

Article

An Automated Framework for BPMN Model
Verification Achieving Branch Coverage

Chanon Dechsupaa,*, Wiwat Vatanawoodb, and Arthit Thongtakc

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,
Thailand
E-mail: a,*Chanon.d@chula.ac.th(Corresponding author), bWiwat.v@chula.ac.th, cArthit.t@chula.ac.th

Abstract. BPMN model is used in software development process that the procedural logics
of software are described in term of graphical representation. Formal verification using
colored Petri net (CPN) can be used to prove whether a designed BPMN model is frees of
undesirable properties such as deadlock and unreachable task, and meets user requirements
or not. Although there are many researches providing the transformation rules and
frameworks for automating and verifying the CPN model, the CPN markings determination
covering all execution paths is quite cumbersome. This paper proposes an automated
BPMN verification framework that integrates the BPMN modeling tool and the CPN model
checker together. The designed BPMN model is transformed into a CPN model and control
flow graph (CFG). The CFG is used to create the execution paths and to find the interleaved
activities. The interleaved activities are then considered for creating the CPN port places
and markings by an applying of the branch coverage testing technique. Behaviors of the
CPN model are analyzed by using a state space analysis based on the CPN model and
automated markings. Our framework has been implemented as an Eclipse BPMN modeler
plugin, and it is tested with the five case studies. The results show that our framework is
practical. It can automate the CPN models from the BPMN model and guide the designers
regarding the CPN markings determination to achieve branch coverage criteria.

Keywords: BPMN, Colored Petri net, Model checking, Formal verification, Software model.

ENGINEERING JOURNAL Volume 25 Issue 2
Received 27 May 2020
Accepted 29 January 2021
Published 28 February 2021
Online at https://engj.org/
DOI:10.4186/ej.2021.25.2.135

DOI:10.4186/ej.2021.25.2.135

136 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/)

1. Introduction

The model-based design using BPMN primitives [1]

is a graphical representation that has been widely used for
portraying the software behaviors. BPMN has become the
de-facto standard for specifying about operational control,
signal processing and system communication. The model
checking [2] using a colored Petri net [3-5] can be applied
to prove the behaviors of BPMN model. The model
checking procedures consist of the elaborate stages such
as the CPN model abstraction, state space generation and
state space analysis. Especially, the token determination or
markings initiation on a CPN model requires an
instruction during the verification process. It is an
important stage to ensure that the designed BPMN model
is exercised accordingly to the coverage criteria
determined. These procedures become difficulty even if
the modelers get familiar with the model checking tools.
Because the isolation of BPMN modeling tool and model
checker tool leads to a complicated configuration, for to
agree with.

The BPMN modeling tool should be enable to design
the BPMN model and to verify the model behaviors in the
same tool in order to avoid the mentioned obstructions.
And the tool should automate the CPN markings
following the modeler needs. An automated system using
meta-models and intermediate data mapping can be used
for mapping the BPMN model into CPN models. For
instance, control flow graph (CFG) [6] is used to be a
meta-model between the BPMN model and the CPN
target models because their graphs are isomorphic. In
software testing disciplines, we can generate the test cases
based on an execution path and execution scenario of
BPMN model by using its CFG. Whereas a set of test data
can be generated from the ground-truth data of an existing
system.

Thus, we believe that the CFG and software testing
techniques can reduce an operating cost and can make the
verification easier for the BPMN model verification. The
contribution of this work is to provide an alternative
fashion and framework for the BPMN model verification
archiving branch coverage criteria (BCC). A framework is
implemented as an software extension running on Eclipse
BPMN Modeler 2.0 [7] and CP4BPMN [8] APIs.

The organization of this paper is as follows. Section
II describes the backgrounds of software testing technique
and model checking technique. Section III reviews the
related works. Section IV demonstrates the methodologies
to execute each checking approach and discusses the its
advantages and limitations. Section V is the study’s
conclusion.

2. Background

This section describes background of the BPMN

model, software testing and model checking approach. We
detail branch coverage testing, model checking using Petri
net and colored Petri net that is the popular formal

modeling languages for design and analysis a distributed
system or concurrent system.

2.1. Business Process Model and Notation

Business Process Model and Notation [1, 9] or BPMN

is the de-facto standard for business processes design. It
provides a set of notations supporting the modeling of a
business process in both the low-level design and high-
level design. The notations of BPMN are extended from
the elements of UML activity diagram, Flow chart, Data
flow and BPM. In a low-level design or domain analysis,
BPMN is used to describe the procedural logic of a system
that consists of control flows, data flows, data objects. The
advantages of BPMN model are a simple graphical
representation and there are the BPMN modeling tools
advocating an executable BPMN design. The core
elements of BPMN are shown in Fig. 1, partitioned into
the six groups as follows:

1) Activities or tasks: an activity in a BPMN model

represents an action or a task that will performs or will
be executed when its resources is ready. In an
executable BPMN model, the task execution is
controlled by an BPMN engine. The input data objects
and output data objects of the task may or may not be
defined, which they are the data constraints of the task.

2) Events: event nodes are separated into three main
types: Start, Intermediate, and End. For representing the
run-time catching or throwing of a system, the event
node is determined to be the boundary event attached
in a task or the grouped tasks called a sub-process.

3) Gateways: a gateway is used to be a control flow. The
gateway can be used together with the guard condition
expressions that are defined on the outgoing arcs to
represent the branching and synchronization of process.
The data-based gateway is that the data through the
gateway, which they may come from the input or
output data objects. Whereas the event-based gateway
is used for branching a process only, by an event on the
outgoing arcs of the branching event-based gateway
wait for triggering of other tasks or performing of a
time counter.

4) Pool and lane: a pool is used to partition a group of
processes, grouped by the participants or organizations.
While a lane is used for determining a scope of the
process partitioned by the resource roles.

5) Connecting elements: a sequence of the task
execution is determined by a connecting element called
Sequence flow. The connecting element connecting
between a task and data object is called Association, and
an interaction crossing the pools is named Massage flow.

6) Artifacts: a data object is connected to the task by the
association flow, representing the input and output data
of task. If the communications of the processes cross
the pools, the data object sent or data object received is
represented by using a Message notation.

In the domain analysis, the procedural logic of a

process is described in low-level abstraction. The resource
constrains determined in the model are the input and
output data objects, messages, and resource roles.

DOI:10.4186/ej.2021.25.2.135

ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/) 137

Fig. 1. Core elements of BPMN [9].

The operations of the model may rely on the variables

in the resource constraints and other relevant data. Most
BPMN modeling tools provide the available
functionalities for simulating the model’s behaviors. The
executable BPMN model will be tested by running on an
BPMN engine to execute the designed BPMN model and
to monitor the variables during the model execution.
However, there are certain limitations regarding an
analysis the low-level designed model. The BPMN
modeling tool provides the simple test functionalities, but
they cannot find the specific part in the model such as an
unreachable task and process termination. And they
cannot be used to assert the model’s behaviors related to
the propositions qualified in term of time such as the
invariant checking, loop, including the parallel execution.
These behaviors can be verified in the model checking
tool. Thus, there are many researchers [10-13] providing
the approaches for analysis the specific properties of the
BPMN model by using the computer aided verification
(CAV) [14].

2.2. Properties of BPMN model

The desirable properties of BPMN model are that the

model frees of anomalies causing a system crash, and the
model behaviors must conform to the requirement
specification. There are several mistakes that result in the
unsatisfied behaviors, which are the results of the syntactic
anomalies and structural anomalies.
• Syntactic anomalies: There are the two syntactic

anomalies: incorrect usage and improper usage. The
incorrect usage of BPMN elements is the main cause of
syntactic anomalies. For example, the Start and End
event is specified at an improper location or the model
does not appear the Start event and End event. The
improper usage is that the notation activities, gateways,
connecting elements and pool are represented
inconsistently in meaning such as the incorrect use of
the User task having a sent message cross the pools.
The User task must be replaced by the Sent task.

