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Abstract. BPMN model is used in software development process that the procedural logics 
of software are described in term of graphical representation. Formal verification using 
colored Petri net (CPN) can be used to prove whether a designed BPMN model is frees of 
undesirable properties such as deadlock and unreachable task, and meets user requirements 
or not. Although there are many researches providing the transformation rules and 
frameworks for automating and verifying the CPN model, the CPN markings determination 
covering all execution paths is quite cumbersome. This paper proposes an automated 
BPMN verification framework that integrates the BPMN modeling tool and the CPN model 
checker together. The designed BPMN model is transformed into a CPN model and control 
flow graph (CFG). The CFG is used to create the execution paths and to find the interleaved 
activities. The interleaved activities are then considered for creating the CPN port places 
and markings by an applying of the branch coverage testing technique. Behaviors of the 
CPN model are analyzed by using a state space analysis based on the CPN model and 
automated markings. Our framework has been implemented as an Eclipse BPMN modeler 
plugin, and it is tested with the five case studies. The results show that our framework is 
practical. It can automate the CPN models from the BPMN model and guide the designers 
regarding the CPN markings determination to achieve branch coverage criteria. 
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1. Introduction 
 
The model-based design using BPMN primitives [1] 

is a graphical representation that has been widely used for 
portraying the software behaviors. BPMN has become the 
de-facto standard for specifying about operational control, 
signal processing and system communication. The model 
checking [2] using a colored Petri net [3-5] can be applied 
to prove the behaviors of BPMN model. The model 
checking procedures consist of the elaborate stages such 
as the CPN model abstraction, state space generation and 
state space analysis. Especially, the token determination or 
markings initiation on a CPN model requires an 
instruction during the verification process. It is an 
important stage to ensure that the designed BPMN model 
is exercised accordingly to the coverage criteria 
determined. These procedures become difficulty even if 
the modelers get familiar with the model checking tools. 
Because the isolation of BPMN modeling tool and model 
checker tool leads to a complicated configuration, for to 
agree with.  

The BPMN modeling tool should be enable to design 
the BPMN model and to verify the model behaviors in the 
same tool in order to avoid the mentioned obstructions. 
And the tool should automate the CPN markings 
following the modeler needs. An automated system using 
meta-models and intermediate data mapping can be used 
for mapping the BPMN model into CPN models. For 
instance, control flow graph (CFG) [6] is used to be a 
meta-model between the BPMN model and the CPN 
target models because their graphs are isomorphic. In 
software testing disciplines, we can generate the test cases 
based on an execution path and execution scenario of 
BPMN model by using its CFG. Whereas a set of test data 
can be generated from the ground-truth data of an existing 
system.  

Thus, we believe that the CFG and software testing 
techniques can reduce an operating cost and can make the 
verification easier for the BPMN model verification. The 
contribution of this work is to provide an alternative 
fashion and framework for the BPMN model verification 
archiving branch coverage criteria (BCC). A framework is 
implemented as an software extension running on Eclipse 
BPMN Modeler 2.0 [7] and CP4BPMN [8] APIs.  

The organization of this paper is as follows. Section 
II describes the backgrounds of software testing technique 
and model checking technique. Section III reviews the 
related works. Section IV demonstrates the methodologies 
to execute each checking approach and discusses the its 
advantages and limitations. Section V is the study’s 
conclusion. 
 

2. Background 
 
This section describes background of the BPMN 

model, software testing and model checking approach. We 
detail branch coverage testing, model checking using Petri 
net and colored Petri net that is the popular formal 

modeling languages for design and analysis a distributed 
system or concurrent system. 

 
2.1. Business Process Model and Notation 

 
Business Process Model and Notation [1, 9] or BPMN 

is the de-facto standard for business processes design. It 
provides a set of notations supporting the modeling of a 
business process in both the low-level design and high-
level design. The notations of BPMN are extended from 
the elements of UML activity diagram, Flow chart, Data 
flow and BPM. In a low-level design or domain analysis, 
BPMN is used to describe the procedural logic of a system 
that consists of control flows, data flows, data objects. The 
advantages of BPMN model are a simple graphical 
representation and there are the BPMN modeling tools 
advocating an executable BPMN design. The core 
elements of BPMN are shown in Fig. 1, partitioned into 
the six groups as follows: 

 
1) Activities or tasks: an activity in a BPMN model 

represents an action or a task that will performs or will 
be executed when its resources is ready. In an 
executable BPMN model, the task execution is 
controlled by an BPMN engine. The input data objects 
and output data objects of the task may or may not be 
defined, which they are the data constraints of the task. 

2) Events: event nodes are separated into three main 
types: Start, Intermediate, and End. For representing the 
run-time catching or throwing of a system, the event 
node is determined to be the boundary event attached 
in a task or the grouped tasks called a sub-process.  

3) Gateways: a gateway is used to be a control flow. The 
gateway can be used together with the guard condition 
expressions that are defined on the outgoing arcs to 
represent the branching and synchronization of process. 
The data-based gateway is that the data through the 
gateway, which they may come from the input or 
output data objects. Whereas the event-based gateway 
is used for branching a process only, by an event on the 
outgoing arcs of the branching event-based gateway 
wait for triggering of other tasks or performing of a 
time counter. 

4) Pool and lane: a pool is used to partition a group of 
processes, grouped by the participants or organizations. 
While a lane is used for determining a scope of the 
process partitioned by the resource roles. 

5) Connecting elements: a sequence of the task 
execution is determined by a connecting element called 
Sequence flow. The connecting element connecting 
between a task and data object is called Association, and 
an interaction crossing the pools is named Massage flow.  

6) Artifacts: a data object is connected to the task by the 
association flow, representing the input and output data 
of task. If the communications of the processes cross 
the pools, the data object sent or data object received is 
represented by using a Message notation.   

