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1. Introduction

In recent years, automotive industry has shown a trend
to replace electromechanical components by intelligent and
autonomous mechatronic systems because of the increasing
mobility requirements. Hence, one of the critical compo-
nents in the present of motor vehicles, an active suspen-
sion system has attracted many researchers in the past few
decades [1]-[0].

attention to the issues on how to reduce acceleration of

These researches have paid considerable

sprung mass continuously as well as to minimize suspen-
sion deflection, which leads guarantee of the stability of the
suspension systems and improvement of the required sus-
pension performances such as ride comfort, road handling
and suspension deflection, vehicle maneuverability.

In the automotive suspension system, the state-space
model has been used for control and estimation problems
[7]-[12]. In real situations, the automotive suspension sys-
tem can contain system and measurement noises which can
cause the system error. Hence, for the state-space model of
the automotive suspension system with noises, a state esti-
mation filter should be applied to estimate the proper state
of the controller in order that the suspension performance
is to be improved. Generally, the state estimation filter can
be classified by the infinite memory structure(IMS) filter
and the finite memory structure(FMS) filter according to
the measurement processing manner. The IMS filter, such
as the well-known Kalman filter [13]-[16], has been success-
fully applied for the automotive suspension system [9]-[12].
In contrast to the IMS filter, the FMS filter was developed
using only finite measured outputs on the most recent win-
dow [17]-[20]. The FMS filter has been applied successfully
for various engineering problems [21]-[26].

Even if the automotive suspension system is accurately
represented in state-space model on a long time scale, un-
predictable changes such as frequency, phase, and speed
jumps can occur. This effect is called temporary uncer-
tainties because it generally occurs in the short term [17]-
[20]. As representative temporary uncertainties, there are a
model uncertainty, an unknown input, and incomplete mea-
surement information, etc. The state estimation filter for
dynamic systems should be robust to diminish the effects
of these temporary uncertainties.

Due to its memory structure and measurement process-
ing manner, the FMS filter has been known inherently to be
bounded input/bounded output stable and robust against
temporary uncertainties, which means that the FMS filter
In this paper, the
FMS filter using most recent finite measured outputs and

has an intrinsic robustness property.

control inputs is applied for the state estimation filtering
of automotive suspension systems under temporary uncer-
tainties to verify intrinsic robustness of FMS filter. Firstly,
the single-corner model for the automotive suspension sys-
tem and its state-space model are described. Secondly, both
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FMS and IMS filters are briefly introduced and represented
by the summation form. Thirdly, a model uncertainty and
an unknown input are discussed as representative tempo-
rary uncertainties. Finally, to verify intrinsic robustness of
FMS filter, extensive computer simulations are performed
for both nominal system and temporarily uncertain system.
It is shown that the FMS filter can be better than the IMS
filter for a couple of temporary uncertainties, which means
that people sitting in the vehicle with FMS filter can be more
comfortable due to the smaller estimation error magnitude
and shorter estimation error convergence time than the ve-
hicle with IMS filter. In addition, the FMS filter can be
shown to be comparable to the IMS filter after the effects
of a couple of temporary uncertainties have completely dis-
appeared.

This paper has the following structure. In Section 2,
an automotive suspension system and its state-space model
are described. In Section 3, FMS and IMS estimation filtetrs
with summation forms are introduced briefly. In Section 4,
a couple temporary uncertainties are discussed. In Section
5, extensive computer simulations are performed. Then,
concluding remarks are given in Section 6.

2. Automotive Suspension System and Its State-
Space Model

The automotive suspension system allows wheel move-
ment independent of the automotive body, which can
isolate automotive body from road disturbances such as
bumps and potholes. Both spring and damper try to re-
move the effects of road disturbances on the ride as well as
stability of the automotive. The spring manipulates the fre-
quency of road disturbances and tries to bring them into a
more manageable band. The damper dissipates the energy
of the dynamic load coming through road disturbances.
Hence, designing an automotive suspension system is a
very interesting and challenging in control problems. When
the automotive suspension system is designed, the single-
corner model for one of the four wheels, called the quarter
car model, is used to simplify the problem to a 1-D mul-
tiple spring-damper system. The single-corner model for
the active suspension system including an actuator is able
to generate the control force to control the motion of the
automotive body. In this paper, a bus suspension system is
considered and its diagram is shown in Figure 1 [5].