• Structural anomalies: the usage of incorrect gateway
and uninterpretable conditions on the outgoing
sequence flows of gateway is the main cause of
structural anomalies. The incorrect gateway results in
an undesirable property, starvation problem, deadlock,
and infinite loop. The deadlock in a BPMN model
occurs when an activity has more than one incoming
sequence flows, but one of them does not provide a

token to synchronize and perform an execution. an
unreachable activity or dead activity is that the task’s
execution is impossible because the task is without an
execution path from the Start event to itself. The
incorrect use of parallel gateway may lead to a lack of
synchronization as well. In this case, the BPMN model
produces many process instances but they cannot
complete the process execution because of the loose
synchronization. The lack of synchronization may lead
to deadlock problem and unsatisfied soundness
property [15, 16], whereas the infinite loop is the result
of the incorrect guard expression on the gateway.

2.3. Software Testing for BPMN design

Software testing can be applied to find the defects in
BPMN model, which the BPMN model’s behaviors are
proved by an execution the BPMN model with the test
cases. A test case is composed of the preconditions, test
inputs, expected outputs, and postconditions. The
number of the cases is based on the testing style and
coverage criteria used. This paper applies white-box
testing [17] with branch coverage criteria [18] to generate
the token colors or markings for the CPN model.

The branch coverage or condition decision coverage is
one of the test coverage metrics. The definition of branch
coverage is that all outcomes of the control statements or
decision nodes must be evaluated at least once, and every
node in the model must be evaluated at least once as well.
A sequence of the BPMN elements, the execution path is
an important representation for considering whether a set
of test cases relates the coverage metric used or not. The
execution path can be generated from the CFG that
corresponds to the given BPMN model. A control
statement of the CFG is the node mapped from the
BPMN gateway element.

2.4. Model checking using colored Petri net

Model checking is one of the computer aided

verifications (CAV). A model checking tool usually
provides both the verification mode and simulation mode
for an analysis the model’s property. To check the model
properties, the property specification language such as
Linear Temporal Logic (LTL) and Computational
Temporal Logic (CTL) [19, 20] is used to describe an
expected behavior. If the model holds the expected
behavior, the tool reports the satisfaction. In contrast, the
tool shows the violating states and their counterexamples.

Petri net [21] or classical Petri net is a mathematical
modeling language for describing and checking the
concurrency and distributed system. The Petri net-based
languages are classified into two main groups: the low-
level Petri net and high-level Petri net. A formal model
described by a Petri net-based language is usually called
“net model”.

The core elements of Petri net are Place, Arc,
Transition, and Token. A circle place represents a system’s
state, containing a discrete number of tokens.

Activities

Task

Send Task

Receive Task

Sub-process

Pool and Swim-lanesEvents

Start

End

Timer

Message

Gateways

Exclusive

Inclusive

Parallel

Event-based

Connecting elements

Message

flow
AssociationSequence

flow

Artifacts

Data object Message Group

DOI:10.4186/ej.2021.25.2.135

138 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/)

Fig. 2. The elements of the Petri net and CPN [22].

Between the place and squares transition is connected with
a directed arc. The transition will fire the tokens if it has
enough tokens on the input places, which the transition’s
firing represents a state change of a system. Figure 2 shows
the core elements of Petri net and colored Petri net.

Colored Petri net or CPN [4, 22] is an enhancement of
classical Petri net. It is one of high-level Petri net languages,
combining a strength of Petri net and programing
language. CPN preserves useful properties under the Petri
net primitives and the extended formalism that allow the
distinction between tokens, parameterization, and
compact model. The primitive data type of CPN is called
a “Color set”, and the functional programming are useful
attributes for a token distinction and a multiscale modeling.
The color set can be determined as the place’s type to be
a domain constraint. It collects the token’s value that is
called a “Token color”. The token(s) in the place must be
consistent with the place type. Programming expression
on the transition, arcs and data manipulation functions of
the model is called a “Model inscription”. The modelers
can also configure the CPN model in hierarchical structure
to help them to design the intricate model easier.

A labelled transition system of a net model, the
reachability graph [23, 24] is a set of all possible cases
derived from a performing or simulating the model’s
behaviors with the initial markings. It is sometimes called
the state space graph that acts as the execution logs. The
state space graph is used for a finding the undesirable
states. The reachability graph of a CPN model is generated
by the state space generator. Next, the desirable property
expressed in term of the temporal logic formula is
interpreted by the temporal logic parser, and the model
checker finds the erroneous states in the state space graph.
This technique is commonly known as the model checking
using the state space analysis [25].

3. Related works

Over the past decade, many researches proposed the
methods, testing tools, and frameworks for testing the
BPMN model. Most researches emphasized a testing of
the executable BPMN model running a BPMN engine
plugin. Each research provided the alternative ways for

generating the test cases based on the coverage criteria,
and there are researches implementing the frameworks for
monitoring the execution’s results.

The work of [26], the test cases generation technique
was proposed for a functional testing of the BPMN
models. Test scripts are created form the execution paths
of the model. This technique is the use of web-based
testing tools named Selenium and Cucumber. This work
does not support the low-level BPMN design because the
data flows in the BPMN model are not be handled. Lübke
et al. [27] proposed an applying the behavior driven
development (BDD) and the process hub architecture for
testing the business process model. The web service-based
hub is implemented as an interaction controller. It
addresses the model under test by the BPEL unit test suite.
BDD is used to be a bridge communication among
stakeholders by representing a BPMN process in a
graphical Domain-specific language (DSL) in order to
describe the context of BPMN model, and the test data
and assertions of the model. Next, the context in the
model was interpreted and tested in BPEL unit test suite.
This is exercised with the black-box testing method, this
technique is appropriate for functional testing. The works
of [28, 29] proposed the automated frameworks with the
BPMN suites Camunda [30] and GAmera [31] for the test
case generation and test environment configuration. The
frameworks reduce the time-consumption and be able to
interactively monitor the model execution. These
frameworks are valuable for the tester who are interested
in the automated test programs.

Yotyawilai et .al [32] designed a tool for creating the
test cases from a BPMN model. The obtained test cases
are generated from the control flow graphs corresponding
to the BPMN model, which the test cases satisfy the
statement coverage criteria. Data objects and variables in
the BPMN model were considered to create the test input
data. The authors manually defined the boundary values
of test inputs. Likewise, the work of [33] provided a tool
for creating the test cases from BPMN model with BPEL
model. The BPEL model acts as an implementation of a
BPMN activity. All the elements of both BPMN and
BPEL models are extracted, next they are used for creating
the control flow graphs, test scenarios and test input data.
The authors detailed and illustrated their framework with
few case studies.

In the model checking area, the model checkers have
been increasingly used for finding the mistakes in the
BPMN model. Since the verification procedures is quite
intricate, many researches provided the solutions and
frameworks for reducing a complexity of each verification
stage. Most of researches emphasized on the automated
verification frameworks and the specific algorithms to
alleviate the space explosion problem. Wang et al.[29]
proposed the test case generation of the BPEL model. The
authors used the CPN primitives for designing the process
flows of BPMN model. The simple mapping rules of
BPMN into the CPN model are provided, and the test
scenario and test input data are generated from the
consideration of BPMN control flow. The test scenarios

Place Transition Arc Token

Input arcs Output arc

(a) Core elements of Petri net

(b) Classical Petri model (c) Colored Petri net model

[y>=1]

Arc inscriptions

Transition s guard condition

(a)

(x,y)

(a*x, p

p1

p0 p2

p1

p0 p2

int*int

int

int*char

DOI:10.4186/ej.2021.25.2.135

ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/) 139

and test data are taken to be the corresponding markings
of the CPN model.

