 % 

Satisfaction of the third objective function 𝜇𝑍3 54.12 % 

Satisfaction of the fourth objective function 𝜇𝑍4 40.59 % 

Confidence level 𝛼 90 % 

 
7.2.3. Obtained Outcome from the Proposed Method 
 

As mentioned earlier, by taking into consideration of 
the consistency of the obtained solutions, a consistent-
weight constraint 𝜇ℎ × 𝜃ℎ+1 ≥ 𝜃ℎ × 𝜇ℎ+1 is added to TH’s 
model. The consistent-weight constraint can ensure that 
the achieved solution of the satisfaction level of objectives 
and the assigned weights (based on DM preferences) is 
homogeneous (i.e. 𝜇1 ≥ 𝜇2 ≥ 𝜇3 ≥ 𝜇4  agrees with 𝜃1 ≥
𝜃2 ≥ 𝜃3 ≥ 𝜃4). The optimal weight-consistent solutions of 
the proposed model are shown in Table 20. 

Based on Table 20, the obtained overall satisfaction 
level is 69.21%, while the satisfaction levels of four 
objectives 𝑍1, 𝑍2, 𝑍3, and 𝑍4 are 97.94%, 83.93%, 54.12%, 
and 40.59%, respectively. It is clear that the obtained 
satisfaction levels of objectives are totally consistent with 
DM preferences for all the objective functions  (𝜇1 ≥
𝜇2 ≥ 𝜇3 ≥ 𝜇4 agrees with 𝜃1 ≥ 𝜃2 ≥ 𝜃3 ≥ 𝜃4). However, it 
is found that the overall satisfaction level of this method 
is lower than the overall satisfaction levels of 
Zimmerman’s method and TH’s method that were 
previously presented. This is explained by the trade-off 
among these four objectives (to get improvement from 
any objective, at least one other objective must be worse). 
As a result, the value of the overall satisfaction level of the 
proposed method can be low. Regarding the above-

mentioned percentages of satisfaction of each objective 
function, the actual total cost of aggregate production 
planning for the entire supply chain (𝑍1) is $ 4,940,544.27. 
The total shortage of product (𝑍2) is 946 units. The total 
number of the changed workforce level (𝑍3) is 39 persons, 
and the maximum value of total purchasing (𝑍4) is 289,451 
units.  

In each period, the quantity of each type of raw 
material is bought from suppliers, the production quantity 
of each product (produced in regular time, overtime, and 
subcontracted), the quantity of each product that is 
distributed to customers, the inventory levels of the raw 
material type, the product type, and the number of each 
workforce level are the operational decision variables of 
the model. For example, there are 3,500 and 3,000 units of 
raw material Type 1 that are purchased from Suppliers 1, 
and 2, respectively. The number of Product 1 units, 
produced in regular time production, is 1,699 units. The 
distributed quantities of Product 1 to Customers 1, 2, 3, 
and 4 are 118, 236, 177, and 295 units, respectively. For 
more information, these main values of the operational 
decision variables in Period 1, which are obtained from 

solving the proposed model with confidence level (α = 
0.9), importance weights of the objectives (𝜃1 =

0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15)  and compensation 

coefficient (𝛾 = 0.2) are shown in Table 21. 

Table 21. Aggregate plan (Period 1) from solving the proposed model  
Procurement plan 

 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 

s1 3,500 3,500 1,084 3,500 3,085 2,500 2,005 3,269 2,585 3,293 

s2 3,000 219 221 146 0 1,646 0 3,500 0 3,500 
s3 0 3,000 207 4,000 3,748 0 343 0 3,489 1,954 
s4 0 2,987 2,563 3,000 0 3,313 3,500 1,732 3,500 0 