From Figure 1 and Newton’s law, the following dy-
namic equations can be obtained:

M X, =
MyXy =

—b1(X) — Xo) — K1(X1 — X2) +u,
bi(X1 — Xo) — K1(X) — X»)

+bo(p — Xa) + Ko(p— Xa2) —u, (1)

where the automotive suspension system consists of several
variables and parameters as shown in Table 1.
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Fig. 1. Model for automotive suspension system.

Table 1. Variables and parameters of automotive suspension system

Variables
X1(t) | body displacement
Xa(t) | suspension displacement
u(t) | desired input force by the cylinder
p(t) | road disturbance such as bump and pothole

Parameters
My | body mass [£g]
My | suspension mass [£g]

K spting constant of suspension system [N/ 7]

Ky spting constant of wheel and tire [N/ 7]

b1 damping constant of suspension system [N.s/7]

b2 damping constant of wheel and tire [N.s/ 7]

The dynamic equation (1) of the automotive suspen- where variables and parameters are expressed by
sion system can be represented in the state-space model.

The state-space approach has been a general method for z1(t) X 1(%)
modeling, analyzing and designing a wide range of control 2(t) = x2(t) _ Xi(t)
systems in time-domain and is especially suitable for digi- x3(t) Yl t) |’
tal computation techniques. In this paper, the state-space x4(t) Yi(t)
realization is also required for the automotive suspension y(t) = Yi(t) = Xi(t) — Xa(t),
system to apply the state estimation filtering,
A continuous-time state-space model of the automotive F 0 1 0
suspension system can be represented by b g [ o ( by by b2> Kl]
Mq Mo My My Mo Mo My
Ac = b by, b, b
. oo (Bedh
. U
oo (st
yt) = Cua(d), @) _
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The body velocity X, (t) and the damper velocity Y (t) =
X1 (t) — X»(t) are important variables in the automotive
suspension control design. A feedback controller is de-
signed in order that the output X (t) — Xa(t) for the rel-
ative displacement between body and suspension should
meet design specifications such as an overshoot and a set-
tling time. Thus, this paper focuses on estimation filter-
ing of two velocities and the relative displacement between
body and suspension using measured outputs from the
wheel displacement sensor.

3. Two Kinds of State Estimation Filters

The continuous-time state-space model (2) is dis-
cretized with the sample time. Since the occurrence of
road disturbances such as bump and pothole is unpre-
dictable, the road disturbance term p; can be considered
as temporary uncertainty and thus be ignored in the nomi-
nal discrete-time state-space model. In addition, there can
be system and measurement noises in real situations. Thus,
the discretized system for the automotive suspension sys-
tem can be extended by the following discrete-time state-
space model

ziy1 = Az + Bu; + Guy,
yi = Cuxi+ oy, ©)
where
A = AT
T
(B E] = / esde | B,
0
= (AT - 1) B,
c = (., 4

and the matrix F related to the road distutbance will be used
in the next section and the matrix G related to the system
noise is assumed to be same as E in this paper. The initial
state &;, is a random variable with a mean Z;, and a covari-
ance ;. The wj is the system noise and v; is the measure-
ment noise in the wheel displacement sensor. These noises
are zero-mean white Gaussian whose covariances ) and R
are assumed to be positive definite matrix. The desired in-
put force u; by the cylinder is treated as a control input.
Since the road disturbance can be considered as temporary
uncertainty, the term p; is excluded. The state variable x;
and output variable y; are specified as shown in Table 2.
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As shown in (3), the automotive suspension system
contains system and measurement noises which can cause
the system error. Hence, the state estimation filtering has
been applied to estimate state variables of the automo-
tive suspension system with noises using measured out-
puts from the wheel displacement sensor measuring rela-
tive displacement between body and suspension. Generally,
the state estimation filter can be classified by the infinite
memory structure(IMS) filter and the finite memory struc-
ture(FMS) filter according to the measurement processing
manner as follows.