 
In the domain analysis, the procedural logic of a 

process is described in low-level abstraction. The resource 
constrains determined in the model are the input and 
output data objects, messages, and resource roles.  
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Fig. 1. Core elements of BPMN [9]. 

 
The operations of the model may rely on the variables 

in the resource constraints and other relevant data. Most 
BPMN modeling tools provide the available 
functionalities for simulating the model’s behaviors. The 
executable BPMN model will be tested by running on an 
BPMN engine to execute the designed BPMN model and 
to monitor the variables during the model execution. 
However, there are certain limitations regarding an 
analysis the low-level designed model. The BPMN 
modeling tool provides the simple test functionalities, but 
they cannot find the specific part in the model such as an 
unreachable task and process termination. And they 
cannot be used to assert the model’s behaviors related to 
the propositions qualified in term of time such as the 
invariant checking, loop, including the parallel execution. 
These behaviors can be verified in the model checking 
tool. Thus, there are many researchers [10-13] providing 
the approaches for analysis the specific properties of the 
BPMN model by using the computer aided verification 
(CAV) [14].  

 
2.2. Properties of BPMN model 

 
The desirable properties of BPMN model are that the 

model frees of anomalies causing a system crash, and the 
model behaviors must conform to the requirement 
specification. There are several mistakes that result in the 
unsatisfied behaviors, which are the results of the syntactic 
anomalies and structural anomalies. 
• Syntactic anomalies: There are the two syntactic 

anomalies: incorrect usage and improper usage. The 
incorrect usage of BPMN elements is the main cause of 
syntactic anomalies. For example, the Start and End 
event is specified at an improper location or the model 
does not appear the Start event and End event. The 
improper usage is that the notation activities, gateways, 
connecting elements and pool are represented 
inconsistently in meaning such as the incorrect use of 
the User task having a sent message cross the pools. 
The User task must be replaced by the Sent task.  

• Structural anomalies: the usage of incorrect gateway 
and uninterpretable conditions on the outgoing 
sequence flows of gateway is the main cause of 
structural anomalies. The incorrect gateway results in 
an undesirable property, starvation problem, deadlock, 
and infinite loop. The deadlock in a BPMN model 
occurs when an activity has more than one incoming 
sequence flows, but one of them does not provide a 

token to synchronize and perform an execution. an 
unreachable activity or dead activity is that the task’s 
execution is impossible because the task is without an 
execution path from the Start event to itself. The 
incorrect use of parallel gateway may lead to a lack of 
synchronization as well. In this case, the BPMN model 
produces many process instances but they cannot 
complete the process execution because of the loose 
synchronization. The lack of synchronization may lead 
to deadlock problem and unsatisfied soundness 
property [15, 16], whereas the infinite loop is the result 
of the incorrect guard expression on the gateway. 
 

2.3. Software Testing for BPMN design 
 

Software testing can be applied to find the defects in 
BPMN model, which the BPMN model’s behaviors are 
proved by an execution the BPMN model with the test 
cases. A test case is composed of the preconditions, test 
inputs, expected outputs, and postconditions. The 
number of the cases is based on the testing style and 
coverage criteria used. This paper applies white-box 
testing [17] with branch coverage criteria [18] to generate 
the token colors or markings for the CPN model.  

The branch coverage or condition decision coverage is 
one of the test coverage metrics. The definition of branch 
coverage is that all outcomes of the control statements or 
decision nodes must be evaluated at least once, and every 
node in the model must be evaluated at least once as well. 
A sequence of the BPMN elements, the execution path is 
an important representation for considering whether a set 
of test cases relates the coverage metric used or not. The 
execution path can be generated from the CFG that 
corresponds to the given BPMN model. A control 
statement of the CFG is the node mapped from the 
BPMN gateway element.   

 
2.4. Model checking using colored Petri net 

 
Model checking is one of the computer aided 

verifications (CAV). A model checking tool usually 
provides both the verification mode and simulation mode 
for an analysis the model’s property. To check the model 
properties, the property specification language such as 
Linear Temporal Logic (LTL) and Computational 
Temporal Logic (CTL) [19, 20] is used to describe an 
expected behavior. If the model holds the expected 
behavior, the tool reports the satisfaction. In contrast, the 
tool shows the violating states and their counterexamples.  

Petri net [21] or classical Petri net is a mathematical 
modeling language for describing and checking the 
concurrency and distributed system. The Petri net-based 
languages are classified into two main groups: the low-
level Petri net and high-level Petri net. A formal model 
described by a Petri net-based language is usually called 
“net model”.  

The core elements of Petri net are Place, Arc, 
Transition, and Token. A circle place represents a system’s 
state, containing a discrete number of tokens. 
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Fig. 2. The elements of the Petri net and CPN [22]. 
 
Between the place and squares transition is connected with 
a directed arc. The transition will fire the tokens if it has 
enough tokens on the input places, which the transition’s 
firing represents a state change of a system. Figure 2 shows 
the core elements of Petri net and colored Petri net. 

Colored Petri net or CPN [4, 22] is an enhancement of 
classical Petri net. It is one of high-level Petri net languages, 
combining a strength of Petri net and programing 
language. CPN preserves useful properties under the Petri 
net primitives and the extended formalism that allow the 
distinction between tokens, parameterization, and 
compact model. The primitive data type of CPN is called 
a “Color set”, and the functional programming are useful 
attributes for a token distinction and a multiscale modeling. 
The color set can be determined as the place’s type to be 
a domain constraint. It collects the token’s value that is 
called a “Token color”.  The token(s) in the place must be 
consistent with the place type.  Programming expression 
on the transition, arcs and data manipulation functions of 
the model is called a “Model inscription”. The modelers 
can also configure the CPN model in hierarchical structure 
to help them to design the intricate model easier. 

