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Abstract. The work concerned exactly a structural damage. In this paper also involves the 
effect of length on the damping of the composite. The calculation of laminate damping is 
performed by use of a strain energy method. The modal analysis of the structure for 
different loading rates is based on the analytical method used to solve the equation of free 
vibrations. The difference between strain energies for both cases (damaged and 
undamaged) are calculated by the finite element method. The structural damping of the 
different beams is evaluated from these energies. The results deduced from the damping 
by finite element analysis for the first three modes that the evaluation of laminate damping 
takes account the variation of the structural damping η with lengths. This study shows 
clearly the decrease of one of dynamic characteristics especially the frequency when the 
loading rate increases for all lengths studied; this should have high utility as a decisive test 
for non-destructive damage detection. 
 
Keywords: Structural damping, modal analysis, composites, finite element method, 
frequency. 
 
 

ENGINEERING JOURNAL Volume 17 Issue 4 
Received 3 January 2013 
Accepted 10 April 2013 
Published 1 October 2013 
Online at http://www.engj.org/ 
DOI:10.4186/ej.2013.17.4.111 



DOI:10.4186/ej.2013.17.4.111 

112 ENGINEERING JOURNAL Volume 17 Issue 4, ISSN 0125-8281 (http://www.engj.org/) 

1. Introduction 
 
The increasing need for high-performance structures has stimulated considerable research in the 
characterization of damping in advanced composite materials. Helicopter rotor blades, turbine compressor 
blades and space structure truss elements are examples of aerospace applications of composites where 
damping properties are important. Damping is a measure of the energy dissipation in any vibrating 
structure. The progress has been achieved in the analysis and measurement of dynamic properties of 
composite materials. For example, closed –form solutions for dynamic stiffness and damping properties of 
laminated plates and laminated beams have been derived, and finite element methods have been used in 
both macro mechanical and micromechanical modeling [1, 3]. Viscoelastic materials combine the capacity 
of an elastic type material to store energy with the capacity to dissipate energy. So, the use of an energy 
approach for evaluating the material or structure damping is widely considered. In this energy approach, the 
dissipated energy is related to the strain energy stored by introducing a damping parameter [4]. 

The initial works on the damping analysis of fibre composite materials were reviewed extensively in 
review paper by Gibson and Plunkett [5] and Gibson and Wilson [6]. A damping process has been 
developed initially by Adams and Bacon [7] who sees that energy dissipation can be described as separable 
energy dissipations associated to the individual stress components. This analysis was refined in later paper 
of Ni and Adams [8]. The damping of orthotropic beams is considered as function of material orientation 
and the papers also consider cross-ply laminates and angle-ply laminates, as well as more general types of 
symmetric laminates. 

The damping concept of Adams and Bacon was also applied by Adams and Maheri [9] to the 
investigation of angle-ply laminates made of unidirectional glass fibre or carbon layers. The finite element 
analysis has been used by Lin et al. [10] and Maheri and Adams [11] to evaluate the damping properties of 
free-free fibre reinforced plates. These analyses were extended to a total of five damping parameters, 
including the two transverse shear damping parameters. More recently the analysis of Adams and Bacon 
was applied by Yim [12] and Yim and Jang [13] to different types of laminates, then extended by Yim and 
Gillespie [14] including the transverse shear effect in the case of 0° and 90° unidirectional laminates. For 
thin laminate structures the transverse shear effects can be neglected and the structure behavior can be 
analyzed using the classical laminate theory. 