Inventory  20 20 20 12 15 20 20 20 15 20 

Production plan  Distribution plan 

 Regular time Overtime Subcontracted Inventory   j1 j2 j3 j4 

n1 1,699 0 0 1,052  n1 118 236 177 295 

n2 1,178 0 0 0  n2 224 330 248 354 

n3 747 0 0 0  n3 106 71 106 224 
n4 1,701 0 0 0  n4 201 543 236 838 
n5 1,075 0 0 0  n5 118 236 177 295 

Workforce plan      

 k1 k2 k3 k4 k5      

Labor 21 34 36 8 2      
Hiring 0 0 0 0 0      
Firing 0 0 0 0 0      
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To verify the efficiency of the proposed model for the 
consistency of solutions, a full of possible cases for 
different ordering pattern values of the importance 
weights of objectives are generated by factorial design. 
These possible cases are used for testing the proposed 
model. There are four objectives considered in the 
proposed model. Therefore, there are twenty-four 
possible cases that are generated from four factorial (4!). 
All the possible cases of the ordering pattern weights of 
objectives are presented in Table 22. 
 
Table 22. Varied ordering patterns of the importance 
weights of objectives. 
Cases Order patterns 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒 

1 𝜃1 > 𝜃2 > 𝜃3 > 𝜃4 0.37 0.31 0.21 0.11 

2 𝜃1 > 𝜃2 > 𝜃4 > 𝜃3 0.3 0.29 0.15 0.26 

3 𝜃1 > 𝜃3 > 𝜃2 > 𝜃4 0.28 0.24 0.26 0.22 

4 𝜃1 > 𝜃3 > 𝜃4 > 𝜃2 0.6 0.07 0.18 0.15 

5 𝜃1 > 𝜃4 > 𝜃2 > 𝜃3 0.4 0.2 0.08 0.32 

6 𝜃1 > 𝜃4 > 𝜃3 > 𝜃2 0.27 0.23 0.24 0.26 

7 𝜃2 > 𝜃1 > 𝜃3 > 𝜃4 0.26 0.29 0.24 0.21 

8 𝜃2 > 𝜃1 > 𝜃4 > 𝜃3 0.3 0.4 0.1 0.2 

9 𝜃2 > 𝜃3 > 𝜃1 > 𝜃4 0.23 0.3 0.25 0.22 

10 𝜃2 > 𝜃3 > 𝜃4 > 𝜃1 0.21 0.34 0.29 0.25 

11 𝜃2 > 𝜃4 > 𝜃1 > 𝜃3 0.18 0.51 0.03 0.28 

12 𝜃2 > 𝜃4 > 𝜃3 > 𝜃1 0.17 0.4 0.2 0.23 

13 𝜃3 > 𝜃1 > 𝜃2 > 𝜃4 0.27 0.22 0.32 0.19 

14 𝜃3 > 𝜃1 > 𝜃4 > 𝜃2 0.34 0.1 0.4 0.16 

15 𝜃3 > 𝜃2 > 𝜃1 > 𝜃4 0.22 0.27 0.3 0.21 

16 𝜃3 > 𝜃2 > 𝜃4 > 𝜃1 0.03 0.06 0.87 0.04 

17 𝜃3 > 𝜃4 > 𝜃1 > 𝜃2 0.19 0.18 0.42 0.21 

18 𝜃3 > 𝜃4 > 𝜃2 > 𝜃1 0.15 0.19 0.38 0.28 

19 𝜃4 > 𝜃1 > 𝜃2 > 𝜃3 0.25 0.13 0.08 0.54 

20 𝜃4 > 𝜃1 > 𝜃3 > 𝜃2 0.33 0.13 0.18 0.36 

21 𝜃4 > 𝜃2 > 𝜃1 > 𝜃3 0.25 0.25 0.15 0.35 

22 𝜃4 > 𝜃2 > 𝜃3 > 𝜃1 0.21 0.26 0.24 0.29 

23 𝜃4 > 𝜃3 > 𝜃1 > 𝜃2 0.22 0.16 0.28 0.34 

24 𝜃4 > 𝜃3 > 𝜃2 > 𝜃1 0.18 0.22 0.28 0.32 

Applying the data set in Table 22 for solving the 
proposed multiple-objective model, the optimal obtained 
results of TH’s model (integrating the consistent-weight 
constraints) are shown in Table 23. 