Brumbulli et al. [34] provided the verification tool, a
combination of OBP verification tool and the BPMN
modeling tool. The message sequence chart and the
property sequence chart are used to explore the goal states
in the model. The model’s properties are expressed in
either LTL or Büchi automata form. The authors were
focused on a communication verification, which the
BPMN model under verification contains the pools and
message flows. Flavio et al. [35] implemented a tool named
BProVe for verifying the business process models. The
authors extended the analysis feature for the task
management and the task’s state evolution, which the
BPMN model is encoded and verified by using the
rewriting logic with MAUDE. Although their framework
is a precious strategy, it supports the checking of the
control flow of the BPMN model only. The work of [8]
proposed the Petri net-based verification framework for
checking and analyzing the BPMN model. The authors
detailed of the mapping rules of the BPMN elements into
CPN models, and the state space techniques are illustrated.
Their techniques and the tool support an analysis of the
control flow and data flow in the BPMN model, but the
tool cannot edit and simulate of the CPN model.

The work of [36] proposed the mapping rules of the
BPMN model in to a formal model written in Event-B.
Although Event-B with Rodin platform is a plaintext
package, the expression of the BPMN structure and
behavior is readable. This work handles both the control
flow and data flow analysis. However, the verification
using Event-B is appropriate for the modelers who expert
in the mathematical proof. Yamasathien et al. [37]
provided an approach to create the Promala model from
the BPMN model. The mapping rules of the BPMN
control flows into the formal model represented in the
Promela programing language are provided. SPIN
framework is used for an analysis of the BPMN model
based on the business workflow patterns, but this work
illustrates with few simple workflow patterns. Vincenz et
al. [38] implemented the framework for verifying the
control flows in the BPMN model. The framework is a
colored Petri net-based application. The BPMN model is
automatically translated relied on the Petri net meta-model
and the mapping rules. The resource’s properties and the
user roles in the designed BPMN model are specified in
CPN ML [39]. The CPN-ML properties can also be
translated into the Promela models, and be verified by
using SPIN model checker. These verification techniques
are appropriate for the high-level abstraction model only
because the authors did not concentrate on the data
objects and data flows.

Due to the difficulty of the property expression in a
temporal logic form, the work of [40] implemented the
Graphical-CTL plug-in for the Eclipse-based application.
The intermediate model is designed in the backend system
process. The states of the BPMN model and the Graphical
CTL specification are translated into the automata. The
automata are taken to be the inputs of the model checking

tool. The model checker returns the checking results back
to the designing tool. This work is focused on an
integration of the modeling tool and model checker only,
and the tool does not allow the data flow verification. And
there are many research studies [12, 41-44] that provided
the formal model representations described in other
formal languages. The representations are used in diverse
verification frameworks such as UPPAAL [45], LoLA [46],
ProM [47], NuSMV [48] and Eclipse BPMN modeler
plugin. These works are precious strategy and viable
alternative ways for the analysis of low-level abstraction
BPMN model.

4. Automated framework of the BPMN model
verification

Our verification framework is shown in Fig. 3. It is
composed of the four core processes: 1) the
transformation of the BPMN model into CPN model 2)
the CFG generation and the creation of execution
scenarios from the CFG 3) the generation of the CPN
markings and 4) the state space generation and
exploration. The formal definitions used for representing
the relationships of the corresponding models are
described in subsection 4.1. The details of our verification
processes are in subsection 4.2 -4.6.

4.1. Formal definitions

Definition 1: a process model described by using BPMN
is a tuple BPMNM = (Nt, At, Ft, Gw, Fw, Fd, Es, Ee, Ie, Sf,
Fp, Vr, Do, Af, Lp, Ln, Mg, Mf) where:

Nt is a finite set of BPMN nodes.

At is a finite set of activities, At ⊆ Nt. For ai ∈ At, ai
= (Name, Marker, refID), where ai.Name means the name
of activity, and ai.Marker is the task’s marker composed of
Loop and Multi instance, and refID is the reference
number that is automatically generated by the modeling
tool.

Ft is a mapping function, Ft: At → {user task, service

task, business rule task, manual task, undefined type}.

Gw is a finite set of gateways, Gw ⊆ Nt.
Fw is a mapping function used to indicate the gateway’s

type, Fw: Gw →{ex: exclusive, in: inclusive, pa: parallel, eb:

event based, cx: complex}.
Fd is a mapping function used to indicate the direction

of gateway, Fd: Gw → {div: divergent, con: convergent}.

The gateway must be responsible either for the diverging
or converging.

Es is a finite set of start events.
Ee is a finite set of end events.
Ie is a finite set of intermediate events.

Sf is a finite set of sequence flows, (At × At) ∪ (Ie ×

Ie) ∪ (At × Gw) ∪ (Ie × Gw). For the sequence flow

that relates to the activity, the indegree and outdegree of
the activity must be one.

DOI:10.4186/ej.2021.25.2.135

140 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/)

Fp is a labeling function that is used to indicates the
condition expression on the outgoing sequence flow of a

gateway, Fp: (Gw × At) → “Guard label”.

Vr is a set of variables.
Do is a set of input and output data objects of the

activity.

Af is a set of association flows, (At × Do) (At × Do).

Lp is a set of pools.
Ln is a set of lanes.
Mg is a set of messages, in which the values are assigned

and sent through the declared variables.
Mf is a set of message flows crossing between pools.
Fm is a mapping function that is used to indicate the

message attached in the message flow, for mg ∈ Mg,

Fm: Mf → mg.

For xi ∈ (At ∪ Gw), the function anc() and suc(): xi →
2Nt, which yields the ancestor nodes and the successor
nodes, and the function loc() is used to indicate the lane
and pool of the node xi.

Definition 2: Control flow graph is a 3-tuple, CFGM =
(N, Ed, Fn) where:

N is a finite set of nodes, for ni ∈ N, ni = (Name,
OriginRef, SrcList, DesList, Lane, Pool), where ni.Name
is the node’s name that is mapped from the name of a
BPMN activity. ni.OriginRef means the original BPMN
reference ID, and SrcList, DesList are the list of the

source and destination nodes of ni, while Pool and Lane
indicate the node’s locations, which Pool and Lane will be
used in a creation of the CPN construct scope.

Ed is a set of edges, Ed ⊆ (N ×N).

Fn: N→ {Process-block, Decision, Conjunction,

CoBegin, CoEnd}, is a node function to assign the type
for each node. The CoBegin and CoEnd are additionally
defined for mapping the parallel gateway and inclusive
gateway.

Definition 3: CPN graph is a 9-tuple, NetG = (Pp, Tt,
Aa, Fw, Cc, Vv, Fg, Fa, Fi) where:

Pp is a finite set of places.
Tt is a finite set of transitions.
Aa is a set of arcs, (Ss × Tt) ∪ (Tt × Ss).

Fw: is a weight function to assign the weight to each

arc, Aa → ℕ is a non-negative integer weight.

Cc is finite set of color sets.
Vv is a finite set of typed variables.
Fg is a guard labeling function used to assign the guard

condition to each transition. Fg: Tt → “conditional

expression” that the interpretation result Fg(Tt) is Boolean.

Fa is an arc expression function, Fa: Aa → “arc

expression”.

Fi is a marking initialization function, Fi: Pp →

“marking expression”.

Fig. 3. Overview of our verification framework.

Design Model
using BPMN Modeler

Generate CFG

Designer

Model
repository

Transform BPMN model
into CPN

Express property in
temporal logic form

State spaces
repository

Generate markings
for CPN model

CPN modelCPN model

Process flow

Input/output flow

Generate state
spaces

CFG

XSD

BPMN
Model

XSD

BPMN
Model

Extract the BPMN
elements

State space
Analysis results

State space
Analysis results

Generate the execution
paths and scenarios

Execution
scenarios

CPN models
and markings
CPN models

and markings

A B

p0

p1p2

CPN models
and markings

A B

p0

p1p2

An automated Verification Framework

DOI:10.4186/ej.2021.25.2.135

ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/) 141

4.2. Control flow graph creating

The BPMN model stored in XML format and its meta-
data declared in XSD files will be extracted and
transformed into a CFG and CPN model by using an
XML parser and the extensions of the BPMN
transformation rules that are implemented in CP4BPMN.
We redesign the transformation rules and transformation
process by a simultaneous automation of the CFG and the
CPN model. Next, the CFG will be considered for
generating the execution paths, snapshots, and scenarios.
The transformation rules of the BPMN elements into
CFG are as follows.