A labelled transition system of a net model, the 
reachability graph [23, 24] is a set of all possible cases 
derived from a performing or simulating the model’s 
behaviors with the initial markings. It is sometimes called 
the state space graph that acts as the execution logs.  The 
state space graph is used for a finding the undesirable 
states. The reachability graph of a CPN model is generated 
by the state space generator. Next, the desirable property 
expressed in term of the temporal logic formula is 
interpreted by the temporal logic parser, and the model 
checker finds the erroneous states in the state space graph. 
This technique is commonly known as the model checking 
using the state space analysis [25].   
 

3. Related works 
 

Over the past decade, many researches proposed the 
methods, testing tools, and frameworks for testing the 
BPMN model. Most researches emphasized a testing of 
the executable BPMN model running a BPMN engine 
plugin. Each research provided the alternative ways for 

generating the test cases based on the coverage criteria, 
and there are researches implementing the frameworks for 
monitoring the execution’s results.  

The work of [26], the test cases generation technique 
was proposed for a functional testing of the BPMN 
models. Test scripts are created form the execution paths 
of the model. This technique is the use of web-based 
testing tools named Selenium and Cucumber. This work 
does not support the low-level BPMN design because the 
data flows in the BPMN model are not be handled. Lübke 
et al. [27] proposed an applying the behavior driven 
development (BDD) and the process hub architecture for 
testing the business process model. The web service-based 
hub is implemented as an interaction controller. It 
addresses the model under test by the BPEL unit test suite. 
BDD is used to be a bridge communication among 
stakeholders by representing a BPMN process in a 
graphical Domain-specific language (DSL) in order to 
describe the context of BPMN model, and the test data 
and assertions of the model. Next, the context in the 
model was interpreted and tested in BPEL unit test suite. 
This is exercised with the black-box testing method, this 
technique is appropriate for functional testing. The works 
of [28, 29] proposed the automated frameworks with the 
BPMN suites Camunda [30] and GAmera [31] for the test 
case generation and test environment configuration. The 
frameworks reduce the time-consumption and be able to 
interactively monitor the model execution. These 
frameworks are valuable for the tester who are interested 
in the automated test programs. 

Yotyawilai et .al [32] designed a tool for creating the 
test cases from a BPMN model. The obtained test cases 
are generated from the control flow graphs corresponding 
to the BPMN model, which the test cases satisfy the 
statement coverage criteria. Data objects and variables in 
the BPMN model were considered to create the test input 
data. The authors manually defined the boundary values 
of test inputs. Likewise, the work of [33] provided a tool 
for creating the test cases from BPMN model with BPEL 
model. The BPEL model acts as an implementation of a 
BPMN activity. All the elements of both BPMN and 
BPEL models are extracted, next they are used for creating 
the control flow graphs, test scenarios and test input data. 
The authors detailed and illustrated their framework with 
few case studies.  

In the model checking area, the model checkers have 
been increasingly used for finding the mistakes in the 
BPMN model. Since the verification procedures is quite 
intricate, many researches provided the solutions and 
frameworks for reducing a complexity of each verification 
stage. Most of researches emphasized on the automated 
verification frameworks and the specific algorithms to 
alleviate the space explosion problem. Wang et al.[29] 
proposed the test case generation of the BPEL model. The 
authors used the CPN primitives for designing the process 
flows of BPMN model. The simple mapping rules of 
BPMN into the CPN model are provided, and the test 
scenario and test input data are generated from the 
consideration of BPMN control flow. The test scenarios 
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and test data are taken to be the corresponding markings 
of the CPN model. 

Brumbulli et al. [34] provided the verification tool, a 
combination of OBP verification tool and the BPMN 
modeling tool. The message sequence chart and the 
property sequence chart are used to explore the goal states 
in the model. The model’s properties are expressed in 
either LTL or Büchi automata form. The authors were 
focused on a communication verification, which the 
BPMN model under verification contains the pools and 
message flows. Flavio et al. [35] implemented a tool named 
BProVe for verifying the business process models. The 
authors extended the analysis feature for the task 
management and the task’s state evolution, which the 
BPMN model is encoded and verified by using the 
rewriting logic with MAUDE. Although their framework 
is a precious strategy, it supports the checking of the 
control flow of the BPMN model only. The work of [8] 
proposed the Petri net-based verification framework for 
checking and analyzing the BPMN model. The authors 
detailed of the mapping rules of the BPMN elements into 
CPN models, and the state space techniques are illustrated. 
Their techniques and the tool support an analysis of the 
control flow and data flow in the BPMN model, but the 
tool cannot edit and simulate of the CPN model. 

The work of [36] proposed the mapping rules of the 
BPMN model in to a formal model written in Event-B. 
Although Event-B with Rodin platform is a plaintext 
package, the expression of the BPMN structure and 
behavior is readable. This work handles both the control 
flow and data flow analysis. However, the verification 
using Event-B is appropriate for the modelers who expert 
in the mathematical proof. Yamasathien et al. [37] 
provided an approach to create the Promala model from 
the BPMN model. The mapping rules of the BPMN 
control flows into the formal model represented in the 
Promela programing language are provided. SPIN 
framework is used for an analysis of the BPMN model 
based on the business workflow patterns, but this work 
illustrates with few simple workflow patterns. Vincenz et 
al. [38] implemented the framework for verifying the 
control flows in the BPMN model. The framework is a 
colored Petri net-based application. The BPMN model is 
automatically translated relied on the Petri net meta-model 
and the mapping rules. The resource’s properties and the 
user roles in the designed BPMN model are specified in 
CPN ML [39]. The CPN-ML properties can also be 
translated into the Promela models, and be verified by 
using SPIN model checker. These verification techniques 
are appropriate for the high-level abstraction model only 
because the authors did not concentrate on the data 
objects and data flows.   