Throughout the obtained solutions as presented in 
Table 23, it can be seen that all satisfaction values of the 
objectives match their allocated importance weights. The 
proposed model is optimized so that the satisfaction levels 
of objectives 𝜇ℎ ≥ 𝜇ℎ+1  agree with their allocated 
important weights 𝜃ℎ ≥ 𝜃ℎ+1 . This is also evidence that 
the proposed model can ensure the weight-consistent 
solutions. The number of weight-consistent solutions 
from the three approaches is summarized in Table 24.  
 
Table 24. Weight-consistent solutions of three approaches. 

Approaches  Weight-

consistent 

solutions 

Percentages 

Zimmerman’s model 1/24 4.1% 

TH’s model 3/24 12.5% 

Proposed model 24/24 100% 

 
Based on the aggregated results as shown in Table 24, 

it is a highlight that only the proposed model can 
guarantee 100% for the generated weight-consistent 
solutions while the other two approaches hardly achieve 
the weight-consistent solutions. 
 
7.3. Sensitivity Analysis 
 

In this section, a sensitivity analysis is conducted to 
investigate the impacts of the confidence level (α) and the 
coefficient of compensation (γ) on the optimal solution 

of the proposed model. The values of α and γ are varied 
while the other parameters are fixed. 

 
Table 23. Optimal solutions of the proposed model. 