 Rule No.1: If the BPMN model comprises multiple
pools, the obtained CFG is the multiple sub-CFGs that
are petitioned by such pools.

Rule No.2: (tasks and events transformation): For

each BPMN activity xi ∈ (At ∪ Es ∪ Ee ∪ Ie), it is

mapped to be the CFG node ni ∈ N. The name of the
node xi and the node’s properties comprising of the
ancestor nodes, successor nodes, locations are defined by
the model data that are extracted and stored in a model
repository. And the type of the node ni will be determined
as the Process-block.

Rule No.3: (gateways transformation): divergent
exclusive gateway, event-based gateway and complex
gateways are mapped into the Decision node. A
convergent exclusive gateway is mapped into the
Conjunction node. A divergent inclusive gateway and
divergent parallel gateway are mapped into the CoBegin
node. pWhile the convergent inclusive gateway and

divergent parallel gateway are mapped into the CoEnd
node.

Rule No.4: (sequence flow transformation): For each

sequence flow si ∈ Sf, it is mapped into the edge of
CFG.
Figure 4 shows an example BPMN model and the

artifacts derived from our transformation process. The
CFG shown in Fig. 4 (b) will be taken to explain how to
automate the execution paths, scenarios, and net markings.

4.3. Execution Paths Creating

As the CFG in Fig. 4 (b), it can be observed that its

structure and the BPMN graph are isomorphic. We apply
the path testing technique with the consideration of DD-
paths and branch coverage criteria to generate the possible
execution paths from the CFG. Algorithm for generating
the execution paths is listed in Algorithm 1. The algorithm
supports the BPMN models designed in the single process
and multiple processes, which the processes are portioned
by the pools. The execution paths will be computed based
on the branch coverage criteria. On line numbers 7 to 10,
the core execution path is constructed by using the
backward graph traversal algorithm, which the end node
in a pool is retrieved at first, and the consecutive ancestor
nodes of the end node be continuously traversed until the
ancestor nodes is the Start node. The core execution path
stored in a list is taken to be the first path for creating
other paths. The decision nodes in each path are forward
traversed from the start node. On line numbers 12 to 20,
the decision nodes in the considered execution path are
pointed out, and the node sequence from the start node

Fig. 4. An example of the ordinary BPMN model and its graphs derived from applying the transformation rules.
(a) The cash withdrawal process [49] described by BPMN; (b) the CFG of the model in (a); (c) The execution
paths of the CFG in (b) with the branch coverage consideration; (d) The CPN model derived from the
transformation of the BPMN model in (a).

EP[0]: A-B-C-D-E-F-G-H-O-P-Q

EP[1]: A-B-C-D-B-E-B-C-D-E-F-G-H-O-P-Q

EP[2]: A-B-C-D-E-F-G-H-K-M-N-O-P-Q

EP[3]: A-B-C-D-E-F-G-H-J-L-M-N-O-P-Q

(b)

Q P

A B D

G F

J

L

K

N

I:CoBegin

M:CoEnd

E

H

O

C

(c)

i2

[$pin==valid]

(d)

p0 p1 p2 p3

p4

p6

p8 p9

p14

p16 p15

A D

G Fp5

I

KJ

M

p10

L
p11

p12

Np13

PQ

H

E"

E

C

H"

p7

[$pin<>valid]

[$request>balance]

[$request<=balance]

i0

i1

Check PIN

(D)
Start

(A)

Enter PIN

(C)

Enter withdrawal

amount (F)

I

M

Log entry

(K)

Calculate

balance (J)

$request<=balance

Print receipt

(N)

End (Q)

(E)

$pin==valid

H

Check balance

(G)

$pin<>valid

$request>balance

Dispense cash

(L)

O

Show balance

(P)

i1

o2

o1

(a)

(B)

DOI:10.4186/ej.2021.25.2.135

142 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/)

to such decision node is duplicated to be the execution
sequence of the new path. On line number 14, all the
outgoing edges of decision node are traversed throughout
the end node. The number of execution paths will be
increased if the number of the outgoing edges and
successor node that does not exist in the earlier execution
paths. If all the outgoing edges of decision node is
considered already, the decision node must be flagged to
be passed, and the next decision node will be considered.
After all the decision nodes in the considered execution
path are traversed, the path will be flagged to be the
completely considered execution path. The execution
paths of applying the algorithm to CFG in Fig.4 (b) are
shown as Fig.4 (c). The node sequence in each execution
path will be used to generate the CPN markings. The
marking generation technique is described in subsection
4.6.

However, the derived execution paths may have the
tasks that involves the parallel process block. As the
execution paths EP[2] and EP[3] in Fig.4 (c). They have
the parallel block containing the task J, K and L, all of
them will be considered as the sub-execution path. The
tasks in the sub-execution are grouped into one node.
Thus, the paths EP[2] and EP[3] will be reduced in to one
execution path because they have the same node sequence.

4.4. CPN model generating

The CP4BPMN tool can be used to map nearly all

BPMN elements into the classical Petri net and CPN
model. The details of the transformation rules of
CP4BPMN are described in [8]. However, the automated
verification process requires the port places and markings.
They represent the interruption of the users or the outside
services to drive the verification process. We extend the
transformation rules by adding the input place to be the
port place into a CPN construct. This technique is to
represent an interleaving of the user or service task. The
extended transformation rules are detailed as follows.

1) For each BPMN activity ai ∈ At and Ft(ai) →

{user task, manual task}, the CPN place representing the
interleaved state is added into the CPN construct. The
added place is a vital place for containing the test input
data or the marking to drive the model execution. We call
the added place as a “port place” The data type or color
set of a place will be mimicked from the XML meta-data
or the input data object of task. Figure 5 illustrates the
CPN construct and its port place highlighted in blue.

2) For each receive task, the port place is added and
connects to the corresponding transition. The color set of
the port pace is mimicked from the data object attached
on the incoming message flow. While the variables in the

DOI:10.4186/ej.2021.25.2.135

ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/) 143

input data of the task and the data sent form the ancestor
task will be composed and expressed on the input arc of
the transition. Figure 6 shows the CPN construct derived
from the transformation of the receive task.

3) To map the Service task, we apply the existing
rules by replacing the output place of the corresponding
transition with the port place. Generally, the output arc
carries out the token colors to the output place. The
replaced port place will be used for a manual manipulation
the token colors, which the token colors manipulated
represents the results of the service task. This technique is
crucial for the dummy service. Figure 7 shows the CPN
construct derived from the service task transformation.

4) The transformation rule of the Intermediate catch
event is revised by the port place that represents a catching
of the data objects or of the triggering signal. The data
object in a message will be mimicked to be the color set of
the port place. The variables of other data objects (*) that
are sent from the ancestor task are extracted and expressed
on the input arc of the transition. Figure 8 shows the CPN
construct derived from the intermediate catch event
transformation.

4.5. CPN markings creating

This section details about the CPN marking

determination based on the obtained execution paths,
CPN model, and the test data. The markings are useful for
the data-driven verification. The marking will be entered
into a CPN model before verification. The input data for
generating the marking are usually recorded in a model
repository or an excel file. We call the CPN model and its
markings as the “CPN instance”. Next, we use the model
checking tool to generate the state space graph of each
CPN instance, and integrate the obtained state space
graphs together. The details of the CPN instance
generation and CPN markings are composed of three
steps. We exercise all these steps in each execution paths.
The processes of the CPN instance generation are as
follows:

1) Choose an execution path.
2) Find the segments in the chosen execution path

in order to build the verification scenarios and snapshots.
3) Determine the markings on the beginning input

place and the port places for each CPN instance.
Let’s consider the execution paths and CPN model in

Fig. 4 (c). The execution path EP[0] is selected to be the
CPN instance at first, in which the activities sequence and
the activity’s type are used to determine the segments or
snapshots. The nodes sequence in the execution path
EP[0] is A-B-C-D-E-F-G-H-O-P-Q. The nodes C and F
come from the BPMN user task. The nodes C and F will
be determined as a cut-point of the segment. Thus, the
CPN instance of the execution path EP[0] consists of
three scenarios: 1) A-B, 2) C-D-E, and 3) F-G-H-O-P-Q.
Next, the token colors will be assigned in the CPN
constructs that possess the port places. The marking at the
cut-points of each segment is called the “snapshot”.
Figure 9 illustrates the CPN instance and its snapshots.