The natural frequencies and mode shapes of rectangular plates are well described using the Ritz 
method introduced by Young [15] in the case of homogeneous plates. The Ritz method was applied by 
Berthelot and Safrani [16] to describe the damping properties of unidirectional plates. The analysis was 
extended to the damping analysis of laminates [17]. In this study, we considered that there is the simplicity 
of calculations while assuming that the structure is subjected of free vibration and undamped. After each 
fatigue cycle, we have a new value of Young’s modulus as reported in Fig. 1. Our assumption supposed that 
the material of each beam studied is homogeneous and it established a relation between the results of 
Young’s modulus found experimentally that will be consequently injected into the model which is simple 
basing on the finite element method. The idea is to replacing the Young’s modulus found experimentally in 
the equations of finite element method. Hence, we keep the same programs developed. This paper presents 
an evaluation of the structural damping as function of the length using finite element method for two 
materials with different sequences U and C2. 
 

2. Materials Tested 
 
The experimental study was achieved in the case of glass fibre composites. The experimental tests are 
realized in institute of acoustics and mechanics, university of Lemans, France. The laminate was prepared 
by hand lay-up process from SR1500 epoxy resin with SD2505 hardener and unidirectional E-glass fibre 
fabrics of weight 300 (g/m2). The evaluation of damping was performed on beams of different lengths: 
140,160, 180, 200, 210, 220, 230 and 240 mm. Beams had a nominal width of 20 mm, were cured at room 
temperature with a pressure of 30 kPa using vacuum moulding process, and then post-cured for 8h at 80°C 
in an oven. Beams had a nominal thickness of 2 mm with a volume fraction of fibres equal to 0.40. The 
laminated beams with height lengths for each material are analyzed. The mechanical modulus of elasticity of 
the materials was measured in static tensile. Unidirectional composites have exceptional properties in the 
fibre direction and mediocre properties perpendicular to the fibre directions. There are very few situations 
where composites are used purely in a unidirectional configuration. In most applications there will be some 
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form of loading away from the direction of the fibres. In this situation, it is only the resin that resists this 
load which has no reinforcement. Hence, composites structures are made by combining unidirectional 
laminates in different directions to resists these loads as material C2. Many products in a variety of 
industries are fabricated from composites, from fighter aircraft to bath tubs. There are more examples in 
different industries including: Automotive and rail, boating, general engineering, aerospace, sporting goods, 
civil engineering, domestic and medical. The mechanical characteristics of U and C2 materials are reported 
in Table 1. 
 
Table 1. Mechanical characteristics of composite materials of U and C2. 
 

Material Stacking Sequences 
Young’s Modulus 

(GPa) 
Max Load at 

Fracture (KN) 

U [(0)]8 21.08 35.165 

C2 [(0/90)2]s 15.04 20.915 

 

The experimental investigation was conducted using tensile cyclic tests for different laminates studied. 
The applied load ratio is 10% of maximum load failure. The loading rate is the ratio of the load relative to 
the maximum load failure. We divided the maximum force of rupture in ten equal parts (10 cycles), for each 
cycle the load is increased by 10% of the maximum load failure. After each fatigue cycle, we have a new 
value of Young’s modulus as reported in Fig. 1. It established a relation between the results of Young’s 
modulus found experimentally that will be consequently injected into the model which is simple basing on 
the finite element method. The idea is to replacing the Young’s modulus found experimentally in the 
equations of finite element method. Hence, we keep the same programs developed. Fig. 1 shows the results 
obtained for the Young’s modulus reduction as a function of cycle number. 
 

 
 
Fig. 1. Stiffness reduction of two composite materials U and C2 as a function of cycle number. 
 
3. Undamped Vibrations 
 
The differential equation of free motion for an undamped beam [22] may be written as: 
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where ρs is the mass per unit area and ks is the stiffness per unit area given by: 
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Eq. (1) of transverse vibrations may be rewritten in the form: 
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Introducing the natural angular frequency of the undamped beam: 
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The transverse displacement of the beam at point of coordinate x can be derived as the superimposition of 
the normal modes: 
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where Xi(x) is the normal shape of the ith natural mode, ωi is its angular frequency. The coefficients Ai and 
Bi depend on the initial conditions imposed at time t = 0. 

In the case of free – clamped beam of length L, Xi(x) is the beam function:  
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where the coefficient λi and γi are reported in Table 2. 
 