Due to the difficulty of the property expression in a 
temporal logic form, the work of [40] implemented the 
Graphical-CTL plug-in for the Eclipse-based application. 
The intermediate model is designed in the backend system 
process. The states of the BPMN model and the Graphical 
CTL specification are translated into the automata. The 
automata are taken to be the inputs of the model checking 

tool. The model checker returns the checking results back 
to the designing tool. This work is focused on an 
integration of the modeling tool and model checker only, 
and the tool does not allow the data flow verification. And 
there are many research studies [12, 41-44] that provided 
the formal model representations described in other 
formal languages. The representations are used in diverse 
verification frameworks such as UPPAAL [45], LoLA [46], 
ProM [47], NuSMV [48] and Eclipse BPMN modeler 
plugin. These works are precious strategy and viable 
alternative ways for the analysis of low-level abstraction 
BPMN model. 
 

4. Automated framework of the BPMN model 
verification 

 

Our verification framework is shown in Fig. 3. It is 
composed of the four core processes: 1) the 
transformation of the BPMN model into CPN model 2) 
the CFG generation and the creation of execution 
scenarios from the CFG 3) the generation of the CPN 
markings and 4) the state space generation and 
exploration. The formal definitions used for representing 
the relationships of the corresponding models are 
described in subsection 4.1. The details of our verification 
processes are in subsection 4.2 -4.6.  
 

4.1. Formal definitions  
 

Definition 1: a process model described by using BPMN 
is a tuple BPMNM = (Nt, At, Ft, Gw, Fw, Fd, Es, Ee, Ie, Sf, 
Fp, Vr, Do, Af, Lp, Ln, Mg, Mf) where: 

Nt is a finite set of BPMN nodes.  

At is a finite set of activities, At ⊆ Nt. For ai ∈ At, ai 
= (Name, Marker, refID), where ai.Name means the name 
of activity, and ai.Marker is the task’s marker composed of 
Loop and Multi instance, and refID is the reference 
number that is automatically generated by the modeling 
tool.  

Ft is a mapping function, Ft: At → {user task, service 

task, business rule task, manual task, undefined type}. 

Gw is a finite set of gateways, Gw ⊆ Nt.  
Fw is a mapping function used to indicate the gateway’s 

type, Fw: Gw →{ex: exclusive, in: inclusive, pa: parallel, eb: 

event based, cx: complex}. 
Fd is a mapping function used to indicate the direction 

of gateway, Fd: Gw → {div: divergent, con: convergent}. 

The gateway must be responsible either for the diverging 
or converging. 

Es is a finite set of start events. 
Ee is a finite set of end events.  
Ie is a finite set of intermediate events. 

Sf is a finite set of sequence flows, (At × At) ∪ (Ie × 

Ie) ∪ (At × Gw) ∪ (Ie × Gw). For the sequence flow 

that relates to the activity, the indegree and outdegree of 
the activity must be one.  



DOI:10.4186/ej.2021.25.2.135 

140 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/) 

Fp is a labeling function that is used to indicates the 
condition expression on the outgoing sequence flow of a 

gateway, Fp: (Gw × At) → “Guard label”. 

Vr is a set of variables.  
Do is a set of input and output data objects of the 

activity. 

Af is a set of association flows, (At × Do) (At × Do). 

Lp is a set of pools. 
Ln is a set of lanes. 
Mg is a set of messages, in which the values are assigned 

and sent through the declared variables.  
Mf is a set of message flows crossing between pools.  
Fm is a mapping function that is used to indicate the 

message attached in the message flow, for mg ∈ Mg,  

Fm: Mf → mg. 

 

For xi ∈ (At ∪ Gw), the function anc() and suc(): xi →
2Nt, which yields the ancestor nodes and the successor 
nodes, and the function loc() is used to indicate the lane 
and pool of the node xi. 
 
Definition 2: Control flow graph is a 3-tuple, CFGM = 
(N, Ed, Fn) where: 

N is a finite set of nodes, for ni ∈ N, ni = (Name, 
OriginRef, SrcList, DesList, Lane, Pool), where ni.Name 
is the node’s name that is mapped from the name of a 
BPMN activity. ni.OriginRef means the original BPMN 
reference ID, and  SrcList, DesList are the list of the 

source and destination nodes of ni, while Pool and Lane 
indicate the node’s locations, which Pool and Lane will be 
used in a creation of the CPN construct scope. 

Ed is a set of edges, Ed ⊆ (N ×N). 

Fn: N→  {Process-block, Decision, Conjunction, 

CoBegin, CoEnd}, is a node function to assign the type 
for each node. The CoBegin and CoEnd are additionally 
defined for mapping the parallel gateway and inclusive 
gateway. 

 
Definition 3: CPN graph is a 9-tuple, NetG = (Pp, Tt, 
Aa, Fw, Cc, Vv, Fg, Fa, Fi) where: 

Pp is a finite set of places. 
Tt is a finite set of transitions.  
Aa is a set of arcs, (Ss × Tt) ∪ (Tt × Ss). 

Fw: is a weight function to assign the weight to each 

arc, Aa → ℕ is a non-negative integer weight. 

Cc is finite set of color sets. 
Vv is a finite set of typed variables. 
Fg is a guard labeling function used to assign the guard 

condition to each transition. Fg: Tt →  “conditional 

expression” that the interpretation result Fg(Tt) is Boolean. 

Fa is an arc expression function, Fa: Aa →  “arc 

expression”.  

Fi is a marking initialization function, Fi: Pp → 

“marking expression”. 
 
 

Fig. 3. Overview of our verification framework.  
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4.2. Control flow graph creating 
 

The BPMN model stored in XML format and its meta-
data declared in XSD files will be extracted and 
transformed into a CFG and CPN model by using an 
XML parser and the extensions of the BPMN 
transformation rules that are implemented in CP4BPMN. 
We redesign the transformation rules and transformation 
process by a simultaneous automation of the CFG and the 
CPN model. Next, the CFG will be considered for 
generating the execution paths, snapshots, and scenarios. 
The transformation rules of the BPMN elements into 
CFG are as follows.  

 Rule No.1: If the BPMN model comprises multiple 
pools, the obtained CFG is the multiple sub-CFGs that 
are petitioned by such pools.   