3.1. Infinite Memory Structure (IMS) Filter

The IMS filter, such as the well-known Kalman filtering
[13]-[16], has been successfully applied for the automotive
suspension system [9]-[12]. The IMS filter provides an op-
timal state estimate 2i™° for the system state z; using all
past measured outputs. The IMS filtered estimate 21" can
be represented by the summation form with the initial con-

dition i%”s = T, as follows:
i—1
jzms = (I)ii“%ns + Z (I)i_jEjCTRilyj
=0
i—1
—+ Z (I)i,jB’LLj
§=0
i—1
= ®;z; + Z (I)i_jEjCTRflyj
=0
i—1
+> " ®;_;Buj, ©)
=0
where the transition matrix ®; is given by
Q1 = (I)]A[I + Ei_j_lcTR_IC} _1,
by =1,
and the error covariance Y; of the estimate 2™ is given by

Sip = AT+ 3,CTRC) 7 '5AT + GQGT,

with the initial value >;, which is the covariance of i;g“

3.2. Finite Memory Structure (FMS) Filter

As an alternative to the IMS filter, the FMS filter has
been developed [17]-[20]. The FMS filter provides an opti-
mal state estimate i‘{ " for the system state ; using only
the most recent finite measured outputs and control inputs
on the window [i — M, i]. The window initial time i — M
will be denoted by 7,7 hereafter for simplicity. The FMS
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Table 2. State and output variables for automotive suspension system

State variables

1 body displacement

T2 body velocity

r3 relative displacement between body and suspension

T4 relative velocity between body and suspension (i.e. damper velocity)

Output variables

between body and suspension

signals from wheel displacement sensors measuring relative displacement

fms
7
tion form as well as the matrix form with the window initial

(FTﬂfll—‘)ilfTﬂleg as follows:

filtered estimate & can be represented by the summa-

condition &;,, =

M—1
SEIRTVERES SP SIS
7=0
M—-1
+ Z Dy jBugy, g
=0

-1
=y (FTH*P) -ty
+ [<I>Mzo By Dy <I>12M_1]OTR—1Yi

+ |on @y o @ BU ©)

where the transition matrix ®; is given by

‘I)j—i-l = CI)]'A[I—F EM_J'_lCTR_IC] 71,
By =1, 0<j<M—1,

fm

and the error covariance YJ; of the estimate ii s given

A(I+%,0TRIC)18;AT + GQGT,
—1

(rTnflr) .

The most recent finite measured outputs Y; and control in-
puts U; are as follows:

yi]u uilvf
A Yip+1 A WUips+1
Y, = Yiu+2 |, U; = | Yin+2 |,
L Yi-1 | L Ui—1 ]
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and matrices I', A, and II are as follows:

C
CA
r 2 cA? |
CAM-1
[0 0 o 0 0]
CG 0 e 00
AL CAG cG - 0 0|,
| cAM=2G cAMS3G CG 0 |
M M
II = A diag(QQ~--Q)}AT+[diag(RR~~-R) .

Gain matrices (TTTI'T) "' TTT ! and [@/ 50 ®as—151
‘e <I)1EM,1] CT R~ for finite measured outputs Y; and
[®rr Par—a
(6) requires only once off-line computation on the interval
[0, M] and then is used for all windows, which means that

the FMS filter has the time-invariance property.