Table 2. Values of the coefficients of the clamped-free beam function.  
 

i 1 2 3 4 5 6 7 

λi 1.8751 4.6941 7.8548 10.996 14.137 17.279 20.420 

γi 0.7341 1.0185 0.9992 1.000 1.000 1.000 1.000 

 
The angular frequency of mode i is given by: 
 

0

2  ii                                                                       (7) 

 

4. Finite Element Method in the Dynamic Analysis  
 
The flexural vibrations of beams are analyzed by the finite element method [20], using the stiffness matrix 
and mass matrix of beam element with two degrees of freedom per node as shown in Fig. 2, where: 
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Fig. 2. Beam element with four degrees of freedom. 
  
E: the Young modulus. 
I: the moment of inertia of the beam. 
L: the length of the beam. 
S: the section of the beam. 
ρ: the density. 
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The global matrix of mass and stiffness are obtained by using assembly method: 
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where B is the Boolean matrix and Kdes and Mdes are unassembled matrix, they contains only elementary 
matrices of mass and stiffness. The number of elements used in this study is 40 elements. 
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5. Resolution of the Eigenvalue Problem 
 
We have two cases where the structure is undamaged or damaged. The equation of motion (undamped and 
free vibration):  
 

    0
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tqktqm                                                           (13) 
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The equation (13) can be written in matrix form: 
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where q is the vector of degrees of freedom. For the first case [K] is the global stiffness matrix but for the 
second case [K] = [KD], where [KD] is the global stiffness matrix with damage, that takes into account the 
decrease in the rigidity of the structure when the loading rates change [20]. 

The general solution of equation (14) is: 
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By substituting the equation (15) in equation (14), we have: 
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Then, the determinant must be zero: 
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There are many methods to calculate the eigenvalues; the most of these methods are to write the equation 
(16) as follows: 
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where [H] is a positive and symmetric matrix, it is clear that if we write directly the equation (16) as: 
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where [K]-1 is the inverse of the matrix [K], the symmetry property is not always preserved. Therefore, it is 
necessary to write the matrix [K] using the Cholesky decomposition: 
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[L]T is the transpose of the matrix [L] and [L] is a lower triangular matrix. The equation (16) is written: 
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By writing equation (21) as similar form as equation (16): 
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6. Numerical Evaluation of Damping 
 
The calculation of structural damping factors of modal energies for the first three modes of vibration of the 
structure is done by evaluating the ratio of the strain energies of beam for damaged and undamaged cases 
[20, 21]. 

The modal strain energy of the beam for the undamaged case is given by: 
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with: 

[K]: Stiffness matrix; 
[q]: Eigenvector of displacement. 

The modal strain energy for damaged case is given by: 
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with: 

[KD]: Stiffness matrix (damaged case); 
[qD]: Eigenvector of displacement (damaged case). 

The structural damping coefficient [20] for different stages of damage (different loading rates) is given 
by: 
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with Un and UnD are the modal strain energies for undamaged and damaged case.  
 

7. Results and Discussions 
 
The modal analysis of the structure for different loading rates is based on the analytical method used to 
solve the equation of free vibrations. The programming of this resolution method was performed under the 
Matlab software. The question we thought about, is there a change in the structural damping for the same 
material when varying the lengths? The specimens used in tensile testing cycle is 0.20 m. for this, we took 
the values of length higher and lower than the value quoted above. The values of lengths (m) chosen for 
both materials studied are: 0.14-0.16-0.18-0.20-0.21-0.22-0.23-0.24. 

Before using the programs developed by finite element method under Matlab software and in the 
absence of experimental values of the natural frequencies of the beams, it was necessary to calculate 
analytical response described in section 3 to test the effectiveness programs developed. 

The results obtained for both materials U and C2 for undamaged case (0% loading rate), not subject to 
any cyclic loading show a rapprochement between the frequencies obtained by the model with those 
evaluated by analytical. 