Case γ α Order patterns λ 𝝁𝟏(%) 𝝁𝟐(%) 𝝁𝟑(%) 𝝁𝟒(%) Consistent solutions 

1 0.2 0.9 𝜃1 > 𝜃2 > 𝜃3 > 𝜃4 66.60 97.95 82.06 54.12 28.35 Yes 

2   𝜃1 > 𝜃2 > 𝜃4 > 𝜃3 68.35 94.89 91.71 35.29 62.55 Yes 

3   𝜃1 > 𝜃3 > 𝜃2 > 𝜃4 76.44 93.76 80.36 87.06 58.25 Yes 

4   𝜃1 > 𝜃3 > 𝜃4 > 𝜃2 56.18 96.84 10.98 28.24 23.53 Yes 

5   𝜃1 > 𝜃4 > 𝜃2 > 𝜃3 57.11 87.24 43.61 16.47 69.79 Yes 

6   𝜃1 > 𝜃4 > 𝜃3 > 𝜃2 71.63 79.27 66.51 69.41 75.20 Yes 

7   𝜃2 > 𝜃1 > 𝜃3 > 𝜃4 82.09 89.65 100.00 81.18 67.00 Yes 

8   𝜃2 > 𝜃1 > 𝜃4 > 𝜃3 64.92 75.00 100.00 24.71 50.00 Yes 

9   𝜃2 > 𝜃3 > 𝜃1 > 𝜃4 81.66 75.76 100.00 82.35 72.47 Yes 

10   𝜃2 > 𝜃3 > 𝜃4 > 𝜃1 84.02 61.34 99.98 84.71 73.02 Yes 

11   𝜃2 > 𝜃4 > 𝜃1 > 𝜃3 59.50 35.29 100.00 5.88 54.90 Yes 

12   𝜃2 > 𝜃4 > 𝜃3 > 𝜃1 64.60 42.00 100.00 49.41 57.50 Yes 

13   𝜃3 > 𝜃1 > 𝜃2 > 𝜃4 76.82 84.37 68.74 100.00 59.37 Yes 

14   𝜃3 > 𝜃1 > 𝜃4 > 𝜃2 67.24 85.00 24.99 100.00 40.00 Yes 

15   𝜃3 > 𝜃2 > 𝜃1 > 𝜃4 82.10 73.33 89.99 100.00 69.99 Yes 

16   𝜃3 > 𝜃2 > 𝜃4 > 𝜃1 70.85 3.44 6.88 100.00 4.59 Yes 

17   𝜃3 > 𝜃4 > 𝜃1 > 𝜃2 63.62 45.24 42.85 100.00 50.00 Yes 

18   𝜃3 > 𝜃4 > 𝜃2 > 𝜃1 67.14 39.47 50.00 100.00 73.68 Yes 

19   𝜃4 > 𝜃1 > 𝜃2 > 𝜃3 55.37 44.03 22.87 11.76 95.10 Yes 

20   𝜃4 > 𝜃1 > 𝜃3 > 𝜃2 56.20 72.80 28.03 38.82 79.42 Yes 

21   𝜃4 > 𝜃2 > 𝜃1 > 𝜃3 61.19 62.50 62.50 36.47 87.56 Yes 

22   𝜃4 > 𝜃2 > 𝜃3 > 𝜃1 73.25 62.79 77.90 71.76 86.91 Yes 

23   𝜃4 > 𝜃3 > 𝜃1 > 𝜃2 63.83 56.39 40.98 71.76 89.67 Yes 

24   𝜃4 > 𝜃3 > 𝜃2 > 𝜃1 70.33 51.40 62.83 80.00 92.45 Yes 
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Table 25. Obtained solutions with different values of α with 𝜃1 = 0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15, and 𝛾 = 0.2. 

α-value 𝝀 𝝁𝟏(%) 𝝁𝟐(%) 𝝁𝟑(%) 𝝁𝟒(%) 𝒁𝟏($) 𝒁𝟐(units) 𝒁𝟑(persons) 𝒁𝟒(units) 

0.5 71.16 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,468 
0.6 71.16 100.00 85.71 56.47 42.35 4,842,557.76 841 37 291,471 
0.7 71.16 100.00 85.71 56.47 42.35 4,842,567.11 841 37 291,471 
0.8 71.16 100.00 85.71 56.47 42.35 4,842,571.76 841 37 291,471 
0.9 69.21 97.94 83.93 54.12 40.59 4,940,544.27 946 39 289,451 
1 65.14 91.48 78.41 51.76 38.82 5,248,346.32 1,271 41 287,438 

Usually, in credibility-based fuzzy chance-constrained 
programming, the confidence level is set by DMs. The 
confidence levels (credibility levels) have a significant 
impact on the attainment of solutions because they are 
used to control the allowable satisfaction level of 
imprecise objective functions and imprecise constraints. 
Thus, it is necessary to find how uncertainty affects the 
optimal solutions through the different confidence levels. 

In this sensitivity analysis, the confidence levels of α are 
varied with a step size of 0.1 (from 0.5 to 1), the value of 
the compensatory coefficient is set to 0.2, and the 
importance weights of the objectives are 𝜃1 = 0.35, 𝜃2 =

0.3, 𝜃3 = 0.2, 𝜃4 = 0.15. The result of sensitivity analysis 
with the variation of the confidence level (α) is shown in 
Table 25 and illustrated graphically in Fig. 5. 

 

 
 
Fig. 5. Satisfaction levels of each objective function 

according to the different values of (α). 
 

According to the obtained outcomes in Table 25, it 
highlights that an increment of the confidence level will 
lead to a decrease in the satisfaction levels of all objectives. 

This implies that the actual values of all objectives can get 
worse. The reasons for obtaining worse solutions when 
the confidence level is higher can be explained as follows: 

• When DMs allocate a higher confidence level 
(high credibility) for the fuzzy parameters, the 
DMs focus on the upper point of the fuzzy 
parameter. In other words, if the confidence level 
is set to 1, the used value of the fuzzy parameter 
will be the largest value (pessimistic case). As a 
result, the value of the objectives will be worse in 
the pessimistic case.  