Rule No.2: (tasks and events transformation): For 

each BPMN activity xi ∈ (At ∪ Es ∪ Ee ∪ Ie), it is 

mapped to be the CFG node ni ∈ N. The name of the 
node xi and the node’s properties comprising of the 
ancestor nodes, successor nodes, locations are defined by 
the model data that are extracted and stored in a model 
repository. And the type of the node ni will be determined 
as the Process-block. 

Rule No.3: (gateways transformation): divergent 
exclusive gateway, event-based gateway and complex 
gateways are mapped into the Decision node. A 
convergent exclusive gateway is mapped into the 
Conjunction node. A divergent inclusive gateway and 
divergent parallel gateway are mapped into the CoBegin 
node. pWhile the convergent inclusive gateway and 

divergent parallel gateway are mapped into the CoEnd 
node. 

Rule No.4: (sequence flow transformation): For each 

sequence flow si ∈ Sf, it is mapped into the edge of 
CFG.  
Figure 4 shows an example BPMN model and the 

artifacts derived from our transformation process. The 
CFG shown in Fig. 4 (b) will be taken to explain how to 
automate the execution paths, scenarios, and net markings.     

 

4.3. Execution Paths Creating 
 
As the CFG in Fig. 4 (b), it can be observed that its 

structure and the BPMN graph are isomorphic. We apply 
the path testing technique with the consideration of DD-
paths and branch coverage criteria to generate the possible 
execution paths from the CFG. Algorithm for generating 
the execution paths is listed in Algorithm 1. The algorithm 
supports the BPMN models designed in the single process 
and multiple processes, which the processes are portioned 
by the pools. The execution paths will be computed based 
on the branch coverage criteria. On line numbers 7 to 10, 
the core execution path is constructed by using the 
backward graph traversal algorithm, which the end node 
in a pool is retrieved at first, and the consecutive ancestor 
nodes of the end node be continuously traversed until the 
ancestor nodes is the Start node.  The core execution path 
stored in a list is taken to be the first path for creating 
other paths. The decision nodes in each path are forward 
traversed from the start node. On line numbers 12 to 20, 
the decision nodes in the considered execution path are   
pointed out, and the node sequence from the start node 

 
Fig. 4. An example of the ordinary BPMN model and its graphs derived from applying the transformation rules. 
(a) The cash withdrawal process [49] described by BPMN; (b) the CFG of the model in (a); (c) The execution 
paths of the CFG in (b) with the branch coverage consideration; (d) The CPN model derived from the 
transformation of the BPMN model in (a). 
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to such decision node is duplicated to be the execution 
sequence of the new path. On line number 14, all the 
outgoing edges of decision node are traversed throughout 
the end node. The number of execution paths will be 
increased if the number of the outgoing edges and 
successor node that does not exist in the earlier execution 
paths. If all the outgoing edges of decision node is 
considered already, the decision node must be flagged to 
be passed, and the next decision node will be considered. 
After all the decision nodes in the considered execution 
path are traversed, the path will be flagged to be the 
completely considered execution path. The execution 
paths of applying the algorithm to CFG in Fig.4 (b) are 
shown as Fig.4 (c). The node sequence in each execution 
path will be used to generate the CPN markings. The 
marking generation technique is described in subsection 
4.6.   

However, the derived execution paths may have the 
tasks that involves the parallel process block. As the 
execution paths EP[2] and EP[3] in Fig.4 (c). They have 
the parallel block containing the task J, K and L, all of 
them will be considered as the sub-execution path. The 
tasks in the sub-execution are grouped into one node.  
Thus, the paths EP[2] and EP[3] will be reduced in to one 
execution path because they have the same node sequence.  
 

4.4. CPN model generating 
 
The CP4BPMN tool can be used to map nearly all 

BPMN elements into the classical Petri net and CPN 
model. The details of the transformation rules of 
CP4BPMN are described in [8]. However, the automated 
verification process requires the port places and markings. 
They represent the interruption of the users or the outside 
services to drive the verification process. We extend the 
transformation rules by adding the input place to be the 
port place into a CPN construct. This technique is to 
represent an interleaving of the user or service task. The 
extended transformation rules are detailed as follows.  

1) For each BPMN activity ai ∈ At and Ft(ai) → 

{user task, manual task}, the CPN place representing the 
interleaved state is added into the CPN construct. The 
added place is a vital place for containing the test input 
data or the marking to drive the model execution. We call 
the added place as a “port place” The data type or color 
set of a place will be mimicked from the XML meta-data 
or the input data object of task. Figure 5 illustrates the 
CPN construct and its port place highlighted in blue. 

2) For each receive task, the port place is added and 
connects to the corresponding transition. The color set of 
the port pace is mimicked from the data object attached 
on the incoming message flow. While the variables in the 
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input data of the task and the data sent form the ancestor 
task will be composed and expressed on the input arc of 
the transition. Figure 6 shows the CPN construct derived 
from the transformation of the receive task.  

3) To map the Service task, we apply the existing 
rules by replacing the output place of the corresponding 
transition with the port place. Generally, the output arc 
carries out the token colors to the output place. The 
replaced port place will be used for a manual manipulation 
the token colors, which the token colors manipulated 
represents the results of the service task. This technique is 
crucial for the dummy service. Figure 7 shows the CPN 
construct derived from the service task transformation. 

4) The transformation rule of the Intermediate catch 
event is revised by the port place that represents a catching 
of the data objects or of the triggering signal. The data 
object in a message will be mimicked to be the color set of 
the port place. The variables of other data objects (*) that 
are sent from the ancestor task are extracted and expressed 
on the input arc of the transition. Figure 8 shows the CPN 
construct derived from the intermediate catch event 
transformation.    