The decrease in frequency can be used as a means of non-destructive control of composite materials. 
Simply, we limit ourselves to the first three modes due to congestion of results. For the compute of the 
damaged stiffness matrix is simulated by replacing the Young’s modulus of undamaged structure Eo by 
another Young’s modulus derived from Fig. 1 on the fifth cycle (for loading rate 50%) and ninth cycle (for 
loading rate 90%). 

For the material U: 
EoU = 21.08 GPa 

 Loading rate 50%: 
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998.0*
%50

998.0%50
U

EoE

U
Eo

E
  

 Loading rate 90%: 

99.0*
%90

99.0%90
U

EoE

U
Eo

E
  

For the material C2: 
EoC2 = 15.04 GPa 

 Loading rate 50%: 

96.0*
2%50

96.0

2

%50
C

EoE

C
Eo

E
  

 Loading rate 90%: 

92.0*
2%90

92.0

2

%90
C

EoE

C
Eo

E
  

 
Table 3. Frequencies obtained by the model and analytical method for the material U. 
 

Length of 
beam (m) 

Analytical 
Response 

(Hz) 

Modeling  frequencies 
with Different loading 

rates (Hz) 

0% 50% 90% 

L1 = 0.140 

38.453 36.684 36.592 36.5 

346.08 352.12 351.24 350.36 

961.33 933.16 930.83 928.49 

L2 = 0.160 

29.441 28.086 28.016 27.945 

264.97 269.59 268.92 268.24 

736.02 714.45 712.67 710.87 

L3 = 0.180 

23.262 22.192 22.136 22.08 

209.36 213.01 212.48 211.95 

581.55 564.51 563.09 561.68 

L4 = 0.200 

18.842 17.975 17.93 17.885 

169.58 172.54 172.11 171.68 

471.05 457.25 456.11 454.96 

L5 = 0.210 

17.09 16.304 16.263 16.222 

153.81 156.5 156.11 155.72 

427.26 414.74 413.7 412.66 

L6 = 0.220 

15.572 14.855 14.818 14.781 

140.15 142.6 142.24 141.88 

384.3 377.89 376.95 303.47 

L7 = 0.230 

14.247 13.592 13.558 13.524 

128.23 130.47 130.14 129.81 

356.18 345.75 344.88 344.01 

L8 = 0.240 

13.085 12.483 12.451 12.42 

117.76 119.82 119.52 119.22 

327.70 317.53 316.74 315.94 
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Tables 3-4 provide information on the evolution of the first three modes of the structure under the 
action of different loading rate and shows also the frequencies obtained by the model and the analytical 
response for different lengths studied. The steps to calculate them are: 

 First, we calculate the natural frequencies of the structure for different lengths as to be compared 
later with the frequencies obtained by the model for different loading rate (50%-90%), 

 The frequencies obtained by the model are calculated by the finite element method, 

 Comparing the natural frequencies obtained by the model for different loading rate (0%, 50% and 
90%), we observed that has been a decrease in frequency when the loading rate increases [18, 19] 
confirm the decrease of the Young’s modulus shown in Fig. 1. This is very important for the 
behavior of composite materials during their service. This can be used as a control of loss of 
stiffness of the structure and subsequently its life time. These observations are the same for both 
materials U and C2. 

 
Table 4. Frequencies obtained by the model and analytical method for the material C2. 
 