• In addition, there is a trade-off between the 
satisfaction of constraints (the risk of violating 
constraints) and the optimal value of objectives. 
When the satisfaction levels of constraints are 
high, the feasible solution set will be smaller. As a 
result, the optimal objectives become worse. The 
confidence level (here) is denoted as the 
satisfaction level of the constraints. Thus, when 
the confidence level is high (low violation of 
constraints), the value of the optimal objective 
becomes worse. 

Regarding the obtained results of different confidence 
levels, it can help DMs to estimate the possible results 
from the optimistic situation to the pessimistic situation. 
Knowing that, the DMs can take necessary actions and 
with better preparation for these situations in the future. 

 
To explore and realize the influence of the coefficient 

compensation (γ) on the optimal solutions, the value of 
coefficient compensation is varied from 0 to 1 with a step 

size of 0.1, the confidence level (α) is set to 0.9, and the 
importance weights of the objective function are 𝜃1 =
0.35, 𝜃2 = 0.3, 𝜃3 = 0.2, 𝜃4 = 0.15.  Moreover, in the 
process of the sensitivity analysis, as the value of the 
compensation coefficient is set larger than 0.5, this means 

 
Table 26. Results of sensitivity analysis by varying the compensation coefficient (γ). 

γ-value 𝝀(%) 𝝁𝟏(%) 𝝁𝟐(%) 𝝁𝟑(%) 𝝁𝟒(%) 𝒁𝟏($) 𝒁𝟐(units) 𝒁𝟑(persons) 𝒁𝟒(units) 

0 76.34 97.29 83.37 55.29 41.47 4,971,733.43 979 38 290,459 
0.1 72.34 97.11 83.23 54.12 40.59 4,980,150.77 987 39 289,454 
0.2 69.21 97.94 83.93 54.12 40.59 4,940,544.27 946 39 289,451 
0.3 65.47 97.91 83.20 54.12 40.59 4,942,033.27 989 39 289,455 
0.4 62.11 98.10 84.06 54.12 40.58 4,933,022.55 938 39 289,451 

0.5 58.77 96.84 82.98 55.29 41.47 4,993,245.57 1,002 38 290,460 

0.6 80.33 75.43 99.90 100.00 75.43 6,012,784.80 6 0 329,269 
0.7 80.43 76.98 99.97 100.00 76.98 5,938,946.62 2 0 331,038 
0.8 78.46 76.06 100.00 100.00 76.06 5,982,793.50 0 0 329,991 
0.9 77.13 75.98 100.00 97.65 75.98 5,986,879.89 0 2 329,897 
1 77.36 77.36 91.00 77.65 77.36 5,920,829.06 530 19 331,479 
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that the DMs will pay more attention to the balanced 
solutions (there is no priority for any objective – all 
objectives are treated equally). Thus, the consistency of the 
solutions is not considered. In contrast, if the value of the 
compensation coefficient is set smaller at 0.5, this implies 
that the DMs are interested in the unbalanced solution 
(The priority of objectives is considered). Therefore, the 
consistency of the solutions will be taken into account. 
The obtained satisfaction levels and the actual values for 
all objective functions by doing sensitivity analysis with the 
compensation coefficient are presented in Table 26. A 
spectrum of unbalanced and balanced compromise 
solutions based on the preferences of DMs is illustrated 
graphically in Fig. 6. 
 

 
 
Fig. 6. Satisfaction levels of each objective function 

according to the different values of (γ). 
 

Based on the obtained outcomes and the above 
discussion, it could be concluded that the proposed 
approach possesses some advantages as follows: 

• As compared with traditional defuzzification 
methods (e.g. fuzzy ranking method, average 
weight method), the fuzzy ranking method can 
separate the fuzzy numbers into different 
corresponding scenarios. The weighted average 
method just converts a fuzzy number into a crisp 
number by assigning weights to the possible values 
of fuzzy numbers. Since these methods are 
conducted at the beginning of FLP process (too 
early), therefore, the attributes of fuzzy data totally 
disappear and no information about the likely 
violation of constraints (feasibility concept) is 
provided. In contrast, based on the relation of the 
two fuzzy sets under the credibility measure, FCCP 
used in this study can assist DMs in controlling and 
analyzing the fuzziness level of fuzzy constraints 
(the risk of constraint violation) by a sensitivity 
analysis or interactive decision-making process. 