Fig. 5. Transformation rule of the user task and manual
task.

Fig. 6. Transformation rule of the receive task.

Fig. 7. Transformation rule of the service task.

Fig. 8. Transformation rule of the intermediate catch event.

An example of a mapping the input data into a CPN

marking is: the test data or input data of the BPMN user
task are the customer name and his salary with the string
“Jonh” and integer 15500 respectively. These information
are mapped into the marking “p0:1^(“JOHN”, 15500);”
where p0 is the CPN place containing the token, and 1^ is
the number of the tokens determined by 1. The expression
“JOHN”, 15500 in the brackets is the token colors, which

Task

Legend: 1) This rule is applied to the BPMN User task and Manual task

 2) Name, cardID on input arc in (b) are the example data received from an ancestor task

Input

Data

Output

Data

{PIN} {Name, cardID}

P_pre

T_Task

P_pos
(Name, cardID)

(b)

colset STR = string;

colset INT = int;

colset InputData = product STR * INT;

colset OutputData = product STR * STR;

colset PortData = INT;

local_var Name, cardID: STR;

local_var PIN : INT;

(Name, cardID)

InputData OutputData

PortData (PIN)

P_Input

(a)

*

*

Receive task

Input

Data

Output

Data

{Name} {Name, Job_grade}

T_ReceiveTask

P_pos
(*, Name)

(b)

colset STR = string;

colset INT = int;

colset InputData = product STR * INT;

colset OutputData = product STR * STR;

colset PortData = INT;

local_var Name, cardID: STR;

local_var balance : INT;

(Name, Job_grade)

OutputData

(a)

msg {balance}msg {balance}

(balance)

InputData

P_pre

PortData

P_Input

*

Service task

Input

Data

Output

Data

{ChekDigit} {NewBalance}

P_pre

T_ServiceTask

(*, ChekDigit)

(b)

colset STR = string;

colset INT = int;

colset InputData = product STR * INT;

colset OutputData = product STR * STR;

colset PortData = INT;

local_var Name, cardID: STR;

local_var PIN : INT;

(NewBalance)

InputData PortData

P_out

(a)

Legend: the existing rule and extended rule give the same CPN structure

 but the new rule sets the output place as the port place.

*

(a)

T_intermediateCatchEV

P_pos
(*)

(b)

colset STR = string;

colset INT = int;

colset InputData = product STR * INT;

colset OutputData = product STR * STR;

colset PortData = INT;

local_var Name, cardID: STR;

(*, Name)

OutputData

(Name)

InputData

P_pre

PortData

P_Inputmsg {Name}

*

DOI:10.4186/ej.2021.25.2.135

144 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/)

the quotes “” is the string data type and the undefined
quote is the numerical data.
As the mentioned marking, it indicates that the color set
of the place p1 is the production of the primitive data

types String × Integer.
As the snapshots in Fig. 9, the state space generation

will be performed with the snapshot 0-1, 0-2 and 0-3
consecutively. The place p0 of the scenario 0-1 is the
beginning place derived from the BPMN start event. The
place p0 represents the process’s initiation and the place
p1 represents the idle state that waits for receiving the
triggered signal or for performing the first activity. Due to
the BPMN start event without the input data object
configuration, the place p0 is assigned with one token by
the color “unit” that is the undefined data type. The
snapshot 0-2 requires one token for the place p1 which
the token color is the result of the transition firing of the
transition “A”. The snapshot 0-2 also requires one token
in the place i0 which represents the state that the input
data of the BPMN task C are entered, and the task C is
ready to perform an action.

 To control the verification direction based on the
chosen scenario, we have to interpret the guard conditions
of transition on the outgoing sequence flow of the gateway.
For instance, the place p3 and the transitions E and E” is
the CPN construct mapped from the branching BPMN

exclusive gateway E in Fig. 4 (a). The tasks sequence in the
snapshot 0-2 that the execution flow must pass the node
E and the node F. So that, the token color assigned on the
places p1 and i0 will drive an execution through the
transition E” with the guard condition “$pin==valid”. It
means that the input place p1 requires a marking that
represents the entered valid PIN, because this part is the
CPN construct mapped from the BPMN task named
Enter PIN. While the snapshot 0-3 likes the snapshot 0-2,
which the CPN construct of the node F requires one
token on the places i1 and p4 (transformed from the task
Enter withdrawal amount). The place i1 requests the token
color in case of the entered request amount more than the
balance amount. The place p4 contains one token that is
the result of the transition firing of the transition E”.

The execution paths EP[2] and EP[3] in Fig. 4 (c) is
composed into one execution path because they share the
parallel process block. The tasks sequence in the execution
paths (except the tasks in the parallel block) is in the same
sequence. The tasks in the parallel process block can be
verified by Petri net-based model checkers because the
typical characteristics of Petri net support the concurrent
process analysis. If all the execution paths and scenarios
listed in Table 1 are performed completely, it guarantees
that all branches and nodes in the BPMN graph in Fig. 4
(a) are executed at least once.

Fig. 9. The example of the CPN instance and its snapshots with markings.

EP[0]: A-B-C-D-E"-F-G-H-O-P-Q

Snapshot0-1: A-B Snapshot0-2: C-D-E" Snapshot0-3: F-G-H-O-P-Q

p1 p2 p3

p4

p6

p8 p9

p14

p16 p15

A D

G Fp5

I

KJ

M

p10

L
p11

p12

Np13

PQ

H

E"

E

C

H"

p7

p0 p2 p3

p4

p6

p8 p9

p14

p16 p15

A D

G Fp5

I

KJ

M

p10

L
p11

p12

Np13

PQ

H

E"

E

C

H"

p7

p0 p1 p2 p3

p6

p8 p9

p14

p16 p15

A D

G Fp5

I

KJ

M

p10

L
p11

p12

Np13

PQ

H

E"

E

C

H"

p7

i0i0

[$pin==valid]

[$pin<>valid]

[$request>balance]

[$request<=balance]

[$pin==valid]

[$pin<>valid]

[$request>balance]

[$request<=balance]

[$pin==valid]

[$pin<>valid]

[$request>balance]

[$request<=balance]

i0

i1 i1 i1

DOI:10.4186/ej.2021.25.2.135

ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/) 145

4.6. The state space generation and exploration

The obtained CPN model, snapshots and markings

will be used in the process of state space graph generation.
This process uses the CPN model checker of CP4BPMN.
The CPN model and its markings are read from a model
repository one by one snapshot. The model checker
computes all the possible states of the CPN model based
on the markings determined. If the nodes in the scenario
is the same sequence, the model checker computes a state
space graph only once. Next, the obtained state space
graphs of each snapshot will be connected to the other
state space graphs into the whole state space graph. The
binding element on an edge between the state space
graphs represents an interleaved state of the user task that
the input data is fed into such user task by the user.