@1] B for finite control inputs U; in

4. Discussion on Temporary Uncertainties

Even if the automotive suspension system is accurately
represented in state-space model on a long time scale, un-
predictable changes such as frequency, phase, and speed
jumps can occur. This effect is called temporary uncertain-
ties because it generally occurs in the short term [17]-[20].
There can be a model uncertainty, an unknown input, and
incomplete measurement information, etc., as representa-
tive temporary uncertainties. In this paper, the model un-
certainty and the unknown input are considered.

Firstly, the model uncertainty is considered. The state-
space approach is commonly used when real physical sys-
tems and processes can be approximated with a reasonable
number of states. The approximation implies model uncet-
tainty that may cause an estimator to be biased and/or di-
verge. That is, due to concerns for model misspecification,
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there can be model uncertainty. The automotive suspen-
sion system with the model uncertainty can be represented

by

Lit1

Yi = )
Although IMS and FMS filters (5) and (6) are designed by
the nominal discrete-time state-space model (3) for auto-
motive suspension system, actual measured outputs for the
estimation filtering are obtained from the system with the
model uncertainty (7).

Secondly, the unknown input is considered. The un-
known input has been used in many areas such as fault de-
tection and isolation for various systems and maneuver de-
tection and tracking of moving targets. In the automotive
suspension system, road disturbances such as bump and
pothole can be treated as the unknown input. As men-
tioned before, the road disturbance term p; is excluded in
the nominal discrete-time state-space model (3). However,
actual measured outputs from the wheel displacement sen-
sor contain the road disturbance. In other words, although
IMS and FMS filters (5) and (6) are designed by the nominal
discrete-time state-space model (3), actual measured out-
puts are obtained from the following state-space model with
the road disturbance term

Ax; + Bu; + Ep; + Guw;,
Czi + vy,

Tiv1 =

yi = ®
where the matrix E related to the road disturbance can be
obtained from (4)

The state estimation filter for the automotive suspen-
sion system should be robust to diminish the effects of
these temporary uncertainties. The IMS filter such as the
Kalman filter has been a standard choice and a beautiful
reference for the state estimation and thus applied success-
tully for diverse engineering problems. However, due to its
measurement processing manner that utilizes all past mea-
sured outputs accomplished by equal weighting, the IMS fil-
ter tends to accumulate during its implementation. There-
fore, it is known that the IMS filter may show poor per-
formance and even divergence phenomena for temporary
uncertainties. In contrast to the IMS filter, the FMS fil-
ter using only finite measured outputs and control inputs
on the most recent window has been known inherently to
be bounded input/bounded output stable and more robust
against temporary uncertainties. This means that the FMS
filter has an intrinsic robustness property. To verify intrin-
sic robustness of FMS filter, the FMS filter is applied for the
state estimation filtering of automotive suspension systems
under a couple of temporary uncertainties.
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5. Verification for Intrinsic Robustness of FMS
Filter

In this section, to verify intrinsic robustness of FMS
filter, a bus suspension system is considered for computer
simulations with physical parameters as shown in Table 3
[5]. Both FMS and IMS filters are applied for the estimation
filtering of the bus suspension system and then compared.

System matrices for the discrete-time state-space model
of the automotive suspension system can be obtained by
discretization with physical parameters in Table 3 as follows:

0.8628  0.0958
—2.8740 0.8628
0.7829  0.0864
| —9.7230 0.4498

[ 0.0000018
0.0000337
0.0000036 |’

| 0.0001143

0.1372
2.8740
¢ = —0.7829 » O=

9.7230

—0.0044
0.1998
—0.0648
1.9570

—0.0013
—0.0178
—0.0021
—0.1183

(001 0].

The system noise covariance and the measurement noise
covariance are taken by Q = 0.012 and R = 0.022, respec-
tively. To make a clearer comparison of estimation perfor-
mances, simulations of 20 runs are performed using differ-
ent noises, and each single simulation run lasts 500 samples.