 
4.5. CPN markings creating 

 
This section details about the CPN marking 

determination based on the obtained execution paths, 
CPN model, and the test data. The markings are useful for 
the data-driven verification. The marking will be entered 
into a CPN model before verification. The input data for 
generating the marking are usually recorded in a model 
repository or an excel file. We call the CPN model and its 
markings as the “CPN instance”. Next, we use the model 
checking tool to generate the state space graph of each 
CPN instance, and integrate the obtained state space 
graphs together. The details of the CPN instance 
generation and CPN markings are composed of three 
steps. We exercise all these steps in each execution paths. 
The processes of the CPN instance generation are as 
follows:   

1) Choose an execution path.  
2) Find the segments in the chosen execution path 

in order to build the verification scenarios and snapshots. 
3) Determine the markings on the beginning input 

place and the port places for each CPN instance.  
Let’s consider the execution paths and CPN model in 

Fig. 4 (c). The execution path EP[0] is selected to be the 
CPN instance at first, in which the activities sequence and 
the activity’s type are used to determine the segments or 
snapshots. The nodes sequence in the execution path 
EP[0] is A-B-C-D-E-F-G-H-O-P-Q. The nodes C and F 
come from the BPMN user task. The nodes C and F will 
be determined as a cut-point of the segment. Thus, the 
CPN instance of the execution path EP[0] consists of 
three scenarios: 1) A-B, 2) C-D-E, and  3) F-G-H-O-P-Q. 
Next, the token colors will be assigned in the CPN 
constructs that possess the port places. The marking at the 
cut-points of each segment is called the “snapshot”. 
Figure 9 illustrates the CPN instance and its snapshots. 

 
 

Fig. 5. Transformation rule of the user task and manual 
task. 

 

 
Fig. 6. Transformation rule of the receive task. 
 

 
Fig. 7. Transformation rule of the service task. 

 
Fig. 8. Transformation rule of the intermediate catch event. 

 
An example of a mapping the input data into a CPN 

marking is: the test data or input data of the BPMN user 
task are the customer name and his salary with the string 
“Jonh” and integer 15500 respectively. These information 
are mapped into the marking “p0:1^(“JOHN”, 15500);” 
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the quotes “” is the string data type and the undefined 
quote is the numerical data.  
As the mentioned marking, it indicates that the color set 
of the place p1 is the production of the primitive data 

types String × Integer.   
As the snapshots in Fig. 9, the state space generation 

will be performed with the snapshot 0-1, 0-2 and 0-3 
consecutively. The place p0 of the scenario 0-1 is the 
beginning place derived from the BPMN start event. The 
place p0 represents the process’s initiation and the place 
p1 represents the idle state that waits for receiving the 
triggered signal or for performing the first activity. Due to 
the BPMN start event without the input data object 
configuration, the place p0 is assigned with one token by 
the color “unit” that is the undefined data type. The 
snapshot 0-2 requires one token for the place p1 which 
the token color is the result of the transition firing of the 
transition “A”. The snapshot 0-2 also requires one token 
in the place i0 which represents the state that the input 
data of the BPMN task C are entered, and the task C is 
ready to perform an action.  

 To control the verification direction based on the 
chosen scenario, we have to interpret the guard conditions 
of transition on the outgoing sequence flow of the gateway. 
For instance, the place p3 and the transitions E and E” is 
the CPN construct mapped from the branching BPMN 

exclusive gateway E in Fig. 4 (a). The tasks sequence in the 
snapshot 0-2 that the execution flow must pass the node 
E and the node F. So that, the token color assigned on the 
places p1 and i0 will drive an execution through the 
transition E” with the guard condition “$pin==valid”. It 
means that the input place p1 requires a marking that 
represents the entered valid PIN, because this part is the 
CPN construct mapped from the BPMN task named 
Enter PIN. While the snapshot 0-3 likes the snapshot 0-2, 
which the CPN construct of the node F requires one 
token on the places i1 and p4 (transformed from the task 
Enter withdrawal amount). The place i1 requests the token 
color in case of the entered request amount more than the 
balance amount. The place p4 contains one token that is 
the result of the transition firing of the transition E”.  

The execution paths EP[2] and EP[3] in Fig. 4 (c) is 
composed into one execution path because they share the 
parallel process block. The tasks sequence in the execution 
paths (except the tasks in the parallel block) is in the same 
sequence. The tasks in the parallel process block can be 
verified by Petri net-based model checkers because the 
typical characteristics of Petri net support the concurrent 
process analysis. If all the execution paths and scenarios 
listed in Table 1 are performed completely, it guarantees 
that all branches and nodes in the BPMN graph in Fig. 4 
(a) are executed at least once.  

 

 
 

Fig. 9. The example of the CPN instance and its snapshots with markings. 
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4.6. The state space generation and exploration 
 
The obtained CPN model, snapshots and markings 

will be used in the process of state space graph generation. 
This process uses the CPN model checker of CP4BPMN. 
The CPN model and its markings are read from a model 
repository one by one snapshot. The model checker 
computes all the possible states of the CPN model based 
on the markings determined. If the nodes in the scenario 
is the same sequence, the model checker computes a state 
space graph only once. Next, the obtained state space 
graphs of each snapshot will be connected to the other 
state space graphs into the whole state space graph. The 
binding element on an edge between the state space 
graphs represents an interleaved state of the user task that 
the input data is fed into such user task by the user.  

Figure 11 shows the excerpt state space graph of the 
CPN in Fig. 4 (d). The blue state nodes are the root node 
of state space graph whereas the yellow nodes are the leaf 
nodes. The state space graph of adjacent snapshots is 
connected to each other. The biding element between the 
leaf nodes of a previous snapshot and the root node of a 
next snapshot are the token colors that are fed into a CPN 
model while the state space creation. For example, Figure 
11 (e) is the connected state space graph which is a 
combination of the state spaces graphs derived from the 
snapshots 0-1, 0-2 and the snapshot 1-2. The snapshots 0-
1 and 0-2 are in the execution path EP[0], while the 
snapshot 1-2 is in execution path EP[1]. Thus, the biding 
element of the state space graph of the snapshot 1-2 as Fig. 
11 (d) takes place at between the state node s1 and node 
s10 in Fig. 11 (e). It represents the case that the user enters 
an invalid PIN with 000000. Likewise, the biding element 
connecting the state node s1 and node s2 illustrates a case 
the user fills in a valid PIN with 595023. 