Length of 
beam (m) 

Analytical 
Response 

(Hz) 

Modeling  frequencies 
with Different loading 

rates (Hz) 

0% 50% 90% 

L1 = 0.140 

32.480 30.986 30.518 29.882 

292.320 297.430 292.930 286.830 

812.010 788.220 776.300 760.130 

L2 = 0.160 

24.868 23.724 23.365 22.878 

223.810 227.720 224.280 219.600 

621.690 603.480 594.360 581.970 

L3 = 0.180 

19.649 18.745 18.461 18.077 

176.840 179.930 177.210 173.510 

491.220 476.820 469.620 459.83 

L4 = 0.200 

15.915 15.183 14.954 14.642 

143.240 145.740 143.540 140.550 

397.880 386.230 380.390 372.460 

L5 = 0.210 

14.436 13.772 13.563 13.281 

129.920 132.190 130.190 127.480 

360.890 350.320 345.020 337.840 

L6 = 0.220 

13.153 12.548 12.358 12.101 

118.380 120.450 118.630 116.150 

328.830 319.200 314.370 307.820 

L7 = 0.230 

12.034 11.481 11.307 11.072 

108.310 110.200 108.540 106.270 

300.860 292.040 287.630 281.640 

L8 = 0.240 

11.052 10.544 10.384 10.168 

99.471 101.21 99.679 97.602 

276.310 268.21 264.160 258.660 

 
The analytical response represents the first three natural modes for a beam clamped at one and free at the 
other. They are calculated as expressed in section 3 above for to make a comparison between the 
frequencies obtained by the finite element method and saw the precision of the frequencies found by the 
model with those calculated analytically. The increase of structural damping indicates simply the maximum 
values it can attain, in the same way the decrease of structural damping indicates the minimum values it can 
attain. 
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Fig. 3. Modeling results obtained for the damping as function of the length for U material in the case: load 
50 %. 
 

 
 
Fig. 4. Modeling results obtained for the damping as function of the length for U material in the case: load 
90 %. 
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Fig. 5. Modeling results obtained for the damping as function of the length for C2 material in the case: load 
50 %. 
 

 
 
Fig. 6. Modeling results obtained for the damping as function of the length for C2 material in the case:  
load 90 %. 
 
Figures 3, 6 report the results deduced for the damping by finite element analysis for the first three modes. 
The evaluation of laminate damping by modeling takes account of the variation of the structural damping η 
with length [23]. We have two cases:  
When the loading rate is 50 %: 

For U: Figure 3 shows an increase in damping (0.5025%) when the length increases except for L4; we 
observe a slight decrease in damping (0.497%). 
For C2: Figure 5 shows a slight increase in damping (3.001%) for L1 and becomes more important for 
the length L7 (3.007 %). For the second and the third mode, we observe an increase in damping when 
the length increases except for L5 (2.997 %). 

When the loading rate is 90%:  
For U: Figure 4 shows an increase in damping (1.003%) when the length increases except for L7; we 
observe a slight decrease in damping (0.997%). 
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For C2: Figure 6 shows an increase in damping (7.005%) when the length increases except for L6; we 
observe a slight decrease in damping (6.997%). 

 

8. Conclusions 
 
For the case of dynamic analysis, the finite element technique was used to calculate modal analysis in 
composite structures. Of particular interest are the resulting modal parameters such as frequencies and 
damping. The strain energy calculation is performed by using a finite element analysis of the vibrations of a 
composite structure. Figures 3-6 give us information about the evolution of structural damping value for 
each mode which is not constant and varies in length to another. We can have structural damping values 
for material U an interval for loading rate 50% between 0.497% and 0.5025%, and another an interval for 
loading rate 90% between 0.997% and 1.003%. While for the material C2, we have between 3.001% and 
3.007% for loading rate 50% and between 6.997% and 7.005% for loading rate 90%. The decrease in 
frequency of different loading rates shows the loss of stiffness for the height lengths of beams studied. The 
loss factors of the composite materials can be deduced by applying modeling to the flexural vibrations of 
free-clamped beams. The results deduced from the damping by finite element analysis for the first three 
modes shows that the evaluation of laminate damping takes account the variation of the structural damping 
η with lengths for the two laminate beams U and C2. The damping begins by cracks and leads to a loss of 
stiffness witch can be appreciable when the loading rate increases; this should be taken into account in all 
analysis. The decrease in frequency can be considered as an important tool test for damage detection. 
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