Figure 11 shows the excerpt state space graph of the
CPN in Fig. 4 (d). The blue state nodes are the root node
of state space graph whereas the yellow nodes are the leaf
nodes. The state space graph of adjacent snapshots is
connected to each other. The biding element between the
leaf nodes of a previous snapshot and the root node of a
next snapshot are the token colors that are fed into a CPN
model while the state space creation. For example, Figure
11 (e) is the connected state space graph which is a
combination of the state spaces graphs derived from the
snapshots 0-1, 0-2 and the snapshot 1-2. The snapshots 0-
1 and 0-2 are in the execution path EP[0], while the
snapshot 1-2 is in execution path EP[1]. Thus, the biding
element of the state space graph of the snapshot 1-2 as Fig.
11 (d) takes place at between the state node s1 and node
s10 in Fig. 11 (e). It represents the case that the user enters
an invalid PIN with 000000. Likewise, the biding element
connecting the state node s1 and node s2 illustrates a case
the user fills in a valid PIN with 595023.

In case of the state space generator cannot proceed the
state space for the next snapshots, the dead marking
occurs, the state space generator process will be aborted
because the obtained state space graph will cannot be
integrated with other state space graphs. For example, if
the transition A cannot fire the token into the place p1
that is one of the input places of the transition C in
snapshot 0-2, the snapshot 0-2 not be selected paused into
the state space generation process and the process is
aborted.

After the whole state space graph is generated and
stored in CP4BPMN, the desirable properties are
expressed in CTL form to explore the goal state in the
state space graph. The CP4BPMN tool provides
functional commands to express the desirable properties.
For instance, the command “unreach()” is used to find the
unreachable task. The command “AG(q)” is used to check
the invariant properties; it means that state q can persists
indefinitely.

Fig. 10. An architecture of our BPMN Plugin.

XML

Parser
BPMN Elements

Transformer

Properties

manager
Behavior

analyzer

BPMN 2.0

Modeler

State Space

Generator

Repository

(MS SQL)Java

Compiler
BPMN model

partitioner

NetEditor

Existing library / Existing module Extended module

State Space

Explorer

XSD

BPMN
Model

Table 1. the verification scenarios and markings of the CPN model based on the execution paths listed in Fig. 4 (c).

Execution Path Snapshots Scenarios Descriptions/ Constraints Markings

EP[0]: A-B-C-D-
E”-F-G-H-O-P-
Q

0-1 A-B Process initiation. p0:1^();
0-2 C-D-E” Enter a valid PIN. p1:1^(); i0:1^(“$pin”);
0-3 F-G-H-O-P-Q Enter a withdrawal amount more

than the balance amount.
p4:1^(“*”);
i1:1^(“$amount”);

EP[1]: A-B-C-D-
B-E-B-C-D- E”-
F-G-H-O-P-Q

1-1 A-B Process initiation. p0:1^();
1-2 C-D-E-B Enter an invalid PIN. p1:1^(); i0:1^(“$pin”);
1-3 C-D-E” Enter a valid PIN. p1:1^(); i0:1^(“$pin”);
1-4 F-G-H-O-P-Q Enter a withdrawal amount more

than the balance amount.
($amount>balance)

p4:1^(“*”);
i1:1^(“$amount”);

EP[2]: A-B-C-D-
B-E”- F-G-H”-I-

J+-K+-L+-M-N-
O-P-Q

2-1 A-B Process initiation. p0:1^();
2-2 C-D-E” Enter a valid PIN. p1:1^(); i0:1^(“$pin”);
2-3 F-G-H”-I-J+-

K+-L+-M-N-O-
P-Q

Enter a withdrawal amount lease
than or equal to the balance
amount. ($amount<=balance)

p4:1^(“*”);
i1:1^(“$amount”);

The variables $pin and $amount are the token color that must be assigned by a value conforming to the place constraints. * is the
expression of the token’s color produced by the prior transition(s). + is the task in the parallel block, which it can be executed
simultaneously with other tasks in the same parallel block.

DOI:10.4186/ej.2021.25.2.135

146 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/)

5. Implementation and Experimental Results

We design the system architecture, and prototype the

proposed framework to be the BPMN 2.0 modeler Plug-
ins running in Eclipse environment. The architecture of
application is shown in Fig. 10.

The modelers can design the BPMN model on
Eclipse BPMN 2.0 modeler arbitrarily. Next, the XML
BPMN model and meta-data declared in XSD files will be
labeled with the version number. They are read by the
XML parser of CP4BPMN to extract the BPMN elements
in the BPMN model. All the obtained BPMN elements are
stored in the model repository implemented using MS-
SQL. Next, the obtained BPMN elements are transformed
into the CPN models and CFGs. The property manager
provides the user interfaces for determining the model’s
properties and managing the color sets, including the test

input data for a creation of the markings of CPN model.
The behavior analyzer is provided for generating and
exploring the state space graph. Its communication
interfaces use the Restful APIs provided by CP4BPMN.
A screenshot of the BPMN Plug-in is shown in Fig. 12.

We test our framework by applying to the existing
models. They are composed of five BPMN models
designed in different domains as follows.

1) Hardware retail (HWR).
2) Requirements change process (RCP).
3) Real estate checking process of the mortgage loan

system (ECP).
4) Disbursement web-service (DWS).
5) Incident report generator system (IRG).

The results of applying the framework are detailed in

Table 2. We define the principles of correctness checking

Fig. 11. The excerpt state space graph of the CPN in Fig.4 (d); (a) the state space graph of Snapshot 0-1,1-1 and
2-1; (b) the state space graph of Snapshot 0-2; (c) the state space graph of Snapshot 0-3; (d) the state space graph
of Snapshot 1-2; (e) the connected state space graph.

(a)

s0

s1

s1

s2

s3

p0: 1^();p0: 1^();

p1: 1^();p1: 1^();

Biding : (), 000000

s2

s3

p1: 1^();

i0:

p1: 1^();

i0:

p2: A01 p2: A01

s4 p3: A01 valid p3: A01 valid

s5 p4: A01 valid p4: A01 valid

s6

s7

s8

p5: A01 p5: A01

s9 p14: A01 p14: A01

p4: A01 valid

i1: 1^(1000);

p4: A01 valid

i1: 1^(1000);

p6: A01 p6: A01

s9 p15: A01 p15: A01

s9 p16: A01 p16: A01

(b)

(c)

s10

s11

p1: 1^();

i0:

p1: 1^();

i0:

p2: A01 p2: A01

s12 p3: A01 invalid p3: A01 invalid

s13 p4: A01 invalid p4: A01 invalid

(d)

s0

s4

s5

s10

s11

s12

s13

State space graph of

Snapshot 0-3

State space graph of

Snapshot 0-2

State space graph of

Snapshot 1-2

(e)

Biding : (), 595023

DOI:10.4186/ej.2021.25.2.135

ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/) 147

of the BPMN model transformation, and prescribe the
measurement of the tool capacity as follows:

1) Structural equivalence checking
The structural equivalence of the BPMN graphs, CFGs

and CPN models are verified by an applying the directed
graph isomorphism algorithm [50] (implemented by
JAVA). In the consistency checking process, the number
of nodes in the CFG and CPN model is verified. It is a
back tracking to the source BPMN elements. If there exist
in the BPMN graph but they do not appear in the CFG
and CPN graph, the framework reports and points-out the
cause of inconsistency problems. As the experimental
results, the framework can detect the system causes and
user mistakes resulting in the structural inequivalence
correctly.

2) Behavioral equivalence checking
We verify the behaviors of CPN constructs that are

mapped from the BPMN user task, manual task, and
service task. We manually design and verify such CPN
construct by using CPN tool with one-by-one mapping
rule. This technique makes sure that each CPN construct
is correct. Next, the overview perspective and specific
properties are verified by using our Plugin. As the
statistical report detailed in Table 2, our framework

supports the designing of both the control flows and data
flows, and can be used to verify basic behaviors including
loop and parallel executions. The infinite loop and
concurrent executions cannot be validated by using
straightforward the ordinary software testing techniques.