For each simulations, estimation errors are computed
for three kinds of state variables, the body velocity(2nd
state), the damper velocity(4th state), and the relative dis-
placement between body and suspension(3rd state). These
state variables are important variables for the automotive
suspension control design and for the measuring passen-
gers’ ride comport.

5.1. Simulation Results for Nominal System

For the nominal discrete-time state-space model (3)
with (9) where there is no temporary uncertainty, two filters
are compared by root mean square(RMS) estimation error
for simulations of 20 runs. As shown in Figure 2, the FMS
filter can be comparable to the IMS filter. That is, both
filters produce negligible errors for the nominal system.

5.2. Simulation Results for Temporary Uncertainties

Firstly, to consider the temporary uncertainty for the
automotive suspension system, a model uncertainty AA4;
and AC} in (7) is considered as follows:

AA; = & Iixs, AC; = 0.15; - C,
5 {0.05 if 150 < i < 200,
o

otherwise.

(10)
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Table 3. Physical parameters of bus suspension system for simulations

Parameters

|

Values

My

2,500 [£g]

Mo

320 [y

K

80,000 [N/ 7]

Ko

500,000 [N/ ]

b1

350 [N.s/m]

bo

15,020 [N.s/m]

Secondly, a road distutrbance p; in (8) is considered and
simulated by two kinds of 20 ¢ step disturbances, bump
and pothole, as follows:

0.2 if 150 < ¢ < 200,
pi =14 —0.2 if 350 <7 <400, (11)
0 otherwise.

whete I/ = G. These two kinds of step type road distut-
bances could represent the bus coming out of bump and
pothole.

Although both IMS and FMS filters are designed by
the nominal discrete-time state-space model (9) for the au-
tomotive suspension system, actual measured outputs for
these two filters are obtained from the system with tem-
porary uncertainties (10) and (11). Upper plots of Fig-
ures 3-8 show RMS estimation errors of the body velocity,
the damper velocity, and the relative displacement between
body and suspension for 20 simulations for a couple of tem-
porary uncertainties. In addition, lower plots of Figures 3-8
also show estimation errors for one of 20 simulations.

As shown in simulation results, the FMS filter can be
better than the IMS filter in terms of error magnitude and
error convergence. The estimation error of FMS filters is
smaller than that of the IMS filter on the interval where
model uncertainty or road disturbance exist temporarily. In
addition, the convergence of estimation error is faster than
that of the IMS filter after model uncertainty or road distut-
bance disappears. Meanwhile, the FMS filter can be compa-
rable to the IMS filter after the effects of model uncertainty
and road disturbance have completely disappeared.

This means that people sitting in the bus with FMS fil-
ter can be more comfortable due to the smaller error magni-
tude and shorter error convergence time than the bus with
IMS filter. Therefore, the FMS filter can be more robust
than the IMS filter when applied to the automotive suspen-
sion system with model uncertainty or road disturbance, al-
though the FMS filter is designed with no consideration of
robustness. This observation means that the FMS filter has
an intrinsic robustness property.

ENGINEERING JOURNAL Volume 24 Issue 3, ISSN 0125-8281 (https://engj.org/)

6. Conclusions

This paper has applied the FMS filter for the estimation
filtering of the automotive suspension systems to verify in-
trinsic robustness of FMS filter. Firstly, the single-corner
model for the automotive suspension system and its state-
space model have been described. Secondly, both FMS
and IMS filters have been briefly introduced and compared.
Thirdly, a couple of temporary uncertainties such as model
uncertainty and unknown input has been discussed. Finally,
extensive computer simulations have been performed for
both nominal system and temporarily uncertain system. It
has been shown that the FMS filter can be better than the
IMS filter for a couple of temporary uncertainties, which
means that people sitting in the bus with FMS filter can be
more comfortable due to the smaller overshoot and shorter
settling time than the bus with IMS filter. In addition, the
FMS filter has shown to be comparable to the IMS filter
after the effects of model uncertainty and road disturbance
have completely disappeared.
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