• The approach brings computational efficiency 
because it still maintains the linearity and does not 
increase the number of objective functions and 
constraints. Therefore, it can be used for solving 
a large scope of fuzzy programming models.  

• The approach can be used for different types of 
fuzzy numbers (i.e. triangular, trapezoidal). It can 
also be used for nonlinear membership functions, 
and both in symmetric and asymmetric forms. 

• This is a robust and reliable approach because the 
obtained solutions are always consistent with the 
expectation of DMs for the matter of the 
homogeneity between the satisfaction level of the 
objectives and their importance weights. 

• The approach can generate efficient solutions and 
yield both unbalanced and balanced compromise 
solutions according to the preferences of the 
DMs. 

• By using different sets of controllable parameters 
such as the importance weight of objectives 

(𝜃ℎ), confidence levels (α),  and compensatory 

coefficient (γ),  it can yield many efficient 
solutions. This feature is evidence to show the 
high flexibility of the proposed approach. 
 

7.4. Managerial Implications 
 
Throughout this study, several managerial and 

business insights for operational planners or managers 
could be drawn as follows: 

In practical applications, the credibility level (α) can 
be used to reflect the occurrence of a fuzzy event and can 
represent the uncertain parameters in the fuzzy model. By 

setting credibility levels (α), the uncertain parameters can 
be converted into crisp analogous parameters, and all of 
the crisp parameters can create a deterministic system 

scenario. With each credibility level (α) , there is a 
corresponding scenario and a set of optimal results 
(operational decision variables). Being aware of many 
scenarios, the planners or managers can make effective 
operational and strategic management plans for any 
changes in the future. 

In general, the higher the credibility level is, the more 
satisfied the DMs are with the constraints. This leads to 
higher confidence in the planners or managers for the 
obtained optimal results. In the credibility theory, 
decreasing the credibility level in the fuzzy chance 
constraints will lead to an increase in the right-hand side 
parameters and a decrease in the left-hand side parameters 
of the constraints. Hence, the feasible solution region will 
be extended. As a result, better optimal solutions can be 
more easily found. Usually, the right-hand side parameters 
of the constraints represent the available resources of the 
company, but the resources are not free. They have costs. 
To enhance the available resources, the company needs to 
spend more on investing in the company’s resources. 
Consequently, there exists a trade-off between the 
credibility level and the gained benefits. Based on the 
trade-off analysis, the planners or managers can choose a 
suitable plan or policy by considering comprehensively 
between the acceptable credibility levels and the gained 
benefits. 
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From the perspective of making decisions under the 
consideration of multiple conflicting objectives at the 
same time (there exists a trade-off between objectives), 
this study provided a fuzzy solution that can achieve both 
balanced, unbalanced, and consistent compromise 
solutions among the conflicting objectives. Hence, it is 
very helpful for the planners or managers in selecting 
satisfactory solutions under a company’s policies. 

 
8. Conclusions, Limitations, and Further Work 

 
Uncertainty of data and conflicting objectives are two 

main features that should be addressed in the aggregate 
supply chain planning problem. In this study, a multiple- 
objective optimization model in an uncertain environment 
for aggregate production planning in a supply chain was 
investigated. To make the APP problem more effective, 
informative, and compatible with a real-life environment, 
the APP problem was integrated into a Supply Chain (SC) 
including a production plant, multiple suppliers, and 
multiple customers. Besides, several important problems 
such as multiple products, product characteristics, and 
labor characteristics, are embedded in the proposed model. 
Since the APP problem was considered in the SC, the 
aggregate plan has not only production plan, but also 
includes procurement plan and distribution plan. The 
proposed APP model considered simultaneously four 
conflicting objective functions, which minimize the total 
cost of the SC, minimize the total shortage of products, 
minimize the variation in the workforce, and maximize the 
total value of purchasing. The proposed model is 
formulated as a Fuzzy Multiple-Objective Mixed-Integer 
Linear Programming (FMOMILP) model. 