 

In case of the state space generator cannot proceed the 
state space for the next snapshots, the dead marking 
occurs, the state space generator process will be aborted 
because the obtained state space graph will cannot be 
integrated with other state space graphs. For example, if 
the transition A cannot fire the token into the place p1 
that is one of the input places of the transition C in 
snapshot 0-2, the snapshot 0-2 not be selected paused into 
the state space generation process and the process is 
aborted.  

After the whole state space graph is generated and 
stored in CP4BPMN, the desirable properties are 
expressed in CTL form to explore the goal state in the 
state space graph. The CP4BPMN tool provides 
functional commands to express the desirable properties. 
For instance, the command “unreach()” is used to find the 
unreachable task. The command “AG(q)” is used to check 
the invariant properties; it means that state q can persists 
indefinitely.  

 
Fig. 10. An architecture of our BPMN Plugin. 
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Table 1. the verification scenarios and markings of the CPN model based on the execution paths listed in Fig. 4 (c). 
 

Execution Path Snapshots Scenarios Descriptions/ Constraints Markings 

EP[0]: A-B-C-D- 
E”-F-G-H-O-P-
Q 

0-1 A-B Process initiation. p0:1^(); 
0-2 C-D-E” Enter a valid PIN. p1:1^(); i0:1^(“$pin”); 
0-3 F-G-H-O-P-Q Enter a withdrawal amount more 

than the balance amount. 
p4:1^(“*”); 
i1:1^(“$amount”);  

EP[1]: A-B-C-D-
B-E-B-C-D- E”-
F-G-H-O-P-Q 

1-1 A-B Process initiation. p0:1^(); 
1-2 C-D-E-B Enter an invalid PIN. p1:1^(); i0:1^(“$pin”); 
1-3 C-D-E” Enter a valid PIN. p1:1^(); i0:1^(“$pin”); 
1-4 F-G-H-O-P-Q Enter a withdrawal amount more 

than the balance amount. 
($amount>balance) 

p4:1^(“*”); 
i1:1^(“$amount”); 

EP[2]: A-B-C-D-
B-E”- F-G-H”-I-

J+-K+-L+-M-N-
O-P-Q 

2-1 A-B Process initiation. p0:1^(); 
2-2 C-D-E” Enter a valid PIN. p1:1^(); i0:1^(“$pin”); 
2-3 F-G-H”-I-J+-

K+-L+-M-N-O-
P-Q 

Enter a withdrawal amount lease 
than or equal to the balance 
amount. ($amount<=balance) 

p4:1^(“*”); 
i1:1^(“$amount”); 

The variables $pin and $amount are the token color that must be assigned by a value conforming to the place constraints. * is the 
expression of the token’s color produced by the prior transition(s). + is the task in the parallel block, which it can be executed 
simultaneously with other tasks in the same parallel block.    
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5. Implementation and Experimental Results 

 
We design the system architecture, and prototype the 

proposed framework to be the BPMN 2.0 modeler Plug-
ins running in Eclipse environment. The architecture of 
application is shown in Fig. 10. 

The modelers can design the BPMN model on 
Eclipse BPMN 2.0 modeler arbitrarily. Next, the XML 
BPMN model and meta-data declared in XSD files will be 
labeled with the version number. They are read by the 
XML parser of CP4BPMN to extract the BPMN elements 
in the BPMN model. All the obtained BPMN elements are 
stored in the model repository implemented using MS-
SQL. Next, the obtained BPMN elements are transformed 
into the CPN models and CFGs. The property manager 
provides the user interfaces for determining the model’s 
properties and managing the color sets, including the test 

input data for a creation of the markings of CPN model. 
The behavior analyzer is provided for generating and 
exploring the state space graph. Its communication 
interfaces use the Restful APIs provided by CP4BPMN. 
A screenshot of the BPMN Plug-in is shown in Fig. 12. 

We test our framework by applying to the existing 
models. They are composed of five BPMN models 
designed in different domains as follows. 

1) Hardware retail (HWR). 
2) Requirements change process (RCP). 
3) Real estate checking process of the mortgage loan 

system (ECP).  
4) Disbursement web-service (DWS). 
5) Incident report generator system (IRG). 

 
The results of applying the framework are detailed in 

Table 2. We define the principles of correctness checking 

 
Fig. 11. The excerpt state space graph of the CPN in Fig.4 (d); (a) the state space graph of Snapshot 0-1,1-1 and 
2-1; (b) the state space graph of Snapshot 0-2; (c) the state space graph of Snapshot 0-3; (d) the state space graph 
of Snapshot 1-2; (e) the connected state space graph. 
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of the BPMN model transformation, and prescribe the 
measurement of the tool capacity as follows:  
 

1) Structural equivalence checking 
The structural equivalence of the BPMN graphs, CFGs 

and CPN models are verified by an applying the directed 
graph isomorphism algorithm [50] (implemented by 
JAVA). In the consistency checking process, the number 
of nodes in the CFG and CPN model is verified. It is a 
back tracking to the source BPMN elements. If there exist 
in the BPMN graph but they do not appear in the CFG 
and CPN graph, the framework reports and points-out the 
cause of inconsistency problems. As the experimental 
results, the framework can detect the system causes and 
user mistakes resulting in the structural inequivalence 
correctly. 