We check the equivalence between CPN model and
BPMN model with the specific properties by comparing
their outputs. Normally, the behaviors of the CPN model
must conform to behaviors of the designed BPMN. The
outputs of BPMN model are derived from an execution
the model by a BPMN engine, and the outputs of CPN
model come from the use our framework. To configure
the test environment, the deployable artifacts of BPMN
model are generated and deployed in the enterprise
integrator. The modelers can simulate the BPMN model
running on the environment configured, and the model
checker runs on our verification framework.

Let’s consider the behavioral equivalence checking of
the ATM process in Fig. 4 (a), the test data for executing
the BPMN and the token colors of the CPN model must
be determined with the same value. The test data with a
valid PIN 595023 is determined at the task “Enter PIN”.
Whereas the CPN model must be take place by a marking
on the port place of the transition mapped from the
BPMN task “Enter PIN”. Thus, the place i0 of the CPN
model in Fig. 4 (d) must be the token color with 595023

Table 2. Results of applying the framework to existing models.

Model
CPN CFG State space

Col. Pla. Tran. Parallel. Loop TimeA Paths Snapshots Nodes Edges TimeS

HWR 7 31 24 0 1 2.32 8 27 66 59 1.02

RCP 4 48 41 2 1 5.41 14 42 73 63 3.54

ECP 6 56 46 1 2 5.01 9 24 81 75 2.48

DWS 5 52 40 1 2 5.29 11 31 78 62 2.30

IRG 12 47 39 1 1 4.37 22 33 79 69 2.12

Col. = Color sets; Pla. = Places; Tran. =Transitions; Parallel = the number of parallel blocks in BPMN model; Loop= the number of loops in
BPMN model; TimeA = Time (seconds) used in a process of CPN and CFG generations; TimeS = Time used for generating the state spaces of all
snapshots including the time used in the state space integration.

Fig. 12. Screenshot of BPMN Plugin.

DOI:10.4186/ej.2021.25.2.135

148 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/)

as well. The outputs of both models must be the same, by
the BPMN engine return $pin= “valid” and the CPN
model checker must produce one token on the place p4.
(the place p4 represents the state of invalid PIN).
However, the simulation by using the BPMN engine still
faces with the monitoring drawback. Because the BPMN
modeling framework does not support the monitoring of
execution paths and variables, and cannot verify the
parallel execution.

3) Performance measurement
As the experimental results in Table 2, the CPN

automation process is increasingly time consuming
because of the extended consistency checking algorithm
and graph isomorphism algorithm. Thus, the time used to
generate a CPN model and CFG relates to the model size,
complexity, and the number of elements and the meta-
data of BPMN model

In the state space generation, we observe that the time
and memory used for the state spaces integration is
increasing by approximately 3 percent. As the statistical
report described in Table 2, we found that the parallel
block results in the time used for mapping the CPN model
and generating the state space graph. The number of
execution paths and snapshots do not affect the
generating times if the modelers prepare the CPN
markings properly, or the CPN model has a small number
of the interleaved tasks.

In the state space exploration, the framework enables
to express the desirable properties in CTL. The proposed
Eclipse Plugin integrates the BPMN modeling tool and
the model checking tool CP4BPMN together. Since the
extension of the state space graph has been implemented
with the same data structures. Thus, the functional
commands still work well. The Plugin also enables to
analyze the CPN model with the arbitrarily marking
determination.

6. Conclusions and Future Work

There are numerous frameworks and tools for

verifying the designed BPMN model but most of the
BPMN modeling tools and verification mechanisms are
isolated. The CPN primitives can be used to represent and
verify the behaviors of BPMN model. Although the
corresponding CPN constructs can be automatically
generated from the BPMN elements, the obtained model
needs the CPN markings for simulating and analysis the
model’s behaviors. All the execution parts in the BPMN
model should be verified, and the model should free of
the undesirable properties. And the markings
determination should cover all the branches of the
gateway in the BPMN model.

We proposed an automated CPN-based framework
for verifying a design BPMN model. We extended the
transformation rules of the User task, Manual task, and
Service task. The control flow graph or CFG and branch
coverage criteria are applied for the automation of the
execution paths and the CPN’s markings. The CFG is an

intermediate model for considering the execution paths,
snapshots, and scenarios used to determine the
verification direction. The CPN markings obtained from
a set of the input data can convey the verification direction
achieving the branch coverage criteria. The obtained CPN
markings can be ensured that the execution exercise all the
execution parts. To generate the state space graph, the
CPN markings are automatically fed into the CPN model
based on the snapshot derived from the CFG. Next, the
modelers can explore the model’s behaviors from the state
space graph by an expressing the goal states written in
CTL form. These techniques have been implemented as a
BPMN modeler plugin running on Eclipse environments.
It interfaces with the CP4BPMN verification tool through
APIs.

The experimental results show that our proposed
technique and framework are practical. They pave the
automated verification which is the integration of the
BPMN modeling tool and the model checker mechanisms
together. However, our framework does not support the
parallel block that contains a User task or Manual task.
Because they produce many CPN port places and lead to
more interruptions that occur in the state space generation
stage. Our ongoing work is directed towards to implement
a graphic user interface for editing and animating the
obtained CPN models. And we would extend the process
of the CPN markings determination that accomplishes the
condition coverage criteria.

Acknowledgement

C. Dechsupa would like to acknowledge
Chulalongkorn University graduate school for financial
support by the Postdoctoral Fellowship
Ratchadaphiseksomphot Endowment Fund.

References

[1] O. M. Group, OMG Unified Modeling Language TM

(OMG UML) Version 2.5, 2015.
[2] C. Baier and J.-P. Katoen, Principles of Model Checking.

MIT press, 2008.
[3] K. Jensen, “An introduction to the theoretical

aspects of coloured Petri net,” presented at The
Book Series Lecture Notes in Computer Science (LNCS),
2005.

[4] L. M. K. Kurt Jensen, Coloured Petri Nets. Modelling
and Validation of Concurrent Systems. University of
Aarhus, 2009.

[5] K. Jensen, L. M. Kristensen, and L. Wells,
“Coloured Petri nets and CPN tools for modelling
and validation of concurrent systems,” International
Journal on STTT, vol. 9, no. 3-4, pp. 213-254, 2007.

[6] A. G. Gounares and C. D. Garrett, “Control flow
graph driven operating system,” U.S. Patent
Application No. 13/463,844, 2012.

[7] Eclipse BPMN Modeler. [Online]. Available:
http://www.eclipse.org/bpmn

DOI:10.4186/ej.2021.25.2.135

ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/) 149

[8] C. Dechsupa, W. Vatanawood, and A. Thongtak,
“Hierarchical verification for the BPMN design
model using state space analysis,” IEEE Access, vol.
7, pp. 16795-16815, 2019.

[9] Object Management Group, Model, Business Process
Notation (BPMN) version 2.0. Object Management
Group, 2011.

[10] M. Zäuram, “Business process simulation using
coloured Petri nets,” M.S. , Dept. Math. Com. Sci.,
Univ. Tartu, Tartu, Estonia, 2010.

[11] L. E. Mendoza Morales, “Business process
verification: The application of model checking and
timed automata,” CLEI Electron. J., vol. 17, p. 3,
2014.

[12] R. M. Dijkman, M. Dumas, and C. Ouyang,
“Formal semantics and analysis of BPMN process
models using Petri nets,” Tech. Rep, Queensland
Uni.of Tech., 2007.

[13] A. Krishna, P. Poizat, and G. Salaün, “VBPMN:
Automated verification of BPMN processes (Tool
Paper),” in International Conference on Integrated Formal
Methods, Springer, Cham, 2017, vol. 10510, pp. 323-
331.

[14] R. P. Kurshan, Computer-Aided Verification of
Coordinating Processes: The Automata-Theoretic Approach.
Princeton University Press, 2014.

[15] W. M. Van Der Aalst et al., “Soundness of workflow
nets: classification, decidability, and analysis,”
Formal Aspects of Computing, vol. 23, no. 3, pp. 333-
363, 2011.

[16] H. Groefsema and D. Bucur, “A survey of formal
business process verification: From soundness to
variability,” in International Symposium on Business
Modeling and Software Design, 2013, pp. 198-203.