A comprehensive Credibility-based Fuzzy Chance-
constrained Programming (CFCCP) approach for dealing 
with the uncertainty of data was presented. It indicated 
that CFCCP can handle the uncertain parameters that 
appear in any positions in the fuzzy optimization model 
such as the objective function and constraints (one side 
and both two-sides of the constraints). In addition, it also 
yields a confidence level for the obtained optimal solutions. 

In practical applications, the importance of objectives 
is not treated equally. Therefore, it is necessary to assign 
importance weights to the different objectives. Although 
the weights are assigned to indicate the importance of the 
objectives, they still cannot ensure that the obtained 
solutions totally satisfy the decision-makers as their 
expectations (the obtained solutions are not consistent 
with the preference of the DMs). In the proposed model, 
weight-consistent constraints were integrated to guarantee 
that the obtained solutions are consistent with the DM 
expectations (the ranking of the objective satisfaction 
levels must be the same as the ranking of the objective 
importance weights). 

In summary, to cope with the proposed fuzzy 
MOMILP model in this study, a hybrid approach with a 
two-phase solution was developed. In the first phase, to 
deal with the fuzziness of parameters, Credibility-based 
Fuzzy Chance-constrained Programming (CFCCP) was 

applied to transform the fuzzy multiple-objectives 
optimization model into the corresponding crisp multiple 
objectives model. With CFCCP, it not only deals with 
imprecise parameters represented as fuzzy sets, but also 
controls the different confidence levels in the satisfaction 
of the imprecise objective functions and imprecise 
constraints. In the second phase, Fuzzy Multiple-
Objective Programming (FMOP) integrating the concept 
of the weight-consistent solutions was applied to solve the 
crisp credibilistic multiple-objective model. Adding the 
weight-consistent constraint into the model can ensure 
that the obtained results will totally satisfy the expectations 
of decision-makers in terms of the consistency between 
the objective satisfaction and the objective importance 
weight (i.e. 𝜇1 ≥ 𝜇2 ≥ 𝜇3 ≥ 𝜇4  in accordance with 𝜃1 ≥
𝜃2 ≥ 𝜃3 ≥ 𝜃4). Moreover, the objective function of FMOP 
is an aggregation function. Thus, the proposed model can 
generate both balanced and unbalanced compromise 
solutions. 

From the obtained outcomes of the proposed model, 
it showed that the proposed hybrid approach is very 
effective. For the matter of optimizing under uncertainty, 
this method can solve and bring efficient solutions with 
pre-determined confidence levels in an uncertain 
environment. For the matter of conflicting objectives, this 
method can produce consistent-solutions, balanced 
solutions, and unbalanced compromise solutions based on 
the preferences of the DMs. Besides that, it also offers 
high flexibility for yielding different efficient solutions to 
support decision-makers in selecting the final preferred 
satisfactory solution. 

Any parameter that may affect the results of planning 
can be considered as a fuzzy number. In fact, there are 
no restrictions on the number of fuzzy parameters that 
can appear in the proposed approach. However, except 
for the operational costs in the objective function, there 
are several parameters in the constraints that are 
considered to be fuzzy numbers. This is also a limitation 
of this study. 

In future research, it is possible to embed some more 
important issues of APP in the proposed model such as 
multiple production plants, varying lead time, labor skills, 
time value of money, etc. Also, taking into account the 
modeling perspectives of the supply chain, one more 
echelon (distribution centers) can be added to the supply 
chain network. This is because the final products should 
be delivered from the distribution centers instead of being 
transferred directly from the production plant. From the 
perspective of solution methodology, once the problem 
becomes more complicated or is too large, various 
heuristic or evolutionary approaches such as genetic 
algorithms should be considered in future research work. 
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