 
2) Behavioral equivalence checking 
We verify the behaviors of CPN constructs that are 

mapped from the BPMN user task, manual task, and 
service task. We manually design and verify such CPN 
construct by using CPN tool with one-by-one mapping 
rule. This technique makes sure that each CPN construct 
is correct. Next, the overview perspective and specific 
properties are verified by using our Plugin. As the 
statistical report detailed in Table 2, our framework 

supports the designing of both the control flows and data 
flows, and can be used to verify basic behaviors including 
loop and parallel executions. The infinite loop and 
concurrent executions cannot be validated by using 
straightforward the ordinary software testing techniques. 

We check the equivalence between CPN model and 
BPMN model with the specific properties by comparing 
their outputs. Normally, the behaviors of the CPN model 
must conform to behaviors of the designed BPMN. The 
outputs of BPMN model are derived from an execution 
the model by a BPMN engine, and the outputs of CPN 
model come from the use our framework. To configure 
the test environment, the deployable artifacts of BPMN 
model are generated and deployed in the enterprise 
integrator. The modelers can simulate the BPMN model 
running on the environment configured, and the model 
checker runs on our verification framework.   

Let’s consider the behavioral equivalence checking of 
the ATM process in Fig. 4 (a), the test data for executing 
the BPMN and the token colors of the CPN model must 
be determined with the same value. The test data with a 
valid PIN 595023 is determined at the task “Enter PIN”. 
Whereas the CPN model must be take place by a marking 
on the port place of the transition mapped from the 
BPMN task “Enter PIN”. Thus, the place i0 of the CPN 
model in Fig. 4 (d) must be the token color with 595023 

Table 2. Results of applying the framework to existing models. 
 

Model 
CPN CFG State space 

Col. Pla. Tran. Parallel.  Loop TimeA Paths Snapshots Nodes  Edges TimeS 

HWR 7 31 24 0 1 2.32 8 27 66 59 1.02 

RCP 4 48 41 2 1 5.41 14 42 73 63 3.54 

ECP 6 56 46 1 2 5.01 9 24 81 75 2.48 

DWS 5 52 40 1 2 5.29 11 31 78 62 2.30 

IRG 12 47 39 1 1 4.37 22 33 79 69 2.12 

 

Col. = Color sets; Pla. = Places; Tran. =Transitions; Parallel = the number of parallel blocks in BPMN model; Loop= the number of loops in 
BPMN model; TimeA = Time (seconds) used in a process of CPN and CFG generations; TimeS = Time used for generating the state spaces of all 
snapshots including the time used in the state space integration.  

 
Fig. 12. Screenshot of BPMN Plugin. 
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as well. The outputs of both models must be the same, by 
the BPMN engine return $pin= “valid” and the CPN 
model checker must produce one token on the place p4. 
(the place p4 represents the state of invalid PIN). 
However, the simulation by using the BPMN engine still 
faces with the monitoring drawback. Because the BPMN 
modeling framework does not support the monitoring of 
execution paths and variables, and cannot verify the 
parallel execution.  

 
3) Performance measurement  
As the experimental results in Table 2, the CPN 

automation process is increasingly time consuming 
because of the extended consistency checking algorithm 
and graph isomorphism algorithm. Thus, the time used to 
generate a CPN model and CFG relates to the model size, 
complexity, and the number of elements and the meta-
data of BPMN model  

In the state space generation, we observe that the time 
and memory used for the state spaces integration is 
increasing by approximately 3 percent. As the statistical 
report described in Table 2, we found that the parallel 
block results in the time used for mapping the CPN model 
and generating the state space graph. The number of 
execution paths and snapshots do not affect the 
generating times if the modelers prepare the CPN 
markings properly, or the CPN model has a small number 
of the interleaved tasks.   

In the state space exploration, the framework enables 
to express the desirable properties in CTL. The proposed 
Eclipse Plugin integrates the BPMN modeling tool and 
the model checking tool CP4BPMN together. Since the 
extension of the state space graph has been implemented 
with the same data structures. Thus, the functional 
commands still work well. The Plugin also enables to 
analyze the CPN model with the arbitrarily marking 
determination.   
 
6. Conclusions and Future Work 

 
There are numerous frameworks and tools for 

verifying the designed BPMN model but most of the 
BPMN modeling tools and verification mechanisms are 
isolated. The CPN primitives can be used to represent and 
verify the behaviors of BPMN model. Although the 
corresponding CPN constructs can be automatically 
generated from the BPMN elements, the obtained model 
needs the CPN markings for simulating and analysis the 
model’s behaviors. All the execution parts in the BPMN 
model should be verified, and the model should free of 
the undesirable properties. And the markings 
determination should cover all the branches of the 
gateway in the BPMN model. 

We proposed an automated CPN-based framework 
for verifying a design BPMN model. We extended the 
transformation rules of the User task, Manual task, and 
Service task. The control flow graph or CFG and branch 
coverage criteria are applied for the automation of the 
execution paths and the CPN’s markings. The CFG is an 

intermediate model for considering the execution paths, 
snapshots, and scenarios used to determine the 
verification direction. The CPN markings obtained from 
a set of the input data can convey the verification direction 
achieving the branch coverage criteria. The obtained CPN 
markings can be ensured that the execution exercise all the 
execution parts. To generate the state space graph, the 
CPN markings are automatically fed into the CPN model 
based on the snapshot derived from the CFG. Next, the 
modelers can explore the model’s behaviors from the state 
space graph by an expressing the goal states written in 
CTL form. These techniques have been implemented as a 
BPMN modeler plugin running on Eclipse environments. 
It interfaces with the CP4BPMN verification tool through 
APIs.  

The experimental results show that our proposed 
technique and framework are practical. They pave the 
automated verification which is the integration of the 
BPMN modeling tool and the model checker mechanisms 
together. However, our framework does not support the 
parallel block that contains a User task or Manual task. 
Because they produce many CPN port places and lead to 
more interruptions that occur in the state space generation 
stage. Our ongoing work is directed towards to implement 
a graphic user interface for editing and animating the 
obtained CPN models. And we would extend the process 
of the CPN markings determination that accomplishes the 
condition coverage criteria. 
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