[17] S. Nidhra and J. Dondeti, “Black box and white box
testing techniques-a literature review,” International
Journal of IJESA, vol. 2, no. 2, pp. 29-50, 2012.

[18] N. Gupta, A. P. Mathur, and M. L. Soffa,
“Generating test data for branch coverage,” in
Proceedings ASE 2000, IEEE, 2000, pp. 219-227.

[19] M. Fisher, An Introduction to Practical Formal Methods
Using Temporal Logic. John Wiley & Sons, 2011.

[20] P. T. Monteiro, D. Ropers, R. Mateescu, A. T.
Freitas, and H. De Jong, “Temporal logic patterns
for querying dynamic models of cellular interaction
networks,” Bioinformatics, vol. 24, no. 16, 2008.

[21] W. Reisig, A Primer in Petri Net Design. Springer
Science & Business Media, 2012.

[22] K. Jensen, “Coloured Petri nets: Basic concepts,
analysis methods and practical use,” DAIMI Report
Series, vol. 37, no. 588, 2008, doi:
10.7146/dpb.v37i588.7188.

[23] X. Ye, J. Zhou, and X. Song, “On reachability
graphs of Petri nets,” Computers & Electrical
Engineering, vol. 29, no. 2, pp. 263-272, 2003.

[24] P. Darondeau, S. Demri, R. Meyer, and C. Morvan,
“Petri net reachability graphs: Decidability status of
first order properties,” arXiv preprint,
arXiv:1210.2972, 2012.

[25] L. M. Kristensen, “State space methods for
coloured Petri nets,” Ph.D. Degree, Department of
Computer Science, University of Aarhus, Denmark,
2000.

[26] J. L. de Moura, A. S. Charão, J. C. D. Lima, and B.
de Oliveira Stein, “Test case generation from
BPMN models for automated testing of Web-based
BPM applications,” in 2017 17th (ICCSA), IEEE,
2017, pp. 1-7.

[27] D. Lübke and T. van Lessen, “Modeling test cases
in BPMN for behavior-driven development,”
IEEE Software, vol. 33, no. 5, pp. 15-21, 2016.

[28] C. Ngambenchawong and T. Suwannasart, “A
Weak mutation testing framework for BPMN,” in
Proceedings of the International MultiConference of
Engineers and Computer Scientists 2019, IMECS 2019,
Hong Kong, March 13-15, 2019.

[29] Y. Wang and N. Yang, “Test case generation of web
service composition based on CP-nets,” JSW, vol.
9, no. 3, pp. 589-595, 2014.

[30] A. Fernandez, “Camunda BPM platform loan
assessment process lab,” Brisbane, Australia:
Queensland University of Technology, 2013.

[31] J.-J. Domínguez-Jiménez, A. Estero-Botaro, A.
García-Domínguez, and I. Medina-Bulo, “GAmera:
A tool for WS-BPEL composition testing using
mutation analysis,” in International Conference on Web
Engineering, Springer, 2010, pp. 490-493.

[32] P. Yotyawilai and T. Suwannasart, “Design of a tool
for generating test cases from BPMN,” in 2014
International Conference on Data and Software Engineering
(ICODSE), IEEE, 2014, pp. 1-6.

[33] C. Nonchot and T. Suwannasart, “A tool for
generating test case from BPMN diagram with a
BPEL diagram,” in Proceedings of the IMECS 2016,
2016, vol. 1.

[34] E. Solaiman, W. Sun, and C. Molina-Jimenez, “A
tool for the automatic verification of bpmn
choreographies,” in 2015 IEEE SCC, IEEE, 2015,
pp. 728-735.

[35] F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi,
and A. Vandin, “BProVe: A formal verification
framework for business process models,” in 2017
32nd IEEE/ACM ASE, IEEE, 2017, pp. 217-228.

[36] J. W. Bryans and W. Wei, “Formal analysis of
BPMN models using Event-B,” in International
Workshop on Formal Methods for Industrial Critical
Systems, Springer, 2010, pp. 33-49.

[37] S. Yamasathien and W. Vatanawood, “An approach
to construct formal model of business process
model from BPMN workflow patterns,” in 2014 4th
International Conference on DICTAP2014 (DICTAP),
IEEE, 2014, pp. 211-215.

[38] C. Wolter, P. Miseldine, and C. Meinel,
“Verification of business process entailment
constraints using SPIN,” in International Symposium
on Engineering Secure Software and Systems, Springer,
2009, pp. 1-15.

DOI:10.4186/ej.2021.25.2.135

150 ENGINEERING JOURNAL Volume 25 Issue 2, ISSN 0125-8281 (https://engj.org/)

[39] K. Jensen and L. M. Kristensen, “CPN ML
programming,” in Coloured Petri Nets. Springer, 2009,
pp. 43-77.

[40] A. Speck, S. Witt, S. Feja, A. Lotyzc, and E.
Pulvermüller, “Framework for business process
verification,” in International Conference on BIS,
Springer, 2011, pp. 50-61.

[41] S. P. Silvia von Stackelberg, J. Mülle, and K. Böhm,
“Detecting data-flow errors in BPMN 2.0,” OJIS,
vol. 1, no. 2, pp. 1-19, 2014.

[42] A. Suchenia, P. Wiśniewski, and A. Ligęza,
“Overview of verification tools for business
process models,” Annals of Computer Science and
Information Systems, vol. 13, pp. 295-302, 2017.

[43] W. M. van der Aalst, H. De Beer, and B. F. van
Dongen, “Process mining and verification of
properties: An approach based on temporal logic,”
in OTM, Confederated International Conferences “On the
Move to Meaningful Internet Systems,” Springer, 2005,
pp. 130-147.

[44] O. Allani and S. A. Ghannouchi, “Verification of
BPMN 2.0 process models: an event log-based

approach,” Procedia Computer Science, vol. 100, pp.
1064-1070, 2016.

[45] UPPAAL. Uppsala University. Accessed: May 19,
2020. [Online]. Available: http://www.uppaal.org/

[46] K. Schmidt, “Lola a low level analyser,” in
International Conference on Application and Theory of Petri
Nets, Springer, 2000, pp. 465-474.

[47] B. F. Van Dongen, A. K. A. de Medeiros, H.
Verbeek, A. Weijters, and W. M. van Der Aalst,
“The ProM framework: A new era in process
mining tool support,” in International Conference on
Application and Theory of Petri Nets, Springer, 2005, pp.
444-454.

[48] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri,
“NuSMV: A new symbolic model verifier,” in
International Conference on Computer Aided Verification,
Springer, 1999, pp. 495-499.

[49] N. Bansal and N. Singla, “Cash withdrawal from
ATM machine using mobile banking,” in 2016
ICCTICT, IEEE, 2016, pp. 535-539.

[50] R. J. Ullmann, “An algorithm for subgraph
isomorphism.” Journal of the ACM, vol. 23, no. 1, pp.
31-42, 1976.

Chanon Dechsupa received his Ph.D. degree in computer engineering, Faculty of engineering,
Chulalongkorn University in 2018. From 2008 to 2015, he was a database programmer and a senior
system analyst with many private sectors. Currently, he is a post-doctoral researcher at department
of computer engineering, Faculty of Engineering, which was supported by the Fellowship
Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University. His field of interest
includes the formal method, software engineering and workflow design, and the data science in the
software engineering context.

Wiwat Vatanawood received Ph.D. degree in computer engineering from Chulalongkorn
University, Thailand. He is currently an associate professor of Computer Engineering at Faculty of
Engineering, Chulalongkorn University. His research interests include formal specification methods
and software architecture.

Arthit Thongtak received Dr.Eng in Electrical & Electronic Engineering from Tokyo Institute of
Technology, Japan. He is currently an assistant professor at department of computer engineering,
Chulalongkorn University, Thailand. His interests include Asynchronous logic design and
verification, Dependable computing, and Computer architecture

